用户名: 密码: 验证码:
鄂尔多斯盆地延长组高自然伽马储层成因及测井评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在鄂尔多斯盆地一些地区的延长组中发育高自然伽马砂岩储层,该类储层平面上主要分布于宁夏盐池、陕西定边、安塞、吴起、靖边、甘肃华池等主要产油区,在纵向上主要存在于延长组长4+5、长6、长7、长2、长3等主力产油层位。高伽马储层的地质研究与测井评价,不仅对延长组储层的储集性能评价和测井解释有着重要的实际意义,而且对于确定砂岩中高自然伽马成因机理有着重要的理论意义。
     延长组高伽马储层岩石学、地球化学特征表明,该类储层与常规储层相比,具有以下特点:①钾长石、绿泥石、铁泥质粘土杂基含量明显上升,岩屑含量较高,且岩屑假杂基化较为普遍,石英含量明显减少,长石高岭石化强烈。②Th、U、K放射性元素含量较高,其中Th元素含量上升最为显著,主要存在于独居石、金红石、铁泥质粘土、钾长石及部分锆石、磷灰石、黑云母、岩屑中;U元素主要存在于大多数的锆石、部分磷灰石、黑云母及含镁方解石中;K元素主要存在于钾长石、黑云母、金红石、铁泥质粘土、部分钠长石及岩屑中。③高伽马储层总孔隙度比邻近常规储层高1.3%,次生孔隙相对比较发育,原生残余粒问孔隙要小一些,中小孔、微孔相对比较发育,而且这些小孔、微孔连通性好。
     延长组高伽马储层分布及沉积特征表明,该类储层连通性较差,在横向上或尖灭于常规储层之中,或与泥岩呈指状交叉。高伽马储层的形成不受沉积相控制,可以在三角洲环境下形成,也可以在水下的浊积扇中形成,甚至在辫状河道砂岩中也可见及。延长组高伽马储层与凝灰岩、物源关系的研究表明,火山凝灰岩与高伽马储层的形成无必然联系,高伽马储层与来自于盆地东北方向的物源有一定的亲缘性,综合分析表明,热液活动对该类储层的形成有着重要影响。
     与邻近常规储层测井曲线的对比表明,高伽马储层整体表现为自然伽马异常高、补偿中子、光电吸收截面指数上升明显,电阻率下降明显,声波时差略有上升,密度值略有增大,这些测井参数的变化给用测井资料准确计算出该类储层的孔隙度、渗透率、泥质含量、含油饱和度带来了一定的困难,使油、水层的识别变得复杂。在利用测井资料识别油、水层时,建议将高伽马储层与常规储层区分开,分区域、分储层类别建立新的测井解释图版,应用新的解释图版可进一步提高测井解释符合率。
     尽管高伽马储层有着较好的孔隙性和渗透性,是有利于油气聚集的储层,但该类储层可以是水层、油层、油水层、差油层、含油水层,甚至可以是物性很差的干层。在富含油区域,高伽马储层以油层、油水层居多,在含油区域边部区块,高伽马储层多以含油水层、水层出现,高伽马储层与油水关系的研究表明,延长组高伽马储层仅仅是一类比较特殊的储层,其含油情况受多种因素控制。
     本论文在高伽马储层、邻近常规储层物性分析数据、声波时差、密度测井数据基础之上,建立了高伽马储层孔隙度、渗透率计算公式。提出利用邻近常规储层泥质含量及自然伽马数值;自然电位测井数值;密度、声波时差测井数值;核磁测井数据计算高伽马储层泥质含量的4种方法。对比分析了高伽马储层与邻近常规储层岩心含油饱和度变化,结果表明两者含油饱和度相差不明显,但受高伽马储层电阻率及孔隙度变化影响,测井计算的含油饱和度两者差异较大,计算出来的高伽马储层含油饱和度往往偏低,经对比分析,提出了较为准确的计算高伽马储层含油饱和度的公式。
Some area in Ordos Basin exist high natural gamma reservoir in Yanchang Formation. The distribution of high natural gamma reservoir is mainly in oil production area in Yanchi of Ningxia and Dingbian, Ansai, Wuqi, Jingbian of Shaanxi and Huachi of Gansu. The high natural gamma reservoir is found in the Chang4+5, Chang6, Chang7, Chang2, and Chang3that accumulated rich oil in vertical profile. The geology research and well logging evaluation of high natural gamma reservoir are not only important to the evaluation of storage capability and well logging interpretation in Yanchang Formation,but also to the determination of genesis of high natural gamma in the sandstone.
     The petrology and geochemistry characteristics of high natural gamma reservoir show that high natural gamma reservoir has more feature compare with conventional reservoir:①High natural gamma reservoir have more K-feldspar, chlorite and iron muddy clay matrix. Some high nature gamma reservoir has higher level of debris, and complex glycosylation are common. The content of quartz is significantly reduced. Feldspar in some high gamma reservoir is seriously Kaolinitilized.②Content of Th, U, K in high natural gamma reservoir is increased compared with conventional reservoir, in which the content of Th are significantly increased that mainly exist in the Monazite, rutile, iron muddy clay, feldspar, some of the zircon, apatite, Biotite and and debris. The radioactive element of U mainly exists in most of zircon, some of apatite, biotite and magnesium calcite. The radioactive element of K is mainly in K-feldspar, biotite, rutile, iron muddy clay, and some of albite and debris.③The total porosity of high gamma reservoir is larger1.3%than conventional reservoir,and relatively developed secondary pores. The residual primary intergranular pores are small, and medium and small pore is relatively developed, and connectivity of the pore is better.
     The distribution and sedimentary characteristics of high gamma reservoir show that connectivity of high gamma reservoir is poor.The high gamma reservoir usually disappear in the conventional reservoir, or intersect with mudstone on lateral. The sedimentary facies is not control the high gamma sandstone formation. It can form in the delta environment, and also can form in the turbidite fan environment, or in the braided channel. The study of the relation of volcanic tuff, material source and high nature gamma reservoir show it is not inevitable connection for the volcanic tuff and formation of high gamma reservoir.To a certain degree, high gamma reservoir is indigenous to material source from northeast basin. On the whole, the hydrothermal activity maybe is important to the forming of high gamma reservoir.
     Comparing with conventional reservoir, the high gamma reservoir show that the value of gamma, compensated neutron, pe increase obviously. Resistivity decrease obviously. Acoustic velocity decrease a little. Density increase a little.All this change bring the difficuly for exactly computing the porosity,permeability, clay content,oil saturation,and make the oil water distinguishing more complex. When distinguishing Oil-water layer by well logging data,we suggest establish well logging interpretation diagram on the basis of reservoir classification. By using new diagram can improve the identification accuracy.
     In spite of the better porosity and permeability in the high gamma reservoir, and it is the favorite reservior for oil accumlation, but it can be water layer, oil layer, oil-water layer, poor oil layer, water with oil layer, even can be dry layer with poor porosity and permeability.In the area of rich oil, the high gamma reservoir usually is oil layer, oil-water layer.In the margin of rich oil area,it is often water layer, water with oil layer. The research of the relation of oil-water and high gamma reservoir show that it is only a special reservoir.The condition of oil bearing is controlled by many factors.
     On the base of porosity,permeability, acoustic velocity, density of high gamma and adjacent conventional reservoir, this paper establishes the formula of computing porosity, permeability, and also comes up with clay content computing formula by using clay content and nature gamma value of adjacent conventional reservoir, by using spontaneous-potential data, by using acoustic velocity, by using density data; by using nuclear magnetic resonance data. This paper discusses the drilling core oil saturation difference of high gamma and adjacent conventional reservoir. The result of analysis show the difference between high gamma and adjacent conventional reservoir is very small. But influenced by resistivity and porosity change, oil saturation value from the well logging computing is very different. The oil saturation is usually lower from well logging computing. This paper establishes more exact oil saturation formula by comparative analysis.
引文
白运台,陈汉林,杜淑艳,等.2002.高放射性碳酸盐岩储层评价技术及其应用.断块油气田,9(5):80-82
    Bai Q, Kohlstedt D L.1992.Substantial hydrogen solubility in olivine and implication for water storage in the mantle. Nature,25:672-674
    Berndt M E, Auen D E, Seyfied W E.1996.Reduction of CO2 during serpentinization of olivine at 300℃and 500 bar. Geology,24 (4):351-354
    蔡剑辉,王立本,李锦平.2008.不同产状和成因类型的金红石矿物学特征及其研究意义.矿床地质,27(4):531-538
    曹红霞.2008.鄂尔多斯盆地晚三叠世沉积中心迁移演化规律研究.中国博士学位论文全文数据库,西北大学
    测井学编写组.1999.测井学.北京:石油工业出版社
    陈飞,樊太亮,高志前,等.2009.鄂尔多斯盆地南部上三叠统延长组物源方向与沉积体系分析.西安石油大学学报(自然科学版),24(6):24-28
    陈宏斌,徐高中,王金平,等.2006.鄂尔多斯盆地南缘店头铀矿床矿化特征及其与东胜铀矿床对比.地质学报,80(5):724-732
    陈蓉,王峰,田景春.2009.鄂尔多斯盆地中西部延长组碎屑岩物源分析及砂岩特征.沉积与特提斯地质,29(1):21-26
    陈益平,潘家永,胡凯,等.2007.贵州遵义镍-钼富集层中独居石的发现及成因意义.矿物岩石学杂志,26(4):340-344
    DaviesG R, Smith L B.2001, structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin,90(11):1641-1690
    邓军,王庆飞,高帮飞等.2005.鄂尔多斯盆地演化与多种能源矿产分布.现代地质,19(4):538-545
    窦伟坦,田景春,王峰,等.2009.鄂尔多斯盆地长6油层组储集砂岩成岩作用及其对储层性质的影响.成都理工大学学报,36(2):153-158
    E. M. Durrance, R. E. Meads, R. K. Brindley, A. G. W. Stark Radioactive disequilibrium in uranium-bearing nodules from the New Red Sandstone (Permian-Triassic) of Budleigh Salterton, Devon. Proceedings of the Ussher Society,1980,5, Part 1,81-88
    樊爱萍,柳益群,杨仁超,等.2006.东胜直罗组砂岩成岩作用过程与古流体运移事件分析.地 质学报,80(5):694-699
    冯春珍,林伟川,梁重阳,等.2005.低渗透岩性气藏高自然伽马砂岩识别方法.江汉石油学院学报,27(1):201-203
    高峰,王岳军,刘顺生,等.2000.利用磷灰石裂变径迹研究鄂尔多斯盆地西缘热历史.大地构造与成矿学,24(1):87-91
    高岗,韩永林,范泓澈,等.2011.鄂尔多斯盆地胡尖山地区上三叠统延长组长4+5—长6段储层特征及其与石油运聚关系.天然气地球科学,22(4):576-581
    郭艳琴,李文厚,陈全红,等.2006.安塞油田上三叠统延长组长6油藏储集因素.西北大学学报(自然科学版),36(4):639-642
    Harrison TM, McKeegan KD, LeFort P.1995.Detection of inherited monazite in the Manaslu leocogranite by 208 Pb/232 Th ion microprobe dating:Crystallization age and tectonic implication. Earth Planet. Sci.Lett,133:271-282
    贺晓.2009.鄂尔多斯盆地姬塬—元城地区上三叠统裂缝发育特征及形成机理研究.中国优秀硕士学位论文全文数据库
    洪文兴,朱祥坤.2000.独居石微粒微区成分分布的研究.高校地质学报,6(2):167-172
    侯雨庭,李高仁.2005.元素俘获测井在长庆天然气勘探中的应用.中国石油勘探,1(3):46-49
    Hua Yang, Wenzheng Zhang, Kai Wu,et al.2010.Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos Basin, China. Journal of Asian Earth Sciences,1:1-9
    江娃利,肖振敏,谢新生.2000.鄂尔多斯块体周边正倾滑活动断裂历史强震地表破裂分段.地震学报,22(5):517-526
    Jin Q, Xiong S, Lu P.1999.Catalysis and hydrogenation:volcanic activity and hydrocarbon generation in rift basins, eastern China. Applied Geochemistry,14(5):547-55
    金之钧,朱东亚,胡文王宣,等.2006.塔里木盆地热液活动地质地球化学特征及其对砂岩影响.地质学报,80(2)245-252
    Jin Z J, Zhang L P, Yang L, et al.2004.A preliminary study of mantle-derived fluids and their effects on oil/gas generation in sedimentary basins. Journal of Petroleum Science and Engineering,41:45-55
    赖小东,杨晓勇,高鹏,等.2010.鄂尔多斯盆地南部延长组富铀凝灰岩地球化学特征及形成机制.地质科学,21(3):757-776
    兰朝利,何顺利,门成全.2006.鄂尔多斯盆地靖安油田上三叠统延长组长6段沉积相研究. 油气地质与采收率,13(5):11-14
    梁积伟,肖丽,高小林,等.2008.鄂尔多斯盆地晚三叠世早期物源分析.西北地质,41(2):81-86
    李斌,孟自芳,李相博,等.2005.靖安油田上三叠统长6储层成岩作用研究.沉积学报,23(4):574-583.
    李凤杰,王多云.2006.坳陷湖盆三角洲前缘沉积微相构成及其分带性明.天然气地球科学,17(6):775-779
    李高仁,郭清娅,石玉江,等.2006.鄂尔多斯盆地高自然伽马砂岩识别研究.测井技术,30(6):511-515
    刘立,于均民,孙晓明,等.2000.热对流成岩作用的基本特征与研究意义.地球科学进展,15(5):583-585
    李文厚,柳益群,冯乔.1996.川口油田长6油层组沉积相特征与储集条件.西北大学学报,26(2):155-158
    李文厚,柳益群,冯乔.1997.川口油田长6段油层组储集层特征及油气富集规律.岩石学报,13(4):127-137
    李文辉.2004.鄂尔多斯盆地东南部砂岩型铀矿成矿条件及前景分析.西北铀矿地质,30(1):20-25
    刘林玉.2008.白豹地区长3储层的成岩作用与成岩相.西北大学学报,38(1):99-102
    刘少峰,杨少恭.1997.鄂尔多斯盆地西缘南北差异及其形成机制.地质科学,32(3):397-408
    刘欣,傅恒,李仲东,等.2011.川东北地区长兴组-飞仙关组中金红石和菱锶矿的发现及成因解释.成都理工大学学报(自然科学版),38(3):321-327
    柳益群,李文厚.1996.陕甘宁盆地东部上三叠统含油长石砂岩的成岩特点及孔隙演化.沉积学报,14(3)87:-95
    柳益群,李文厚,冯乔.1997.陕甘宁盆地东部上三叠统含油砂岩的古地温及成岩阶段.地质学报,2(1):65-74
    柳益群,冯乔,杨仁超,等.2006.鄂尔多斯盆地东胜地区砂岩型铀矿成因探.地质学报,80(5):761-766
    吕强,赵俊兴,陈洪德,等.2008.鄂尔多斯盆地南部中生界延长组物源与盆地底形分析.成都理工大学学报(自然科学版),35(6):611-615
    陆正元.1999.四川盆地下二叠统高自然伽马溶洞储.石油学报,20(5):24-26
    罗静兰,李忠兴,史成恩,等.2008鄂尔多斯盆地西南部上三叠统延长组长8、长6油层组 的沉积体系与物源方向.地质通报,27(1):101-111
    马杏垣,刘昌铨,刘国栋.1991.江苏响水至内蒙古满都拉地学断面.地质学报,(3):199-215
    Minapuye I. Odigi, Levi C. Amajor.2009.Geochemistry of carbonate cements in Cretaceous sandstones, utheast Benue Trough, Nigeria:Implications for geochemical evolution of formation waters. Journal of African Earth Sciences,1-14
    Morad S.1998.Carbonate cementation in sandstones:distribution patterns and geochemical evolution [A]. Morad S. Carbonate cementation in sandstones[C]. Oxford:Blackwell Science,1-26
    牟泽辉,朱宏权,张克银,等.2001鄂尔多斯盆地南部中生界成油体系.北京:石油工业出版社,1-10
    聂永生,田景春,夏青松,等.2004.鄂尔多斯盆地白豹一姬源地区上三叠统延长组物源分析.油气地质与采收率,11(5):4-6
    欧霞,赵志伟,鲁红,等.2009.火山碎屑沉积岩储层泥质与凝灰含量计算方法研究.测井技术,33(4):371-373
    庞军刚,李文厚,陈全红.2010.陕北地区延长组标志层特征及形成机制.地层学杂志,34(2)173:-177
    秦艳,张文正,彭平安,等.2009.鄂尔多斯盆地延长组长7段富铀烃源岩的铀赋存状态与富集机理.岩石学报,25(10):2469-2476
    邱昆峰,杨立强.2011.独居石成因特征与U-Th-Pb定年及三江特提斯构造演化研究例析.岩石学报,27(9):2721-2732
    邱欣卫,刘池洋,李元昊,等.2009.鄂尔多斯盆地延长组凝灰岩夹层展布特征及其地质意义.沉积学报,27(6):1138-1145
    邱欣卫,刘池洋,毛光周,等.2011.鄂尔多斯盆地延长组火山灰沉积物岩石地球化学特征.地球科学—中国地质大学学报,36(1):139-148
    屈健鹏.1998.鄂尔多斯块体西缘及西南缘深部电性结构与该区地质构造的关系.内陆地震,12(4):312-319
    Randolph C. Arthur, Teruki Iwatsuki, Eiji Sasao,2006. Geochemical constraints on the origin and stability of the Tono Uranium Deposit Japan. Geochemistry:Exploration, Environment, Analysis,6:33-48
    任战利.1995.利用磷灰石裂变径迹法研究鄂尔多斯盆地地热史.地球化学学报,38(3):339-349
    Robert M. Hazen, Rodney C. Ewing, Dmitri A.Sverjensky.2009.Evolution of uranium and thorium minerals. American Mineralogist,94:1293-1311
    Sasao, E, Amano, K. Ota, K.2005. Natural analogue study in the Tono uranium deposit-quantitative estimation of uplift and subsidence, andvertical displacement [in Japanese with English abstract]. Journal of Nuclear Fuel Cycle and Environment (in press)
    Schandl ES,Gorton MP.2004. A textural and geochemical guide to the identification of hydrothermal monazite criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Economic Geology,99:1027-1035
    石兰亭,王斌婷,郑荣才,等.2008.酒西盆地深部热液活动与油气成因.新疆石油地质,29(2):152-154
    Simoneit.1986.加里福尼亚湾古亚依玛斯盆地不成熟硅藻土沉积物中的热液石油.中国科学院贵阳地球化学研究所国家开放实验室年报,贵阳:贵州人民出版社
    宋凯,吕剑文,杜金良,等.2002.鄂尔多斯盆地中部上三叠统延长组物源方向分析与三角洲沉积体系.古地理学报,4(3):59-65
    宋天锐,和政军,万渝生,等.2003.前寒武纪沉积岩独居石中自生独居石的发现及其意义.沉积学报,21(1):118-124
    孙国凡,刘景平,柳克琪,等.1985.华北中生代大型沉积盆地的发育及其地球动力学背景.石油与天然气地质,6(3):278-287
    孙佩,张小莉,,郭兰,等.2010.相对高放射性砂岩成因及储集性能定性评价—以鄂尔多斯盆地志丹油田长6油层组为例.西安石油大学学报(自然科学版),25(2):18-22
    孙少华,李小明,龚革联.1997.鄂尔多斯盆地构造热事件研究.科学通报,42(3):306-309
    孙致学,孙治雷,鲁洪江,等.2010.砂岩储集层中碳酸盐胶结物特征—以鄂尔多斯盆地中南部延长组为例.石油勘探与开发,37(5):543-551.
    汤锡元,郭忠铭.1992.陕甘宁盆地西缘逆冲推覆构造及油气勘探.西安:西北大学出版社,1-156
    Taylor K G, Gawthorpe R L, Curtis C D, et al.2000.Carbonate cementation in a sequence-stratigraphic frameworks:Upper Cretaceous sandstones, Book Cliffs, Utah-Colorado. Journal of Sedimentary Research,70(2):360-372
    田建锋,刘池洋,王桂成,等.2011.鄂尔多斯盆地三叠系延长组砂岩的碱性溶蚀作用.地球科学—中国地质大学学报,36(1):103-109
    Tricca A, Wasserburg GJ, Porcelli D, Baskaran M,2001. The transport of U-and Th-series nuclides in asandy unconfined aquifer. Geochim Cosmochim Acta,65:1187-1210
    Wan YS, Liu DY, Jian P.2004.Comparison of SHRIMP U-Pb dating of monazite and zircon. Chinese Science Bulletin,49(14):1501-1506
    王峰,田景春,张锦泉,等.2006.鄂尔多斯盆地中西部延长组长6油层组物源分析.沉积与特提斯地质,26(3):26-29
    White D E.1957.Thermal waters of volcanic origin. Geological Society of America Bulletin, 68:1637-1658
    王建功,吴刚,陈燕,等.2009.一种复杂砂岩储层泥质含量评价方法.石油钻采工艺,31(2):48-50
    王若谷.2010.鄂尔多斯盆地三叠系延长组长6一长7油层组沉积体系研究.西北大学硕士论文.
    魏斌,魏红红,陈全红,等.2003.鄂尔多斯盆地上三叠统延长组物源分析.西北大学学报(自然科学版),33(4):447-450
    沃里沃夫斯基.萨尔基索夫.1991.世界最大含油气盆地.任俞译.北京:石油工业出版社
    吴大清,林传易,王一先,等.1993.独居石、磷钇矿显微阴极射线发光研究.矿物学报,13(2):137-141
    武富礼,李文厚,李玉宏,等.2004.鄂尔多斯盆地上三叠统延长组三角洲沉积及演化.古地理学报,6(3):307-314
    吴国平,苏江玉,王成实,等.2008.基于自然伽马测井信号的维纳滤波法求取泥质含量.地球科学,33(4)::572-576.
    邢秀娟,柳益群,樊爱平.2006.鄂尔多斯盆地店头地区砂岩型铀矿成因初步探讨.中国地质,33(3):591-597
    邢秀娟,柳益群,李卫宏.2008.鄂尔多斯盆地南部店头地区直罗组砂岩成岩演化与铀成矿].地球学报,29(2):179-188
    熊寿生,卢培德.1996火山喷溢—喷流活动与半无机成因天然气的形成和类型.石油实验地质,18(1):13-35
    徐波,孙卫.2008.姬塬油田长4+5砂岩储层孔隙类型与成岩作用.吉林大学学报(地球科学版),38(6):953-958
    杨俊杰.2002.鄂尔多斯盆地构造演化与油气分布规律.北京:石油工业出版社,130-181
    杨仁超,樊爱萍,韩作振,等.2007.马家山—小涧子油田砂岩成岩作用及其对储层的影响.中国地质,2:283-288
    杨晓勇,罗贤冬,凌明星.2007.鄂尔多斯盆地含铀砂岩碳酸盐胶结物C—O同位素研究及地质意义.中国科学技术大学学报,37(8):979-984
    杨永发,赵建武,冯春珍,等.2007.白豹地区测井评价方法研究.中油测井公司长庆事业部.
    杨友运.2004.印支期秦岭造山活动对鄂尔多斯盆地延长组沉积特征的影响.煤田地质与勘探,32(5):7-9
    杨玉征,刘显明,刘复屏.2000.陕北地区中生界含油层系测井系列选择及综合解释方法研究.长庆石油测井论文集,北京:石油工业出版社,102-118
    杨玉征,刘显明,马昌旭.2000.陕北靖安地区中生界低渗储层测井参数评价及油水层综合解释方法研究.长庆石油测井论文集,北京:石油工业出版,1-17
    杨玉征,刘显明,杨双定,等.2000.陕北安五地区低渗、低阻油水层特征与测井解释方法.长庆石油测井论文集,北京:石油工业出版社,127-138.
    雍世和,张超谟.1996.测井数据处理与综合解释.山东东营:石油大学出版社
    岳伏生,张景廉,杜乐天.2003.济阳坳陷深部热液活动与成岩成矿.石油勘探与开发,30(4):29-31
    曾溅辉.2000.东营凹陷热流体活动及其对水—岩相互作用的影响.地球科学—国地质大学学报,25(2):133-142
    曾联波,李忠兴,史成恩,等.2007.鄂尔多斯盆地上三叠统延长组特低渗透砂岩砂岩裂缝特征及成因.地质学报,81(2):174-179
    张本浩,吴伯林,刘池洋,等.2011.鄂尔多斯盆地延长组长7烃源岩铀富集的地质地球化学特征及其成因探讨.西北地质,44(2):124-129
    张德梅,王桂萍,娄宪刚,等.2011.测井曲线组合法求取泥质含量探讨.测井技术,35(4):358-362
    张福礼.2004.多旋回与鄂尔多斯盆地石油天然气.石油试验地质,26(2):138-142
    张路崎,陈恭洋.2009.白豹—坪庄地区延长组长6储层成岩作用研究.岩性油气藏.21(1):75-82
    张进,马宗晋,任文军.2004.鄂尔多斯西缘逆冲褶皱带构造特征及其南北差异的形成机制.地质学报,78(5):600-611
    张景廉,刘全新,梁秀文,等.2000.有关自然伽马能谱测井在储层预测中的应用讨论.石油地球物理勘探,35(3):395-400
    张俊明,李国祥,周传明.1997.滇东下寒武统含磷岩系底部火山喷发事件沉积及其意义.地层学杂志,21(2):91-99
    张抗.1989.鄂尔多斯断块构造和资源.西安:陕西科学技术出版社,1-394
    张莉.2003.陕甘宁盆地砂岩裂缝特征及形成的构造应力场分析.地质科技情报,22(2):21-24
    张蓉蓉.2005.鄂尔多斯盆地中深部放射性异常的研究及意义.西北大学
    张文正,杨华,解丽琴,等.2010.湖底热水活动及其对优质烃源岩发育的影响—以鄂尔多斯盆地长7烃源岩为例.石油勘探与开发,37(4):424-428
    张小莉.1999.陕北三叠系延长组低阻油层特性及其形成机理分析.测井技术,23(4):276-278
    张艳,李建明,徐论勋.2010.鄂尔多斯盆地华庆地区长6层碳酸盐胶结物及形成机理.石油地质与工程,24(1):20-26
    赵俊兴,黄德才,罗媛,等.2009.鄂尔多斯盆地南部长6段储层成岩作用特征.天然气工业,29(3):34-37
    赵孟为,Behr H J.1996.鄂尔多斯盆地三叠系镜质体反射率与热史.石油学报,17(2):15--23
    赵文智,胡素云,王泽成,等.2003.鄂尔多斯盆地基底断裂在上三叠统延长组石油聚集中的控制作用.石油勘探与开发,30(5):1-5
    赵重远,刘池洋.1990.华北克拉通沉积盆地形成与演化及其油气赋存.西安:西北大学出版社
    郑荣才,文华国,韩永林,等.2006.鄂尔多斯盆地白豹地区长6油层组湖底滑塌浊积扇沉积特征及其研究意义.成都理工大学学报(自然科学版),33(6):566-575
    朱西养,汪云亮,王志畅,等.2003.东胜砂岩型铀矿微量元素地球化学特征初探.地质地球化学,31(2):39-45
    朱筱敏.2008.沉积岩石学.北京:石油工业出版社,80-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700