用户名: 密码: 验证码:
刺激响应聚合物组装体的构建及其药物传输应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米微粒作为向肿瘤微环境传输物质的载体,能够跨越生物学屏障,改善药物分布,提高抗肿瘤效果,减少毒副作用,因而具有独特的优势,目前成为肿瘤治疗的研究热点。但是仅通过纳米微粒的高通透和滞留效应(EPR效应),还不能够满足诊断肿瘤需要的分辨率和癌症治疗需要的特异性。利用对肿瘤微环境或外界刺激可以产生响应的聚合物构建的智能组装体来传输抗肿瘤药物也是一种重要的靶向策略,它们可以在肿瘤部位按照预先的设计释放负载的药物,进一步提高治疗效果。包括pH,氧化还原电位,温度,酶,光等在内的各种刺激都可以用来设计智能纳米药物传输系统。这些纳米微粒在体内循环时保持稳定,而当靶向到病理部位并被细胞内化之后,作为对单一或多种刺激的响应,其物理化学性质发生改变,进而迅速释放药物。将能够对肿瘤组织和细胞相关的微环境刺激做出响应的模块整合到聚合物组装体中可以增强靶向效率,促进细胞的摄取,提高肿瘤组织和细胞内的药物浓度,并且在靶向病理部位精确的调控和优化药物释放,控制传输的药物在细胞内的命运,最终提高治疗效果。
     本文利用不同的分子间相互作用设计了具有不同环境响应行为的聚合物组装体结构。研究了它们的形成机理及对各种刺激的响应性质,评价了在体内外的药物传输行为,主要包括以下内容:
     (1)通过课题组前期发展的大分子-单体对反应体系,在温敏性的天然高分子羟丙基纤维素(HPC)溶液中直接聚合丙烯酸单体(AA),利用HPC和聚丙烯酸(PAA)之间的氢键相互作用,制备了与嵌段聚合物囊泡自组装结构不同的温敏性HPC-PAA囊泡,并对聚合物囊泡的结构,形状和渗透性,流动性等进行了详细的研究和讨论。
     (2)详细研究了HPC-PAA聚合物囊泡的形成机制,发现过程依次经历相分离成核,合并生长和重新自组装三个阶段。从实验上观察到了成核生长路径机理的存在,证实了这一机理对于结构不规整的非嵌段共聚物组装体也是适用的。同时利用HPC的温敏性,通过控制温度,从实验上观察到了理论没有预测到的囊泡形成过程中各阶段的中间状态。
     (3)通过甲基丙烯酸酯化的路线将羧甲基纤维素(CMC)功能化,并与含有二硫键的二丙烯酰胱胺(CBA)在水溶液中共聚制备了对pH和生物还原状态双重响应的纤维素纳米凝胶,还进一步对负载DOX的纳米凝胶在体内外的抗肿瘤效果进行了评价。纳米凝胶对阿霉素(DOX)具有较高的载药量,同时在体内循环时能够保持足够的稳定,而一旦被肿瘤细胞摄取会在细胞内的酸性环境与还原性物质的双重刺激下迅速膨胀,智能的释放出负载的DOX。
     (4)利用可控自由基聚合与点击化学合成了侧链含有硫辛酸基的聚甲基丙烯酸羟乙酯-嵌段-聚乙烯基吡咯烷酮(PHEMALA-b-PVP)嵌段共聚物,并采用纳米沉淀的方法制备了聚合物纳米胶束,同时,利用分子间的二硫键对胶束的疏水内核进行交联,同时赋予聚合物胶束还原敏感的性质。PHEMALA-b-PVP胶束具有很好的被动靶向能力,能够通过EPR效应在肿瘤部位有效累积,并从肿瘤血管中外溢并在间质中渗透,最终被肿瘤细胞摄取,较好的克服在体内的传输屏障。
Nanoparticles have particular advantages on deliverying cargoes to tumor. In recent years, using nanoparticles as delivery vehicles are hot research topics in the field of cancer therapy, because they can overcome a serious of biological barriers in vivo, improve drug distribution and reduce side effect. However, the accumulation of nanoparticles in tumor through enhanced permeability and retention (EPR) effect cannot fully meet the requirement of imaging sensitivity and specificity for cancer diagnose and therapy. Preparation of smart assemblies using stimulus sensitive polymers is an important target strategy for delivering anti-cancer drugs. They offer a powerful means for releasing drugs at the tumor sites as the pre-design, resulting in improvement of the theraputic efficacy. Several kinds of stimuli, including pH, redox, temperature, enzyme and light, have been exploited in the design of smart drug delivery systems. Such naoparticles are stable during blood circulation; however, the changes in chemical or physical properties of nanoparticles occur in response to single or multiple stimuli, resulting in that the nanoparticles release the drugs after being internalized. The integration of responsive modules adaptable to microenvironmental stimuli associated with tumor tissues and cells into polymeric assemblies can enhance target efficiency, promote cellular uptake, spontaneously and precisely trigger and optimize drug release at the target disease site, and regulate the intracellular fates of delivered drugs. As a result, the theraputic response is improved and side effects are reduced by the smart drug delivery systems.
     In this dissertation, we designed a serious of stimulus responsive polymeric assemblies utilizing different kinds of intermolecular interactions. Their formation mechanism, response properties, as well as their drug delivery behaviors in vitro/vivo were investigated in detail. The main contents are described as below:
     (1) Thermal sensitive hydroxypropyl cellulose-poly(acrylicacid)(HPC-PAA) vesicles, which structure is different from block copolymer vesicles, were self-assembled by the polymerization of AA in the solution of HPC through the hydrogen bond interacions between HPC and PAA. The detailed structure, mophorlogy, permeability and membrane mobility of HPC-PAA vesicles were characterized.
     (2) The invetigation of formation mechanism showed that HPC-PAA vesicles were spontaneously assembled through a nucleation and growth Pathway. The process includes three stages:nucleation satege, coalescence stage, and re-self-assembly stage. The experimental observation demonstrated that the previous theoretical simulation could also be applied to the vesilces self-assembled from irregular macromolecular amphiphilies. Furthermore, the intermediate states of vesicle formation process were captured by simply controlling the solution temperature.
     (3) A methacrylated strategy was used to functionalize carboxymethyl cellulose and prepare pH and redox dual-sensitive cellulose nangels by copolymerization with cystamine bisacrylamide (CBA) which contained disulfide bonds. The antitumor effect of DOX loaded nanogels was also evaluated in vitro/vivo. When used to load DOX, a high drug loading content and encapsulation efficiency were achieved. These nanogels were stable during blood circulation but de-integrated in the acidic organelle and cellular reducing environments, resulting in a fast release of encapsulated DOX.
     (4) PHEMALA-b-PVP diblock copolymer was synthesised by controlled free radical polymerization (ATRP and RAFT) and click chemistry. Redox sensitive PHEMALA-b-PVP micelles were prepared by nano-precipitation method and their hydrophobic inner cores were cross-linked through intermolecular disulfide bonds. The micelles showed a good passive targeting capability to accumulate in tumor region through EPR effect. On another hand, the micelles can not only leak out of tumor vessel and penetrate in interstitial, but also be internalized by cancer cells effectively. Our results deminstrated that the PHEMALA-b-PVP micelles can overcome the biological barriers when severed as a drug delivery vehicles.
引文
[1]Kleber, J. W.; Nash. J. F.; Lee, C. C. J. Pharm. Sci.1964,53,1519.
    [2]Langer, R.; Folkman, J. Nature 1976,263,797.
    [3]Bangham, A. D.; Standish M. M.; Watkins, J. C. J. Mol. Biol.1965,13,238.
    [4]Allen T. M.; Chonn, A. FEBS Lett.1987,223,42.
    [5]Nicolas, J.; Mura, S.; Brambilla, D.; Mackiewicz, N.; Couvreur, P. Chem. Soc. Rev. 2013,42,1147.
    [6]Kim, T.-Y.; Kim, D.-W.; Chung, J.-Y.; Shin, S. G.; Kim, S.-C.; Heo, D. S.; Kim, N. K.; Bang, Y.-J. Clin. Cancer Res.2004,10,3708.
    [7]Farokhzad O. C.; Langer, R. Adv. Drug Delivery Rev.2006,58,1456.
    [8]Shive, M. S.; Anderson, J. M. Adv. Drug Delivery Rev.1997,28,5.
    [9]Burgess, P.; Hutt, P. B.; Farokhzad, O. C.; Langer, R.; Minick, S.; Zale, S. Nat. Biotechnol.2010,28,1267.
    [10]Farokhzad, O. C.; Langer, R.ACS Nano 2009,3,16.
    [11]Kamaly, N.; Xiao, Z.; Valencia, P. M.; Radovic-Moreno, A. F.; Farokhzad, O. C. Chem. Soc. Rev.2012,41,2971.
    [12]Vakoc, B. J.; Lanning, R. M.; Tyrre, J. A.; Padera, T. P.; Bartlett, L. A.; Stylianopoulos, T.; Munn, L. L.; Tearney, G. J.; Fukumura, D.; Jain, R. K.; Bouma, B. E.Nat. Med.2009,15,1219.
    [13]Hobbs, S. K. Proc.Natl Acad. Sci. USA 1998,95,4607.
    [14]Kamoun, W. S.; Chae, S.-S.; Lacorre, D. A.; Tyrrell, J. A.; Mitre, M.; Gillissen, M. A.; Fukumura, D.; Jain, R. K.; Munn, L. L. Nat. Methods 2010,7,655.
    [15]Kim, P.; Chung, E.; Yamashita, H.; Hung, K. E.; Mizoguchi, A.; Kucherlapati, R.; Fukumura, D.; Jain, R. K.; Yun, S. H. Nat. Methods 2010,7,303.
    [16]Padera, T. P.; Stoll, B. R.; Tooredman, J. B.; Capen, D.; di Tomaso, E.; Jain, R. K. Nature 2004,427,695.
    [17]Jain, R. K.; Tong, R. T.; Munn, L. L. Cancer Res.2007,67,2729.
    [18]Helmlinger, G.; Yuan, F.; Dellian, M.; Jain, R. K. Nat. Med.1997,3,177.
    [19]Boucher, Y.; Baxter, L. T.; Jain, R. K. Cancer Res.1990,50,4478.
    [20]Ronnov-Jessen, L.; Petersen, O. W.; Bissell, M. J. Physiol. Rev.1996,76,69.
    [21]Gerweck, L. E.; Seetharaman, K. Cancer Res.1996,56,1194.
    [22]Issels, R. D. Eur. J. Cancer 2008,44,2546.
    [23]de la Rica, R.; Aili, D.; Stevens, M. M. Adv. Drug Delivery Rev.2012,64,967.
    [24]Kizaka-Kondoh, S.; Inoue, M.; Harada, H.; Hiraoka, M. Cancer Sci.2003,94, 1021.
    [25]Takemoto, H.; Ishii, A.; Miyata, K.; Nakanishi, M.; Oba, M.; Ishii, T.; Yamasaki, Y.; Nishiyama, N.; Kataoka, K. Biomaterials 2010,31,8097.
    [26]Go, Y. M.; Jones, D. P. Biochim. Biophys. Acta, Gen. Subj.2008,1780,1271.
    [27]Matsumura, Y.; Maeda, H. Cancer Res.1986,46,6387.
    [28]Torchilin,V. Adv Drug Deliv Rev.2011,63,131.
    [29]Jain, R. K. Adv. Drug Deliv. Rev.2001,46,149.
    [30]Dellian, M.; Yuan,F.; Trubetskoy, V. S.; Torchilin, V. P.; Jain, R. K. Br. J. Cancer 2000,82,1513.
    [31]Jain, R. K. Cancer Res.1988,48,2641.
    [32]Jain, R. K.Cancer Metastasis Rev.1987,6,559.
    [33]Yuan, F.; Chen, Y.; Dellian, M.; Safabakhsh, N.; Ferrara, N.; Jain, R. K. Proc. Natl Acad. Sci. USA 1996,93,14765.
    [34]Jain, R. K.Cancer Res.1987,47,3039.
    [35]Alexandrakis, G.; Brown, E. B.; Tong, R. T.; McKee, T. D.; Campbell, R. B.; Boucher, Y.; Jain, R. K. Nat. Med.2004,10,203.
    [36]McKee, T. D.; Grandi, P.; Mok, W.; Alexandrakis, G.; Insin, N.; Zimmer, J. P.; Bawendi, M. G.; Boucher, Y.; Breakefield, X. O.; Jain, R. K. Cancer Res.2006,66, 2509.
    [37]Choi, J.; Credit, K.; Henderson, K.; Deverkadra, R.; He, Z.; Wiig, H.; Vanpelt, H.; Flessner, M. F. Clin. Cancer Res.2006,12,1906.
    [38]Pluen, A.; Boucher, Y.; Ramanujan, S.; McKee, T. D.; Gohongi, T.; di Tomaso, E.; Brown, E. B.; Izumi, Y.; Campbell, R. B.; Berk, D. A.; Jain, R. K. Proc. Natl Acad. Sci. USA 2001,98,4628.
    [39]Lieleg, O.; Baumgartel, R. M.; Bausch, A. R. Biophys. J.2009,97,1569.
    [40]Herlambang, S.; Kumagai, M.; Nomoto, T.; Horie, S.; Fukushima, S.; Oba, M.; Miyazaki, K.; Morimoto, Y.; Nishiyama, N.; Kataoka, K. J. Control. Release 2011, 155,449.
    [41]Discher, D.E.; Eisenberg, A. Science 2002,297,961.
    [42]Maeda, H.; Ueda, M.; Morinaga, T.; Matsumoto, T. J. Med. Chem.1985,28,455.
    [43]Maeda, H. Bioconjugate Chem.2010,21,797.
    [44]Yuan, F.; Dellian, M.; Fukumura, D.; Leunig, M.; Berk, D. A.; Torchilin V. P.; Jain, R. K. Cancer Res.1995,55,3752.
    [45]Nagamitsu, A.; Greish, K.; Maeda, H. Jpn. J. Clin. Oncol.2009,39,756.
    [46]Chrastina, A.; Massey, K. A.; Schnitzer, J. E. Wiley Interdiscip. Rev.:Nanomed. Nanobiotechnol.2011,3,421.
    [47]Hobbs, S. K.; Monsky, W. L.; Yuan, F.; Roberts, W. G.; Griffith, L.; Torchilin, V. P.; Jain, R. K. Proc. Natl. Acad. Sci. USA 1998,95,4607.
    [48]Zhang, Q.; Ko, N. R.; Oh, J. K. Chem. Commun.2012,48,7542.
    [49]Stubbs, M.; McSheehy, P. M. J.; Griffiths, J. R.; Bashford, C. L. Mol. Med. Today 2000,6,15.
    [50]Felber, A. E.; Dufresne, M. H.; Leroux, J. C. Adv. Drug Delivery Rev.2012,64, 979.
    [51]Lee, E. S.; Shin, H. J.; Na, K.; Bae, Y. H. J. Control. Release 2003,90,363.
    [52]Kim, G. M.; Bae, Y. H.; Jo, W. H. Macromol. Biosci.2005,5,1118.
    [53]Koo, H.; Lee, H.; Lee, S.; Min, K. H.; Kim, M. S.; Lee, D. S.; Choi, Y.; Kwon, I. C.; Kim, K.; Jeong, S. Y. Chem. Commun.2010,46,5668.
    [54]Kim, M. S.; Lee, D. S.Chem. Commun.2010,46,4481.
    [55]Du, J. Z.; Fan, L.; Liu, Q. M. Macromolecules 2012,45,8275.
    [56]Fan, J. Q.; Zeng, F.; Wu, S. Z.; Wang, X. D. Biomacromolecules 2012,13,4126.
    [57]Zhou, K. J.; Wang, Y. G.; Huang, X. N.; Luby-Phelps, K.; Sumer, B. D.; Gao, J. M. Angew. Chem., Int. Ed.2011,50,6109.
    [58]Zhou, K. J.; Liu, H. M.; Zhang, S. R.; Huang, X. N.; Wang, Y. G.; Huang, G.; Sumer, B. D.; Gao, J. M. J. Am. Chem. Soc. 2012,134,7803.
    [59]Hu, J.; Liu, T.; Zhang, G.; Jin, F.; Liu, S. Macromol. Rapid Commun. 2013, 34, 749.
    [60]Rodriguez-Hernandez, J.; Lecommandoux, S. J. Am. Chem. Soc. 2005, 127, 2026.
    [61]Fukushima, S.; Miyata, K.; Nishiyama, N.; Kanayama, N.; Yamasaki, Y.; Kataoka, K. J. Am. Chem. Soc. 2005,127,2810.
    [62]Boylan, N. J.; Kim, A. J.; Suk, J. S.; Adstamongkonkul, P.; Simons, B. W.; Lai, S. K.; Cooper, M. J.; Hanes, J. Biomaterials 2012,33,2361.
    [63]Yu, H. J.; Zou, Y. L.; Wang, Y. G.; Huang, X. N.; Huang, G.; Sumer, B. D.; Boothman, D. A.; Gao, J. M. ACS Nano 2011, 5, 9246.
    [64]Ziebarth, J. D.; Wang, Y. M. Biomacromolecules 2010,11,29.
    [65]Itaka, K.; Ishii, T.; Hasegawa, Y.; Kataoka, K. Biomaterials 2010,31,3707.
    [66]Bae, Y.; Nishiyama, N.; Fukushima, S.; Koyama, H.; Yasuhiro, M.; Kataoka, K. Bioconjugate Chem. 2005,16,122.
    [67]Min, K. H.; Lee, H. J.; Kim, K.; Kwon, I. C.; Jeong, S. Y.; Lee, S. C. Biomaterials 2012, 33, 5788.
    [68]Hu, X. L.; Liu, S.; Huang, Y. B.; Chen, X. S.; Jing, X. B. Biomacromolecules 2010,11,2094.
    [69]Lee, S.; Saito, K.; Lee, H. R.; Lee, M. J.; Shibasaki, Y.; Oishi, Y.; Kim, B. S. Biomacromolecules 2012,13, 1190.
    [70]Binauld, S.; Scarano, W.; Stenzel, M. H. Macromolecules 2012,45,6989.
    [71]Jin, Y.; Song, L.; Su, Y.; Zhu, L.; Pang, Y.; Qiu, F.; Tong, G.; Yan, D.; Zhu, B.; Zhu, X. Biomacromolecules 2011,12, 3460.
    [72]Chen, W.; Meng, F.; Li, F.; Ji, S.-J.; Zhong, Z. Biomacromolecules 2009, 10, 1727.
    [73]Lee, S. J.; Min, K. H.; Lee, H. J.; Koo, A. N.; Rim, H. P.; Jeon, B. J.; Jeong, S. Y.; Heo, J. S.; Lee, S. C. Biomacromolecules 2011,12,1224.
    [74]Ding, C. X.; Gu, J. X.; Qu, X. Z.; Yang, Z. Z. Bioconjugate Chem. 2009, 20, 1163.
    [75]Wang, C.; Wang, G.; Wang, Z.; Zhang, X. Chem. Eur. J.2011,17,3322.
    [76]Lin, S.; Du, F. S.; Wang, Y.; Ji, S. P.; Liang, D. H.; Yu, L.; Li, Z. C. Biomacromolecules 2008,9,109.
    [77]Oishi, M.; Nagasaki, Y.; Itaka, K.; Nishiyama, N.; Kataoka, K. J. Am. Chem. Soc. 2005,127,1624.
    [78]Walker, G. F.; Fella, C.; Pelisek, J.; Fahrmeir, J.; Boeckle, S.; Ogris, M.; Wagner, E. Mol. Ther.2005,11,418.
    [79]Knorr, V.; Allmendinger, L.; Walker, G. F.; Paintner, F. F.; Wagner, E. Bioconjugate Chem.2007,18,1218.
    [80]Thambi, T.; Deepagan, V. G.; Yoo, C. K.; Park, J. H. Polymer 2011,52,4753.
    [81]El-Sadek, B. M. Adv. Appl. Sci. Res.2011,2,363.
    [82]Du, J.-Z.; Sun, T.-M.; Song, W.-J.; Wu, J.; Wang, J. Angew. Chem. Int. Ed.2010, 49,3621.
    [83]Du, J.-Z.; Du, X.-J.; Mao, C.-Q.; Wang, J. J. Am. Chem. Soc.2011,133,17560.
    [84]Shim, M. S.; Kwon, Y. J. Biomaterials 2010,31,3404.
    [85]Ballatori, N.; Krance, S. M.; Notenboom, S.; Shi, S.; Tieu, K.; Hammond, C. L. Biol. Chem.2009,390,191.
    [86]Britten, R. A.; Green, J. A.; Warenius, H. M. Int. J. Radiat. Oncol. Biol. Phys. 1992,24,527.
    [87]Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. J. Control. Release 2008, 126,187.
    [88]Meng, F.; Hennink, W. E.; Zhong, Z. Biomaterials 2009,30,2180.
    [89]Chen, J.; Zehtabi, F.; Ouyang, J.; Kong, J.; Zhong, W.; Xing, M. M. Q. J. Mater. Chem.2012,22,7121.
    [90]Wang, Y.-C.; Wang, F.; Sun, T.-M.; Wang, J. Bioconjugate Chem.2011,22, 1939.
    [91]Liu, J.; Pang, Y.; Huang, W.; Huang, X.; Meng, L.; Zhu, X.; Zhou, Y.; Yan, D. Biomacromolecules 2011,12,1567.
    [92]Koo, A. N.; Lee, H. J.; Kim, S. E.; Chang, J. H.; Park, C.; Kim, C.; Park, J. H.; Lee, S. C. Chem. Commun.2008,44,6570.
    [93]Zhang, Z.; Yin, L.; Tu, C.; Song, Z.; Zhang, Y.; Xu, Y.; Tong, R.; Zhou, Q.; Ren, J.; Cheng, J. ACS Macro Lett.2013,2,40.
    [94]Li, Y.-L.; Zhu, L.; Liu, Z.; Cheng, R.; Meng, F.; Cui, J.-H.; Ji, S.-J.; Zhong, Z. Angew. Chem. Int. Ed.2009,48,9914.
    [95]Kim, J. E.; Cha, E.-J.; Ahn, C.-H. Macromol. Chem. Phys.2010,211,956.
    [96]Li, Y. P.; Xiao, K.; Luo, J. T.; Xiao, W. W.; Lee, J. S.; Gonik, A. M.; Kato, J.; Dong, T. A.; Lam, K. S. Biomaterials 2011,32,6633.
    [97]Hanahan, D.; Weinberg, R. A. Cell 2011,144,646.
    [98]Lee, G. Y.; Park, K.; Kim, S. Y.; Byun, Y. Eur. J. Pharm. Biopharm.2007,67, 646.
    [99]Talelli, M.; Morita, K.; Rijcken, C. J. F.; Aben, R. W. M.; Lammers, T.; Scheeren, H. W.; van Nostrum, C. F.; Storm, G.; Hennink, W. E. Bioconjugate Chem. 2011,22,2519.
    [100]Kanapathipillai, M.; Mammoto, A.; Mammoto, T.; Kang, J. H.; Jiang, E.; Ghosh, K.; Korin, N.; Gibbs, A.; Mannix, R.; Ingber, D. E. Nano Lett.2012,12,3213.
    [101]Garripelli, V. K.; Kim, J. K.; Son, S.; Kim, W. J.; Repka, M. A.; Jo, S. Acta Biomater.2011,7,1984.
    [102]de Graaf, A. J.; Mastrobattista, E.; Vermonden, T.; van Nostrum, C. F.; Rijkers, D. T. S.; Liskamp, R. M. J.; Hennink, W. E. Macromolecules,2012,45,842.
    [103]Liu, Q.; Li, R.-T.; Qian, H.-Q.; Yang, M.; Zhu, Z.-S.; Wu, W.; Qian, X.-P.; Yu, L.-X.; Jiang, X.-Q.; Liu, B.-R. Int. J. Nanomedicine 2012,7,281.
    [104]Wang, C.; Chen, Q. S.; Wang, Z. Q.; Zhang, X. Angew. Chem., Int. Ed.2010, 49,8612.
    [105]Wong, C.; Stylianopoulos, T.; Cui, J.; Martin, J.; Chauhan, V. P.; Jiang, W.; Popovic, Z.; Jain, R. K.; Bawendi, M. G.; Fukumura, D. Proc. Natl. Acad. Sci. USA 2011,108,2426.
    [106]Bawa, P.; Pillay, V.; Choonara, Y. E.; du Toit, L. C. Biomed. Mater.2009,4, 022001.
    [107]Yahara, T.; Koga, T.; Yoshida, S.; Nakagawa, S.; Deguchi, H.; Shirouzu, K. Surg. Today 2003,33,243.
    [108]Issels, R. D. Eur. J. Cancer 2008,44,2546.
    [109]Huynh, C. T.; Nguyen, M. K.; Lee, D. S. Macromolecules 2011,44,6629.
    [110]Wei, H.; Cheng, S.-X.; Zhang, X.-Z.; Zhuo, R.-X. Progress in Polymer Science 2009,34,893.
    [111]Hong, C. Y.; You, Y. Z.; Pan, C. Y. J. Potym. Sci., Part A:Polym. Chem.2004, 42,4873.
    [112]Ge, Z.; Liu, S. Chem. Soc. Rev.2013,10.1039/C3CS60048C.
    [113]Zhang, L. Y.; Guo, R.; Yang, M.; Jiang, X. Q.; Liu, B. R. Adv. Mater.2007,19, 2988.
    [114]Park, J. S.; Kataoka, K. Macromolecules,2006,39,6622.
    [115]Park, J. S.; Akiyama, Y.; Yamasaki, Y.; Kataoka, K. Langmuir 2007,23,138.
    [116]Li, Y.; Pan, S.; Zhang, W.; Du, Z. Nanotechnology 2009,20,065104.
    [117]Prabaharan, M.; Grailer, J. J.; Steeber, D. A.; Gong, S.Macromol. Biosci.2009, 9,744.
    [118]Wu, J.; Liu, X.-Q.; Wang, Y.-C.; Wang, J. J. Mater. Chem.2009,19,7856.
    [119]Qin, S.; Geng, Y.; Discher, D. E.; Yang, S. Adv. Mater.2006,18,2905.
    [120]Otsuka, I.; Fuchise, K.; Halila, S.; Fort, S.; Aissou, K.; Pignot-Paintrand, I.; Chen, Y.; Narumi, A.; Kakuchi, T.; Borsali, R. Langmuir 2010,26,2325.
    [121]Ta, T.; Convertine, A. J.; Reyes, C. R.; Stayton, P. S.; Porter, T. M. Biomacromolecules 2010,11,1915.
    [122]Moughton, A. O.; O'Reilly, R. K. Chem. Commun.2010,46,1091.
    [123]Li, Y.; Lokitz, B. S.; McCormick, C. L. Angew. Chem. Int. Ed.2006,45,5792.
    [124]Huang, X. H.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Lasers Med. Sci. 2008,23,217.
    [125]Kuo, W. S.; Chang, C. N.; Chang, Y. T.; Yang, M. H.; Chien, Y. H.; Chen, S. J.; Yeh, C. S. Angew. Chem., Int. Ed.2010,49,2711.
    [126]Gazeau, F.; Levy, M.; Wilhelm, C. Nanomedicine 2008,3,831.
    [127]Gorman, M. W.; Feigl, E. O.; Buffington, C. W. Clin. Chem.2007,53,318.
    [128]Naito, M.; Ishii, T.; Matsumoto, A.; Miyata, K.; Miyahara, Y.; Kataoka, K. Angew. Chem. Int. Ed.2012,51,10751.
    [129]Fruehauf, J. P.; Meyskens, F. L. Clin. Cancer Res.2007,13,789.
    [130]Kumar, B.; Koul, S.; Khandrika, L.; Meacham, R. B.; Koul, H. K. Cancer Res. 2008,68,1777.
    [131]Ishikawa, K.; Takenaga, K.; Akimoto, M.; Koshikawa, N.; Yamaguchi, A.; Imanishi, H.; Nakada, K.; Honma Y.; Hayashi, J. Science 2008,320,661.
    [132]Shim, M. S.; Xia, Y. Angew. Chem. Int. Ed.2013,52, DOI: 10.1002/anie.201209633.
    [133]Tong, X.; Wang, G.; Soldera, A.; Zhao, Y. J. Phys. Chem. B 2005,109,20281.
    [134]Li, M.-H.; Keller, P. Soft Matter 2009,5,927.
    [135]Liu, Y.; Yu, C.; Jin, H.; Jiang, B.; Zhu, X.; Zhou, Y.; Lu, Z.; Yan, D. J. Am. Chem. Soc.2013,135,4765.
    [1]Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W.; Wang, Li. V.; Zheng, G Nat. Mater.2011,10,324.
    [2]Minkenberg, C. B.; Li, F.; van Rijn, P.; Florusse, L.; Boekhoven, J.; Stuart, M. C. A.; Koper, G J. M.; Eelkema, R.; van Esch, J. H. Angew. Chem. Int. Ed.2011,50, 3421.
    [3]Kim, K. T.; Zhu, J.; Meeuwissen, S. A.; Comelissen, J. J. L. M.; Pochan, D. J.; Nolte, R. J. M.; van Hest, J. C. M. J. Am. Chem. Soc.2010,132,12522.
    [4]Huang, J.; Bonduelle, C.; Thevenot, J.; Lecommandoux, S.; Heise, A. J. Am. Chem. Soc.2012,134,119.
    [5]Gao, K.-J.; Li, G.; Lu, X.; Wu, Y. G.; Xua,B.-Q.; Fuhrhop, J.-H. Chem. Commun. 2008,44,1449.
    [6]Anraku, Y.; Kishimura, A.; Yamasaki, Y.; Kataoka, K. J. Am. Chem. Soc.2013, 135,1423.
    [7]Liu, Y.; Yu, C.; Jin, H.; Jiang, B.; Zhu, X.; Zhou, Y.; Lu, Z.; Yan, D. J. Am. Chem. Soc.2013,135,4765.
    [8]Mai, Y.; Eisenberg, A. Chem. Soc. Rev.2012,41,5969.
    [9]Discher, D.E.; Eisenberg, A. Science 2002,297,967.
    [10]Antonietti, M.; Forster, S. Adv. Mater.2003,15,1323.
    [11]Hyde, S.T. J. Phys. (Paris) 1990,51, C7209.
    [12]Meins, J.-F.; Sandre, O.; Lecommandoux, S. Eur. Phys. J. E 2011,34,14.
    [13]van Dongen, S. F. M.; de Hoog, H.-P. M.; Peters, R. J. R. W.; Nallani, M.; Nolte, R. J. M.; van Hest, J. C. M. Chem. Rev.2009,109,6212.
    [14]Klug, E. D. J. Polym. Sci, Part C:Polym. Sym.1971,9,491.
    [15]Chen, Y.; Ding, D.; Mao, Z.; He, Y.; Hu, Y.; Wu, W.; Jiang, X. Biomacromolecules 2008,9,2609.
    [16]Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Chem. Soc. Rev. 2011,40,3941.
    [17]Saatchi, K.; Soema, P.; Gelder, N.; Misri, R.; McPhee, K.; Baker, J. H. E.; Reinsberg, S. A.; Brooks, D. E.; Hafeli, U. O. Bioconjugate Chem.2012,23,372.
    [18]Guan, Y.; Zhang, Y.; Zhou T.; Zhou, S. Soft Matter 2009,5,842.
    [19]Chen, Y.; Qian, H.; Zheng, X.; Jiang, X.; Yu, H.; Zhang, L. Soft Matter 2011,7, 5519.
    [20]Daddysman, M. K.; Fecko, C. J. J. Phys. Chem. B 2013,117,1241.
    [21]Marty, S.; Schroeder, M.; Baker, K. W.; Mazzanti, G.; Marangoni, A. G Langmuir 2009,25,8780.
    [22]Axelrod, D.; Koppel, D. E.; Schlessinger, J.; Elson, E.; Webb, W. W. Biophy. J. 1976,16,1055.
    [1]van Dongen, S. F. M.; de Hoog, H.-P. M.; Peters, R. J. R. W.; Nallani, M.; Nolte, R. J. M.; van Hest, J. C. M. Chem. Rev.2009,109,6212.
    [2]Adams, D. J.; Adams, S.; Atkins, D.; Butler, M. F.; Furzeland, S. J. Control. Release 2008,128,165.
    [3]He, X.; Schmid, F. Phys. Rev. Lett.2008,100,137802/1.
    [4]Gummel, J.; Sztucki, M.; Narayanan, T.; Gradzielski, M. Soft Matter 2011,7, 5731.
    [5]Blanazs, A.; Madsen, J.; Battaglia, G.; Ryan, A. J.; Armes, S. P.J. Am. Chem. Soc. 2011,133,16581.
    [6]Noguchi, H.; Takasu, M. Phys. Rev. E 2001,64,419131.
    [7]Yamamoto, S.; Maruyama, Y.; Hyodo, S.A. J. Chem. Phys.2002,116,5842.
    [8]He, X.; Schmid, F. Macromolecules 2006,39,2654.
    [9]Xiao, M.; Xia, G.; Wang, R.; Xie, D. Soft Matter 2012,8,7865.
    [10]Han, Y.; Yu, H.; Du, H.; Jiang, W. J. Am. Chem. Soc.2010,132,1144.
    [11]Lu, X.; Hu, Z.; Schwartz, J. Macromolecules 2002,35,9164.
    [12]Wei, K.; Su, L.; Chen, G.; Jiang, M. Polymer 2011,52,3647.
    [13]Kim, M. S.; Lee, D. S. Chem. Commun.2010,46,4481.
    [14]Khutoryanskiy, V. V.; Mun, G. A.; Nurkeeva, Z. S.; Dubolazov, A. V. Polym. Int. 2004,53,1382.
    [1]Petros, R. A.; DeSimone, J. M. Nature Rev. Drug Discov.2010,9,615.
    [2]Dothager, R. S.; Piwnica-Worms, D. Cancer Res.2011,71,5611.
    [3]Kim, K.; Kim, J. H.; Park, H.; Kim, Y.-S.; Park, K.; Nam, H.; Lee, S.; Park, J. H.; Park, R. W.; Kim, I.-S.; Choi, K.; Kim, S. Y.; Park, K.; Kwon, I. C. J. Control. Release 2010,146,219.
    [4]Sun, H.; Guo, B.; Li, X.; Cheng, R.; Meng, F.; Liu, H.; Zhong, Z. Biomacromolecules 2010,//,848.
    [5]Otsuka, I.; Fuchise, K.; Halila, S.; Fort, S.; Aissou, K.; Pignot-Paintrand, I.; Chen, Y.; Narumi, A.; Kakuchi, T.; Borsali, R. Langmuir 2010,26,2325.
    [6]Guo, Y.; Wang, X.; Shen, Z.; Shu, X.; Sun, R. Carbohydrate Polymers 2013,92, 77.
    [7]Ganesh, S.; Iyer, A. K.; Morrissey, D. V.; Amiji, M. M. Biomaterials 2013,34, 3489.
    [8]Peng, X-H.; Wang, Y.; Huang, D.; Wang, Y.; Shin, H. J.; Chen, Z.; Spewak, M. B.; Mao, H.; Wang, X.; Wang, Y; Chen, Z.; Nie, S.; Shin, D. M. ACS Nano 2011,5, 9480.
    [9]Ernsting, M. J.; Tang, W.-L.; MacCallum, N.; Li, S.-D. Bioconjugate Chem.2011, 22,2474.
    [10]Reza, A. T.; Nicoll, S. B. Acta Biomaterialia 2010,6,179.
    [11]Bae, Y H.; Yin, H. J. Control. Release 2008,131,2.
    [12]Li, Y.-L.; Zhu, L.; Liu, Z.; Cheng, R.; Meng, F.; Cui, J.-H.; Ji, S.-J.; Zhong, Z. Angew. Chem. Int. Ed.2009,48,9914.
    [13]O'Reilly, R. K.; Hawker, C. J.; Wooley, K. L. Chem. Soc. Rev.2006,35,1068.
    [14]Sannino, A.; Madaghiele, M.; Conversano, F.; Mele, G.; Maffezzoli, A.; Netti, P. A.; Ambrosio, L.; Nicolais, L. Biomacromolecules 2004,5,92.
    [15]Ito, T.; Yeo, Y.; Highley, C. B.; Bellas, E.; Benitez, C. A.; Kohane, D. S. Biomaterials 2007,28,975.
    [16]Sannino, A.; Demitri, C.; Madaghiele, M. Materials 2009,2,353.
    [17]Yu, Y.; Chau, Y. Biomacromolecules 2012,13,937.
    [18]Bae, K. H.; Mok, H.; Park, T. G Biomaterials 2008,29,3376.
    [19]Yue, Z.; Wen, F.; Gao, S.; Ang, M. Y.; Pallathadka, P. K.; Liu, L.; Yu, H. Biomaterials 2010,31,8141.
    [20]Quero, F.; Nogi, M.; Lee, K.-Y.; Poel, G. V.; Bismarck, A.; Mantalaris, A.; Yano, H.; Eichhorn, S. J. ACSAppl. Mater. Interfaces 2011,3,490.
    [21]Ballatori, N.; Krance, S. M.; Notenboom, S.; Shi, S.; Tieu, K.; Hammond, C. L. Biol. Chem.2009,390,191.
    [22]Schafer, F. Q.; Buettner, G. R. Free Radical Biol. Med.2001,30,1191.
    [23]Kuppusamy, P.; Li, H.; Ilangovan, G.; Cardounel, A. J.; Zweier, J. L.; Yamada, K.; Krishna, M. C.; Mitchell, J. B. Cancer Res.2002,62,307.
    [24]Go, Y. M.; Jones, D. P. Biochim. Biophys. Acta, Gen. Subj.2008,1780,1271.
    [25]Sun, Y; Yan, X.; Yuan, T.; Liang, J.; Fan, Y.; Gu, Z.; Zhang, X. Biomaterials 2010,31,7124.
    [26]Burdick, J. A.; Chung, C.; Jia, X.; Randolph, M. A.; Langer, R. Biomacromolecules 2005,6,386.
    [27]Zhang, C.; Wang, W.; Liu, T.; Wu, Y.; Guo, H.; Wang, P.; Tian, Q.; Wang, Y.; Yuan, Z. Biomaterials 2012,33,2187.
    [28]Du, J.-Z.; Sun, T.-M.; Song, W.-J.; Wu, J.; Wang, J. Angew. Chem. Int. Ed.2010, 49,3621.
    [29]Nishiguchi, A.; Yoshida, H.; Matsusaki, M.; Akashi, M. Chem. Lett.2010,39, 1184.
    [30]Sanson,N.; Rieger, J. Polym. Chem.2010,1,965.
    [31]Kabanov, A. V.; Vinogradov, S. V. Angew. Chem. Int. Ed.2009,48,5418.
    [32]Torchilin, V. P. J. Control. Release 2001,73,137.
    [33]Chacko, R. T.; Ventura, J.; Zhuang, J.; Thayumanavan, S. Adv. Drug Delivery Rev. 2012,64,836.
    [34]Cabral, H.; Nishiyama, N.; Okazaki, S.; Koyama, H.; Kataoka, K. J. Control. Release 2005,101,223.
    [35]Torchilin, V. P. Adv. Drug Delivery Rev.2005,57,95-109.
    [36]Takemoto, H.; Ishii, A.; Miyata, K.; Nakanishi, M.; Oba, M.; Ishii, T.; Yamasaki, Y.; Nishiyama, N.; Kataoka, K. Biomaterials 2010,31,8097.
    [37]Gao, W.; Langer, R.; Farokhzad, O. C. Angew. Chem. Int. Ed.2010,49,6567.
    [38]Chytil, P.; Etrych, T.; Konak, C.; Sirova, M.; Mrkvan, T.; Boucek, J.; Rihova, B.; Ulbrich, K. J. Control. Release 2008,127,121.
    [39]Fornari, F. A.; Randolph, J. K.; Yalowich, J. C.; Ritke, M. K.; Gewirtz, D. A. Mol. Pharmacol.1994,45,649.
    [40]Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Cancer Res. 2008,68,6652.
    [41]Okino, H.; Maeyama, R.; Manabe, T.; Matsuda, T.; Tanaka, M. Clin. Cancer Res. 2003,9,5786.
    [1]Dothager, R. S.; Piwnica-Worms, D. Cancer Res. 2011, 71, 5611.
    [2]Jain, R. K. Adv. Drug Deliv. Rev. 2001, 46,149.
    [3]Jain, R. K.Cancer Res. 1987, 47, 3039.
    [4]McKee, T. D.; Grandi, P.; Mok, W.; Alexandrakis, G.; Insin, N.; Zimmer, J. P.; Bawendi, M. G.; Boucher, Y.; Breakefield, X. O.; Jain, R. K. Cancer Res. 2006, 66, 2509.
    [5]Deng, C.; Jiang, Y.; Cheng, R; Meng, F.; Zhong, Z. Nano Today 2012, 7,467.
    [6]Talelli, M.; Morita, K.; Rijcken, C. J. F.; Aben, R. W. M.; Lammers, T.; Scheeren, H. W.; van Nostrum, C. F.; Storm, G.; Hennink, W. E. Bioconjugate Chem. 2011, 22, 2519.
    [7]Sun, S.; Cao, Y.; Feng, J.; Wu, P. J. Mater. Chem. 2010,20, 5605.
    [8]Jung, S.-H.; Song, H.-Y.; Lee, Y.; Jeong, H. M.; Lee, H. Macromolecules 2011, 44, 1628.
    [9]Li, X.; Guo, J.; Asong, J.; Wolfert, M. A.; Boons, G.-J. J. Am. Chem. Soc. 2011, 735,11147
    [10]Lima, V.; Jiang, X.; Brokken-Zijp, J.; Schoenmakers, P. J.; Klumperman, B.; Vander Linde, R. J. Polym. Sci. Part A: Polym. Chem. 2005,43, 959.
    [11]Zelikin, A. N.; Such, G. K.; Postma, A.; Garuso, F. Biomacromolecules 2007, 8, 2950.
    [12]Zhang, L.; Guo, R.; Yang, M.; Jiang, X.; Liu, B. Adv. Matter. 2007,19,2988.
    [13]Yin, Q.; Tong, R.; Xu, Y.; Baek, K.; Dobrucki, L. W.; Fan, T. M.; Cheng, J. Biomacromolecules 2013,14, 920.
    [14]Li, Y.-L.; Zhu, L.; Liu, Z.; Cheng, R.; Meng, F.; Cui, J.-H.; Ji, S.-J.; Zhong, Z. Angew. Chem. Int. Ed. 2009, 48, 9914.
    [15]Gaucher, G.; Asahina, K.; Wang, J.; Leroux, J-C. Biomacromolecules 2009, 10, 408.
    [16]Ishihara, T.; Maeda, T.; Sakamoto, H.; Takasaki, N.; Shigyo, M.; Ishida, T.; Kiwada, H.; Mizushima, Y.; Mizushima, T. Biomaterials, 2010, 11,2700.
    [17]Nagano, S.; Perentes, J.Y.; Jain, R.K.; Boucher, Y. Cancer Res.2008,68,3795.
    [18]Lieleg, O.; Baumgartel, R. M.; Bausch, A. R. Biophys. J.2009,97,1569.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700