用户名: 密码: 验证码:
山西霍山山前断裂带晚第四纪活动特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
霍山山前断裂带是山西断陷盆地带中部重要的边界活动断裂带之一,是我国依据历史文献记载确定的第一个8级大地震(1303年洪洞M=8大地震)的发震断层。围绕该断裂带的晚第四纪活动,包括断裂带的几何展布特征、构造地貌、活动方式、古地震等的深入研究,不仅对系统认识山西断陷盆地带晚第四纪活动历史具有重要理论意义,还对山西省的防震减灾工作具有重要的应用价值。
     本论文利用野外地震地质调查、遥感综合解译和多探槽古地震分析等研究方法以及AMS14C测年、DGPS测量、GIS的空间分析等技术手段,对山西霍山山前断裂带的晚第四纪活动特征进行研究:(1)揭示霍山山前断裂带作为霍山山脉的主控边界断层在新生代以来的强烈活动,其南段(霍州-洪洞一带)和北段(介休-灵石一带)在新生代以来具有一致的构造活动特征;(2)5个探槽的古地震事件分析和35个AMS14C年代结果,确认断裂带南段在晚更新世晚期以来的4次古地震事件,其中,最新一次事件对应1303年洪洞大地震,全新世中晚期以来的3次事件具有约2000年的复发间隔;(3)沿断裂带连续展布的不同层次的断层三角面、跨断裂带的河流地貌定量参数揭示了霍山山前断裂带的晚第四纪以来的强烈倾向活动特征,野外调查获取的断层产状、断层面擦痕产状及构造微地貌均显示该断裂带的活动方式以倾向滑动为主;(4)结合研究区所在的黄土高原的区域气候环境特点,分析了跨断层水系沿断裂带发生水平变位的可能成因;(5)初步讨论了霍山山前断裂带的动力学模式。本论文主要取得以下四个方面的研究结果:
     (1)霍山山前断裂带的几何结构特征
     利用高分辨率的IRS-P5和CBERS-02B卫星影像和航空照片立体像对数据,对霍山山前断裂带进行了综合遥感解译,并开展了详细的野外调查验证。该断裂带由南向北自洪洞县苏堡镇开始,经广胜寺、兴旺峪、石门峪、柏亭、兴唐寺等地,延霍州市的沙窝、观堆、李曹、三教乡、梨湾等地的山前通过,穿过仁义河后,沿霍山山脉与灵石凸起之间的断层槽谷继续往北近SN向延伸,在霍口一带逐渐转为NE向沿静升盆地东边界展布,穿过龙凤河,消失在介休市的洪山山前黄土台地一带,断裂带总长度116km,整体走向NE、NNE,倾向NW,局部产状有变化。
     根据断裂带的几何结构特点,将霍山山前断裂带划分为南、北2个段落,各段内又可细分为3个次级段落,分别是南段的A次级段(苏堡至广胜寺段)、B次级段(广胜寺至观堆段)、C次级段(观堆至杨家庄段)和北段的D次级段(梨湾至南车腰段)、E次级段(南车腰至霍口段)和F次级段(霍口至龙凤段),其中B、D、E次级段断层走向以NNE为主,C、F次级段走向以NE为主,A次级段受霍山主山脉高度的自北向南迅速降低和洪洞凹陷的深断陷影响,地表断层迹线并不清晰,以大量的地震形变遗迹为特征;B次级段的线性特征最为显著、也是断层构造地貌现象最为集中的段落,成为本论文探槽开挖的集中段落。
     (2)霍山山前断裂带的构造地貌特征
     ①霍山山脉主山脊NNE向展布,南北两端分别止于洪洞的苏堡镇和介休龙凤镇,霍山山前断裂带发育于霍山山脉西麓,是山前松散沉积物与基岩间的分界断层,地形上该断裂带位于山前地形坡度陡变部位。
     ②霍山山前断裂带下盘基岩山体自南向北共识别出17个一级断层三角面,和近100个次级三角面,形成时代较新的断层三角面发育在一级断层三角面中;形成时代相近的三角面形态特征也相似,其顶点高程和底边高程相近;断层三角面的形态特点显示霍山断裂带上新世以来强烈的构造抬升过程;与断层三角面相对应的断层上盘上,近断层处分布有以风成黄土为主的山前丘陵地貌,地表侵蚀活动受断层三角面流域规模限制,其水动力条件较弱,河流发育规模较小。多层次断层三角面的形态特点反映了霍山山前断裂带在新生代以来的强烈倾向活动特点。
     ③通过跨越断裂带400余条不同规模水系的平面形态特征分析,发现南段和北段一样,在断层位置,无论是源头位于霍山主山脊的主河流还是源头在断层三角面上的次级河流均未形成系统性的的水平偏转,尽管有的河流在断层破碎带上发育横向槽谷,部分次级河流受水动力条件和山前黄土丘陵沉积的影响,表现出似左旋或似右旋的偏转,但是根据跨断层水系的偏转统计,发生右旋或左旋水平偏转的河流数量总体上不具有统计优势,不能将其作为判断断裂带发生水平走滑运动的证据。
     ④利用30m分辨率的ASTER GDEM数据,提取了霍山地区的48条河流纵剖面,并计算它们的定量地貌参数,包括Hack剖面、河长坡降指标SL、均一化河长坡降指标SL/K和面积高程积分值HI及积分曲线。结果显示29条横跨霍山山前断裂的河流的纵剖面在断层两侧的形态显示出明显的差异,表现出明显的受断层活动控制的特征,其它没有被霍山山前断裂断错的河流,除极少部分在上游河段存在局部陡变外,纵剖面形态表现为近似下凹的指数曲线形态,显示其处于近均衡状态;48条河流的HI值及积分曲线显示了霍山地区新生代以来处于强抬升弱侵蚀状态,即所有河流均处于幼年期或壮年期。
     ⑤48条河流的Hack剖面呈现一致的上凸形态,但上凸形态存在明显差异:未跨越霍山山前断裂的河流Hack剖面形态呈现光滑的近圆弧状;而跨越霍山山前断层的大部分河流的Hack剖面表现为一段较平缓下降后的突然陡降。一致的上凸表明了霍山地区处于构造抬升状态,且抬升速率较快;而Hack剖面的形态差异,反映了研究区内不同区域间构造活动的显著差异,跨断层河流Hack剖面上出现形态陡降特征印证了霍山山前活动断裂带作为这一区域的主干断裂在新生代以来的强烈构造活动,圆弧状的Hack剖面反映其它河流基本没有受到断裂活动的干扰。
     (3)霍山山前断裂带的古地震事件及1303年洪洞地震的地表破裂带
     霍山断裂带南段5个探槽(Tc01-Tc05)揭露的古地震事件分析表明:
     ①研究区的地层以基岩山地和更新世以来的黄土堆积及坡麓堆积为主。区域地层对比发现,临汾盆地与太原盆地的边缘地带以黄土堆积及坡麓堆积为主,晚更新世晚期至全新世以来发育有古土壤层,特别是全新世大暖期的气候适宜期。古土壤层无论在黄土台地还是盆地沉积中都存在,具有区域性沉积特点,全新世古土壤层是探槽揭露地层中的标志地层之一。
     ②晚更新世晚期以来至少发生4次地震事件,事件以倾向滑动为主。其中晚更新世晚期事件发生在距今12520~26380a之间,全新世中晚期以来的三次事件,分别发生在距今2650~3465a、5370~5808a和709a(1303年洪洞8级历史地震)。全新世中晚期以来的三次强震重复间隔时间约2000a。
     ③根据构造楔规模和倾向滑动量的对比分析,全新世中晚期以来的三次古地震事件具有相近的破裂强度。
     ④霍山山前活动断裂带以倾向滑动为主,1303年洪洞8级地震的地震形变遗迹集中发生在断裂带的南段,以砂土液化、地震滑坡、崩塌及张裂缝为主,根据野外确认的大量断层剖面及其活动时代,估计历史地震的地表破裂带的长度116m,其规模与根据历史文献得到的等震线的X度的长轴接近一致,断裂带南段的5个探槽剖面也均揭示了这次地震。沿断裂带分布的地震陡坎是断层多次活动形成的累积位移量,集中在6~10m,依据探槽剖面标志古土壤层位错量,平均单次事件的垂直位错量为2.0m,1303年洪洞地震的离逝时间距2012年已709年,形成的地表形变遗迹被人类活动和侵蚀过程破坏殆尽,野外难以与更早之前的古地震事件形成的变形区分,因此,探槽地震事件分析成为本论文恢复断裂带强震活动历史的主要手段。
     (4)霍山山前断裂带的活动方式、滑动速率及动力学特征
     ①霍山山前断裂带全新世以来的活动方式以倾滑为主,兼有一定量的水平滑动分量。24组最新断层擦痕的侧伏角,集中在75°-85°之间,由此计算出倾滑分量是水平分量的3-10倍,与前人认为的以右旋走滑为主的不同,过去的研究是通过分析有限的跨断层水系(冲沟)的水平右偏转,得出以右旋走滑运动为主的认识的。实际上,跨越断裂带400余条不同规模水系的统计分析显示,发生右旋或左旋水平偏转的河流实际上不具有统计优势。
     ②根据探槽揭示的标志古土壤层的垂直位错量,以及该古土壤层的年代数据,计算断裂带南段全新世中晚期的垂直滑动速率为0.76~1.49mm/a。
     ③霍山山前断裂带的活动特征与区域活动构造图像具有较好的一致性。鄂尔多斯周缘断裂系的形成和发展与下地壳以下软流圈物质的上涌关系密切,软流圈上涌是各断陷盆地发展及边界断裂的活动的主要动力来源,被多种地球物理资料所证实。地震学和地球物理资料也证实临汾盆地及周边确实存在着上地幔物质上涌的现象,是造成霍山山前断裂带运动发展的主要动力。
The Huoshan piedmont fault zone, lying on the west slope of the Mts.Huoshan, is animportant boundary active fault in the middle of the Shanxi faulted basin belt (also named theShanxi graben system or Shanxi rift system). It is the seismogenic fault of the1303HongdongMs8.0earthquake, the first event of M≥8.0in historical documents in China. The quantitativestudy of its geometry, tectonic geomorphology, faulting features, and paleo-earthquakes, is veryimportant to understanding the active history of the Shanxi faulted basin belt in the lateQuaternary as well as the earthquake disaster mitigation efforts in Shanxi Province.
     This thesis focuses on applications of field investigations, comprehensive remote sensinginterpretation, the paleo-earthquake method, AMS14C dating and DGPS survey, GIS technologyto research on the Huoshan piedomont fault zone in the late Quaternary. The purposes are:1) toreveal the intense normal faulting in the Cenozoic as the northeastern margin of the Linfen basin,of which the southern section located in Hongdong county and Huozhou city and northernsection located in Lingshi County and Jiexiu city have consistent active features, and2) showthat the fault is mainly characterized by at least four paleo-earthquake events during latePleistocene, of which, the latest event corresponding to the1303Ms8.0Hongdong earthquakebased on5combined trench analysis and35AMS14C dating ages providing constraints on thegiant-earthquake recurrence interval of about2000a,3) describe continuous distribution ofdifferent levels of fault triangles, quantitative river geomorphic parameters in the surroundingMts. Huoshan areas and fault plane occurrence and scratches collected during field work tosupport the intensive normal faulting of the fault with a dip-slip characteristics during lateQuaternary,4) analyze the main causes for horizontal displacements along and across faultdrainages combining the arid and semi-arid climate factors and loess hilly geomorphology, and5)discuss the dynamic model based on field data and previous studies. The major research resultsof this thesis are presented below.
     (1) Geometic characteristics of the Huoshan piedmont fault zone
     The Huoshan piedmont fault zone, a normal faulting from Pliocene as a Basin and Rangeboundary, located in the northeastern Linfen basin, can be recognized by significant terraindifferences between the mountains and basins. Based on comprehensive remote sensinginterpretation using high resolution satellite images such as IRS-P5and CBERS-02B data, aerial photographs and fieldwork investigations, this fault has a northeast trend, dipping northwest,extends for more than116km, along the west foot slope of the Mts. Huoshan. Starting from thesouth, it extends by Subu town, Guangshengsi temple, Xingwangyu village, Shimenyu Village,Baiting village in Hongdong county, continues along the Shawo village, Guandui village, Licaotown, Sanjiao town, and Liwan village in Huozhou City, through the Renyi river, along the westfoot slope of the mountain in the Lingshi county, and terminates at Longfeng town in Jiexiu city.
     According to the geometric distribution characteristics, the Huoshan piedmont fault zonecan be divided into2sections, the north section and the south section, each section can bedivided3segments further, that is A segment (Subu-Guangshengsi section), B segment(Guangshengsi-Guandui section), C segment (Guandui-Yangjiazhuang section) of south part, andD segment (Liwan-Nancheyao section), Esegment (Nancheyao-Huokou section), and F segment(Huokou-Longfeng section) of north part. In all of6segments, B, D, and E strike in NNE, C andF has strike in NE, A segment has sand liquefactions and giant landslides triggered by the1303history earthquake, but with little buried fault planes, B segment shows a significant linearfeature on images and aerial photos, with the characteristic of cutting all geomorphic units bothsides, and geomorphology such as fault scarps, trough valley, fault triangular ridges, which is theright place for trench work.
     (2) Tectonic geomorphology characteristics of the Huoshan piedmont fault zone
     Using aerial stereo image pair, DEM data, fieldwork investigations, spatial datingprocessing softwares, on the basis of previous research results, the tectonic geomorphologyfeatures along the fault zone such as terrain, geology, crossing-fault river system distribution,quantitative river geomorphic parameters, fault triangle shape and etc. have been studied andmany geomorphology maps were prepared in order to understand the interaction betweentectonic activity and geomorphology features.
     1. The main ridge of Mts. Huoshan strikes in north-northeast, its southern end is locatednear Subu town in Hongdong County, and north end located near Longfeng town in Jiexiu city.The Huoshan piedmont fault zone on the west slope of the mountain, constitutes the boundarybetween bedrock and unconsolidated sediments, and lies at the position of highly variablerange-front terrian gradients.
     2. This work identified a total17first level fault triangles and nearly100sub-fault trianglesfrom south to north. Each first level fault triangle is split by the main river basins. The differentscale fault triangles can be characterized as the newer and smaller ones nested in the older ones,those with similar forming eras have similar morphology and almost same vertex elevation andbase elevation, showing a regular distribution from south to north. The features of the trianglesalso show that intense tectonic uplift of the Mts. Huoshan and normal faulting of the fault sincePliocene. There are many loess hills nearby the fault, where surface erosion is limited by thescale of triangles, indicative of weak hydrodynamic conditions. It can provide an importantcandidate sites to combined trench excavating for paleo-earthquake identification.
     3. Analysis of planar forms of more than400crossing-fault rivers of different scales shows that that all river from south to north are not consistency offset (right-laterally or left-laterally)by the faulting. In other words, river channel features in the study area does not support theobvious horizontal movement of the fault. The main river channels with source near the Mts.Huoshan ridge are all not offset by lateral faulting movement. Some of them, the channelsections near fault traces run along the trough valleies. The flat distribution of the othersecondary rivers located at the different levels fault triangles is complicated by relative weakerhydrodynamic conditions, loess hill deposition, some of which can be seen as right-offset, someof them can also be seen like left-offset, and the rest has no lateral offsets. Its cause is the naturaldevelopment process of river basins of different scales, and can not serve as the evidence for thedextral movement of the Huoshan piedmont fault zone.
     4. This work selected48rivers around the Mts. Huoshan. These rivers are divided into fourgroups according to their tectonic settings: rivers north of, across and south of the Huoshanpiedmont fault zone on the west of the Mts. Huoshan, and rivers on the east slope of themountains. Based on the ASTER GDEM of30m resolution, this work calculated a series ofquantitative fluvial geomorphic parameters, such as the longitudinal profile style, streamlength-gradient index (SL index), standard stream length-gradient index (SL/K index), Hackprofile, hypsometric integral curves and its values (HI). There is a significant correlation betweenthese parameters and tectonic environment. To the rivers across the Huoshan piedmont fault zone,the longitudinal profiles of upstream and downstream, divided by the fault, show significantlydifferent features from each other, demonstrating obvious characteristics controlled by faultactivity. Along the rivers in other tectonic domains, the longitudinal profiles performance anapproximate exponential curve, indicative of a near-equilibrium. The HI values and Hypsometricintegral curves of all river basins indicate that all the rivers are in the prime of life or childhood,that is, Mts. Huoshan is in the state of strong uplift and weak erosion overall in Cenozoic era.
     5. Convex Hack profiles of all rivers also show that Mts. Huoshan is in the stage of intensetectonic uplift in the Cenozoic, while there exist significant differences among Hack profiles ofrivers in different tectonic domains reflecting different tectonic activities. The river segmentswith abnormally high SL/K values usually corresponded to the normal faulting, while randomappearance of high SL/K values on some rivers without fault-cut corresponds to the bedrock withlittle effect of weathering.
     (3) Paleo-earthquake events of the fault and surface rupture zone of the1303Hongdong M8.0earthquake
     From analysis to trenches Tc01-Tc05in south section of B segment, this work obtains thefollowing knowledge:
     1. According to regional stratigraphic correlation, the strata formation in the edge of theLinfen basin and Taiyuan basin constituted by loess and talus accumulated since Pleistocene, anddeveloped paleosoil in loess strata, especially during the Holocene with suitable climate. Thelatest paleosoil layeres in the top loess deposit can be identified in the edge or center of thebasins, which reflect the regional deposit characteristics.
     2. There are at least four paleo-earthquakes identified during late Pleistocene and Holocenetimes, every event is characterized by normal faulting of the main fault and/or accompanied bysecondary sub-faults activities on the hanging wall. In the four events, the oldestpaleo-earthquake occurred at12520~26380a B.P., the other three events occurred at5370-5808aB.P.,2650-3465a B.P., and709a B.P., respectively. The three events in late Holocene show theearthquake recurrence interval of about2000a.
     3. Among the three paleo-earthquake events occurred at late Holocene, i.e. E1:1303a, E2:2650-3465y B.P., and E3:5370-5808y B.P., the E2and E3events have the similar seismicintensity with the E1earthquake based on comparative analysis of the paleoseismic wedges anddip slip amounts.
     4. The Huoshan piedmont fault zone is dominated by dip slip, and its deformation traces bythe1303giant earthquake concentrated in the south section, such as earthquake landslides, sandliquefaction, collapses, and tension fissures etc. Based on the latest displacement and faultprofiles of the fault, the surface rupture zone of the1303Hongtong M8.0earthquake is116kmin length, approximating length of isoseimal long axis of X degree area. From the Subu inHongtong County in south section, end at the northern Longfeng town in Jiexiu city, the latestsurface rupture can be traced by latest wedge and14C dating ages in every trenches. The heightof the fault scarps is mostly between6-10m reflecting accumulated vertical displacements bymany earthquake events, with the average vertical displacement of about2m by every earthquake.The elapsed time of the history earthquake is709year to2012A.D. The surface rupture zoneproduced by the earthquake has been completely ruined by human activities and erosionprocesses, thus it is difficult to confirm and distinguish from the earlier events’ displacement. Sotrench paleoevent analysis was as the primary means to resume faulting history in this thesis.
     (4) Active faulting manner, slip rate and dynamic characteristics of the Huoshanpiedmont fault
     1. As previously mentioned, the Huoshan piedmont fault zone is dominated by dip-slip witha small amount of the horizontal component. Using24groups of data of fault scratches on freshfault planes from south to north, with the side rake angles concentrating in75°-85°, and thiswork calculated that the vertical component is3-10times than the horizontal component. Thisview is different from previous studies. In fact, statistical analysis to more than400streamsacross the fault indicates that most rivers with right-or left lateral.
     2. Based on vertical dislocation of key layers exposed on trench Tc01, Tc03and Tc04profiles and their forming ages by AMS14C dating, the vertical slip rate is0.76-1.49mm/a duringthe late Holocene.
     3. The Cenozoic faulting of the Huoshan piedomont fault zone is consistent with the patternof regional tectonic activity. The formation and development of the active zone systems aroundthe Ordos block are closely related to asthenospheric upwelling, which has been confirmed by alarge number geophysical data. Asthenospheric upwelling is a major dynamic source fordevelopment of all faulted basins and boundary fault activities. Previous geophysics also have confirmed the upwelling of deep materials beneath the Linfen basin and surrdounding, and theupwelling is also the main source of the normal faulting of the Huoshan piedmont fault zone.
引文
[1] A.L. Densmore, R. Hetzel,S. Ivy-Ochs, et al.2009. Sapatial variations in catchment-averaged denudationrates from normal fault footwalls [J]. Geology.37:1139-1142.
    [2] A.M. Figueroa, J.R. Knott.2010. Tectonic geomorphology of the southern Sierra NevadaMountains(California): Evidence for uplift and basin formation[J]. Geomorphology,(123):34-45.
    [3] A.M. Michetti, F. A. Audemard M., Shmuel Marco.2005. Future trends in paleoseismology: Integratedstudy of the seismic landscape as a vital tool in seismic hazard analyses [J]. Tectonophysics,(408):3-21.
    [4] Arrowsmith J R, Zielke O.2009. Tectonic geomorphology of the San Andreas Fault zone from highresolution topography: An example from the Cholame segment [J]. Geomorphology,113(1-2):70-81.
    [5] B.J. Yanites, G.E. Tucker, K.J. Mueller, et al.2010. How rivers react to large earthquakes: Evidence fromcentral Taiwan[J]. Geology,38(7):639-642.
    [6] B.T. Pan, Z.H. Hu, J.P. Wang, et al.2011. A magnetostratigraphic record of landscape development in theeastern Ordos Plateau, China: transition from late Miocene and early Pliocene stacked sedimentation to latePliocene and quaternary uplift and incision by the Yellow river [J]. Geomorphology,(125):225-238.
    [7] Bada G., Horváth F., Cloetingh S., et al.2001. Role of topography-induced gravitational stresses in basininversion: the case study of the Pannonian basin[J]. Tectonics,20(3):343-363.
    [8] Bond G., Showers W., Cheseby M., et al.1997. A pervasive millennial-scale cycle in North AtlanticHolocene and glacial climates [J]. Science,278(5341):1257.
    [9] Boulton S.J., Whittaker A.C.2009. Quantifying the slip rates, spatial distribution and evolution of activenormal faults from geomorphic analysis: Field examples from an oblique-extensional graben, southernTurkey [J]. Geomorphology,104(3-4):299-316.
    [10] Brookfield M.E.1998. The evolution of the great river systems of southern Asia during the CenozoicIndia-Asia collision: rivers draining southwards [J]. Geomorphology,22(3-4):285-312.
    [11] Brun J.P., Sokoutis D., Van Den D.J.1994. Analogue modeling of detachment fault systems and corecomplexes [J]. Geology,22(4):319.
    [12] Burchfiel B.C., Zhiliang C., Yupinc L. et al.1995. Tectonics of the Longmen Shan and adjacent regions,central China [J]. International Geology Review,37(8):661-735.
    [13] C.B. Yang, W.S. Chen, L.C. Wu, et al.2007. Active deformation front delineated by drainage patternanalysis and vertical movement rates, southwestern Coastal Plain of Taiwan [J]. Journal of Asian EarthSciences,(31):251-264.
    [14] C.D. Ventisett, D. Montanari, F. Sani, et al.2006. Basin inversion and fault reactivation in laboratoryexperiments [J]. Journal of Structural Geology,(28):2067-2083.
    [15] Chen Y.C., Sung Q., Cheng K.Y.2003. Along-strike variations of morphotectonic features in the WesternFoothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis [J].Geomorphology,56(1-2):109-137.
    [16] Cowie P.A., Roberts G.P.2001. Constraining slip rates and spacings for active normal faults [J]. Journal ofStructural Geology,23(12):1901-1915.
    [17] Cowie P.A., Attal M., Tucker G.E., et al.2006. Investigating the surface process response to faultinteraction and linkage using a numerical modeling approach [J]. Basin Research,18(3):231-266.
    [18] Crider J G.2001. Oblique slip and the geometry of normal-fault linkage: mechanics and a case study fromthe Basin and Range in Oregon [J]. Journal of Structural Geology,23(12):1997-2009.
    [19] C.R.艾伦,四川省地震局译.1989.活动构造学[M].成都:四川科学技术出版社,1-305.
    [20] D. Commins, S. Gupta, J. Cartwright.2005. Deformed streams reveal growth and linkage of a normal faultarray in the Canyonlands graben, Utah [J]. Geology,33(8):645-648.
    [21] D.W. Burbank, R.S. Anderson.2001. Tectonic Geomorphology [M]. Blank well publishing,USA:1-249.
    [22] Deng Q.D., Xu X.W.1994. Studies on the surface rupture zone of1303Hongdong earthquake of M=8andpaleoearthquakes of Huoshan Fault in Shanxi Province[J]. Earthquake Research in China,8(2):231-245.
    [23] Densmore A.L., Anderson R.S., Mcadoo B.G., et al.1997. Hillslope evolution by bedrock landslides [J].Science,275(5298):369.
    [24] Del V.C., Montanari D., Sani F., et al.2006. Basin inversion and fault reactivation in laboratoryexperiments[J]. Journal of structural geology,28(11):2067-2083.
    [25] Densmore A.L., Ellis M.A., Anderson R.S.1998. Landsliding and the evolution of normal fault-boundedmountains.[J]. Journal of Geophysical Research: Solid Earth,103(B7):15203-15219.
    [26] Densmore A.L., Hovius N.2000. Topographic fingerprints of bedrock landslides [J]. Geology,28(4):371.
    [27] Densmore A.L., Dawers N.H., Gupta S., et al.2003. Landscape evolution at extensional relay zones [J]. J.Geophys. Res,108:2273.
    [28] Densmore A.L., Dawers N.H., Gupta S., et al.2004. Footwall topographic development during continentalextension [J]. Journal of geophysical research: earth surface,109: F3001.
    [29] Densmore A.L., Dawers N.H., Gupta S., et al.2005. What sets topographic relief in extensional footwalls?[J]. Geology,33(6):453.
    [30] Densmore A.L., Ellis M.A., Li Y., et al.2007. Active tectonics of the Beichuan and Pengguan faults at theeastern margin of the Tibetan Plateau [J]. Tectonics,26: C4005.
    [31] Densmore A.L., Hetzel R., Ivy-Ochs S., et al.2009. Spatial variations in catchment-averaged denudationrates from normal fault footwalls [J]. Geology,37(12):1139-1142.
    [32] Dubois A., Odonne F., Massonnat G., et al.2002. Analogue modeling of fault reactivation: tectonicinversion and oblique remobilisation of grabens [J]. Journal of Structural Geology,24(11):1741-1752.
    [33] Dèzes P., Schmid S.M., Ziegler P.A.2004. Evolution of the European Cenozoic Rift System: interaction ofthe Alpine and Pyrenean orogens with their foreland lithosphere[J]. Tectonophysics,389(1-2):1-33.
    [34] F. Troiani, M.Della Seta.2008. The use of the Stream Length-Gradient index in morphotectonic analysis ofsmall catchments. A case study from Central Italy [J]. Geomorphology,(102):159-168.
    [35] Farr T.G., Rosen P.A., Caro E., et al.2007. The shuttle radar topography mission [J]. Reviews ofGeophysics-Richmond Virginia Then Washington.,45(2).
    [36] G. Peltzer, P. Tapponnier, Z.T. Zhang, et al.1985. Neogene and Quaternary faulting in and along theQinling Shan [J]. Nature,317(10):500-505.
    [37] G. Peters, T.J. Buchmann, P.Connolly, et al.2005. Interplay between tectonic, fluvial and erosionalprocesses along the Western Border Fault of the northern Upper Rhine Graben, Germany [J].Tectonophysics,(406):39-66.
    [38] G.P. Roberts,A. Michetti.2003. Spatial and temporal variations in growth rates along active normal faultsystems: an example from the Lazio-Abruzzo Apennines, central Italy[J]. Journal of Structrual Geology.(26):339-376.
    [39] Garrote J., Garzón Heydt G., Cox R.T.2008. Multi-stream order analyses in basin asymmetry: A tool todiscriminate the influence of neotectonics in fluvial landscape development (Madrid Basin, Central Spain)[J]. Geomorphology,102(1):130-144.
    [40] Goldrick G., Bishop P.2007. Regional analysis of bedrock stream long profiles: evaluation of Hack's SLform, and formulation and assessment of an alternative (the DS form)[J]. Earth Surface Processes andLandforms,32(5):649-671.
    [41] Golts S., Rosenthal E.1993. A morphotectonic map of the northern Arava in Israel, derived from isobaselines [J]. Geomorphology,7(4):305-315.
    [42] Grohmann C.H., Riccomini C., Alves F.M.2007. SRTM-based morphotectonic analysis of the Po os deCaldas Alkaline Massif, southeastern Brazil [J]. Computers&geosciences,33(1):10-19.
    [43] Z.K. Ren, A.M. Lin, G. Rao.2010. Late Pleistocene-Holocene activity of the Zemuhe Fault on thesoutheastern margin of the Tibetan Plateau [J]. Tectonophysics,(495):324-336.
    [44] Hack J T.1973. Stream-profile analysis and stream-gradient index[J]. US Geological Survey Journal ofResearch,1(4):421-429.
    [45] H. Kaneda, A. Okada.2008. Long-term seismic behavior of a fault involved in a multiple-fault rupture:insights from tectonic geomorphology along the Neodani fault, central Japan [J]. BSSA.98(5):2170-2190.
    [46] H. Wang, M. Liu, J.L. Cao, et al.2011. Slip rates and seismic moment deficits on major active faults inmainland China [J]. Journal of Geophysical Research,(116):1-17.
    [47] Hampel A., Hetzel R., Densmore A.L.2007. Postglacial slip-rate increase on the Teton normal fault,northern Basin and Range Province, caused by melting of the Yellowstone ice cap and deglaciation of theTeton Range?[J]. Geology,35(12):1107.
    [48] Hand M., Sandiford M.1999. Intraplate deformation in central Australia, the link between subsidence andfault reactivation [J]. Tectonophysics,305(1-3):121-140.
    [49] Holdsworth R.E., Butler C.A., Roberts A.M.1997. The recognition of reactivation during continentaldeformation [J]. Journal of the Geological Society,154(1):73.
    [50] Hovius N., Stark C.P., Tutton M.A., et al.1998. Landslide-driven drainage network evolution in apre-steady-state mountain belt: Finisterre Mountains, Papua New Guinea [J]. Geology,26(12):1071.
    [51] Huang C.C., Zhou J., Pang J., et al.2000. A regional aridity phase and its possible cultural impact duringthe Holocene Megathermal in the Guanzhong Basin, China [J]. The Holocene,10(1):135.
    [52] J.C. Hippolyte, G. Brocard, M. Tardy, et al.2006. The recent fault scarps of the Western Alps(France):Tectonic surface ruptures or gravitational sacking scarps? A combined mapping, geomorphic, leveling, and10Be dating approach [J]. Tectonophysics,(418):255-276.
    [53] J. He, M. Liu, and Y. Li.2003. Is the Shanxi rift of northern China extending?[J]. Geophys. Res. Lett.,30(23),2213, doi:10.1029/2003GL018764.
    [54] J. He, D. Cai, Y. Li, et al,2004, Active extension of the Shanxi rift, north China: does it result fromanticlockwise block rotations?. Terra Nova,16,38-42.
    [55] J. He, Y. Li, C. Teng,2005, Asymmetric flank uplift of the Yinchuan graben, north central China:implication of lateral variation of crustal rheology from the Alashan to the Ordos. Geophysical ResearchLetters,32; L2213, doi:10.1029/2003GL018764.
    [56] J. Liu-Zeng, Y. Klinger, X.W. Xu, et al.2007. Millennial recurrence of large earthquakes on the HaiyuanFault near Songshan, Gansu Province, China [J]. Bulletin of the Seismological Society of America,97(1B):14-34doi:10.1785/0120050118.
    [57] J.N. Malik, C. Mohanty.2006. Active tectonic influence on the evolution of drainage and landscape:Geomorphic signatures from frontal and hinterland areas along the Northwestern Himalaya, India [J].Journal of Asian Earth Sciences,(29):604-618.
    [58] J.P. Larue.2008. Tectonic influences on the Quaternary drainage evolution on the north-western margin ofthe French Central Massif: The Creuse valley example [J]. Geomorphology,(93):398-420.
    [59] J.R. Arrowsmith, O. Zielke.2009. Tectonic geomorphology of the San Andreas Fault zone from highresolution topography: A example from the Cholame segment [J]. Geomorphology,(113):70-81.
    [60] K.L. Frankel, F.J. Pazzaglia.2006. Mountain fronts, base-level fall, and landscape evolution: Insights fromthe southern Rocky Mountains [J]. Geo. Soc. Of America Special paper398.
    [61] K.X. Whipple.2004. Bedrock rivers and the geomorphology of active orogens [J]. Annu. Rev. EarthPlanet,(32):151-185.
    [62] Kerry E.S.1978. Prehistoric large earthquakes produced by slip on the San Andreas fault at Pallett Creek,California [J]. J.G.R.,83(B8):3907-3939.
    [63] King G.C.P., Rundle J.B.1988. The Growth of Geological Structures by Repeated Earthquakes2. FieldExamples of Continental Dip-Slip Faults[J]. Journal of Geophysical Research,93(B11):13307-13318.
    [64] King G.C.P., Stein R.S., Rundle J.B.1988. The growth of geological structures by repeated earthquakes1.Conceptual framework [J]. J. geophys. Res,93(811):13307-13318.
    [65] Kirby E., Whipple K.2001. Quantifying differential rock-uplift rates via stream profile analysis [J].Geology,29(5):415.
    [66] Klinger Y., Xu X., Tapponnier P., et al.2005. High-Resolution Satellite Imagery Mapping of the SurfaceRupture and Slip Distribution of the Mw7.8,14November2001Kokoxili Earthquake, Kunlun Fault,Northern Tibet, China [J]. Bulletin of the Seismological Society of America,95(5):1970-1987.
    [67] L.Z. Chen, S.D. Khan.2009. Geomorphometric features and tectonic activities in sub-Himaylayan thrustbelt, Pakistan, from satellite data [J]. Computers&Geosciences.(35):2011-2019.
    [68] Liu M., Cui X., Liu F.2004. Cenozoic rifting and volcanism in eastern China: a mantle dynamic link to theIndo-Asian collision?[J]. Tectonophysics,393(1-4):29-42.
    [69] Liu M., Mooney W.D., Li S., et al.2006. Crustal structure of the northeastern margin of the Tibetan plateaufrom the Songpan-Ganzi terrane to the Ordos basin [J]. Tectonophysics,420(1-2):253-266.
    [70] Liu M., Stein S., Wang H.2011.2000years of migrating earthquakes in North China: How earthquakes inmidcontinents differ from those at plate boundaries, Lithosphere. doi:10.1130/L129.1.
    [71] Liu, M., Yang, Y., Shen, Z-K., et al.2007. Active tectonics and intracontinental earthquakes in China: Thekinematics and geodynamics, in Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues,edited by S. Stein and S. Mazzotti, pp.209-318, doi:210.1130/2007.2425(19), Geological Society ofAmerica Special Papers, Boulder, CO.
    [72] Lu Y.C., Wang X.L., Wintle A.G.2007. A new OSL chronology for dust accumulation in the last130,000yrfor the Chinese Loess Plateau [J]. Quaternary Research,67(1):152-160.
    [73] Luo W.2002. Hypsometric analysis of Margaritifer Sinus and origin of valley networks [J]. J. Geophys.Res,107:5071.
    [74] M. Meghraoui, B. Delouis, M. Ferry, et al.2001. Active normal faulting in the upper Rhine graben andpaleoseismic indentification of the1356Basel earthquake[J]. Science.1-4.
    [75] M. Stokes, A.E. Mather, A. Belfoul, et al.2008. Active and passive tectonic controls for transverse drainageand river geore development in a collisional mountain belt (Dades Gorges, High Atlas mountain, Morocco)[J]. Geomorphology,(102):2-20.
    [76] Mayewski P.A., Rohlingb E.E., Stager J.C., et al.2004. Holocene climate variability [J]. QuaternaryResearch,62:243-255.
    [77] Mcclay K.R.1990. Extensional fault systems in sedimentary basins: a review of analogue model studies [J].Marine and Petroleum Geology,7(3):206-233.
    [78] Mcclay K.R.1995. The geometries and kinematics of inverted fault systems: a review of analogue modelstudies [J]. Geological Society, London, Special Publications,88(1):97.
    [79] Mcleod A.E.2000. The propagation and linkage of normal faults: insights from theStrathspey–Brent–Statfjord fault array, northern North Sea [J]. Basin Research,12(3-4):263-284.
    [80] Merritts D., Bull W.B.1989. Interpreting Quaternary uplift rates at the Mendocino triple junction, northernCalifornia, from uplifted marine terraces [J]. Geology,17(11):1020.
    [81] N.W. Harkins, D.J. Anastasio, F.J. Pazzaglia.2005. Tectonic geomorphology of the Red Rock fault,insights into segmentation and landscape evolution of a developing range front normal fault [J]. Journal ofStructural Geology,(27):1925-1939.
    [82] Oliver K.2006. Rock-slop failure and the river long profile [J].Geology.34(1):45-48.
    [83] Pan B.T., Hu Z., Wang J., et al.2010. A magnetostratigraphic record of landscape development in theeastern Ordos Plateau, China: Transition from Late Miocene and Early Pliocene stacked sedimentation toLate Pliocene and Quaternary uplift and incision by the Yellow River [J]. Geomorphology,(125):225-238.
    [84] Panien M., Schreurs G., Pfiffner A.2005. Sandbox experiments on basin inversion: testing the influence ofbasin orientation and basin fill [J]. Journal of Structural Geology,27(3):433-445.
    [85] Paul P., Arnaud M., Geoffrey C.P.K.2010. Surface morphology of active normal faults in hard rock:Implications for the mechanics of the Asal Rift, Djibouti [J]. Earth and Planetary Science Letters,(299):169-179.
    [86] Peters G., Buchmann T.J., Connolly P., et al.2005. Interplay between tectonic, fluvial and erosionalprocesses along the Western Border Fault of the northern Upper Rhine Graben, Germany [J].Tectonophysics,406(1-2):39-66.
    [87] Pinzuti P., Mignan A., King G.C.2009. Surface Morphology of Active Normal Faults in Hard Rock:Implications for the Mechanics of the Asal Rift, Djibouti [J]. Earth and Planetary Science Letters,(299):169-179.
    [88] R.E. Wallace.1977. Profiles and ages of young fault scarps, normal-central Nevada[J].G.S.A.B.88:1267-1281.
    [89] R.K.M. Devi, S.S. Bhakuni, P.K. Bora.2011. Tectonic implication of drainage set-up in the Sub-Himalaya:a casy study of Papumpare district, Arunachal Himalaya, India [J]. Earth and Planetary Science Letters,(127):14-31.
    [90] R.T. Walker, S. Claisse, M. Telfer, et al.2010. Preliminary estimate of Holocene slip rate on active normalfaults bounding the southern coast of the Gulf of Evia, Central Greece [J]. Geosphere,6(5):583-593.
    [91] Ramirez-Herrera M.T.1998. Geomorphic assessment of active tectonics in the Acambay Graben, Mexicanvolcanic belt [J]. Earth surface processes and landforms,23(4):317-332.
    [92] Ren J, Tamaki K, Li S, et al.2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in EasternChina and adjacent area [J]. Tectonophysics,344(3-4):175-205.
    [93] Ribolini A., Spagnolo M.2008. Drainage network geometry versus tectonics in the Argentera Massif(French-Italian Alps)[J]. Geomorphology,93(3-4):253-266.
    [94] Richardson N.J., Densmore A.L., Seward D., et al.2008. Extraordinary denudation in the Sichuan Basin:insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau [J].Journal of geophysical research: solid earth,113: B4409.
    [95] Richardson N.J., Densmore A.L., Seward D., et al.2010. Did incision of the Three Gorges begin in theEocene?[J]. Geology,38(6):551.
    [96] Sandiford M.1999. Mechanics of basin inversion[J]. Tectonophysics,305(1-3):109-120.
    [97] Schoenbohm L.M., Whipple K.X., Burchfiel B.C., et al.2004. Geomorphic constraints on surface uplift,exhumation, and plateau growth in the Red River region, Yunnan Province, China [J]. GSA Bulletin,116(7/8):895-909.
    [98] Scholz C.H., Contreras J.C.1998. Mechanics of continental rift architecture [J]. Geology,26(11):967.
    [99] Shahzad F., Gloaguen R.2011. TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part1:Drainage network preprocessing and stream profile analysis[J]. Computers&Geosciences,37:250-260.
    [100] Shahzad F., Gloaguen R.2011. TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part2:Surface dynamics and basin analysis [J]. Computers&Geosciences,37:261-271.
    [101] Shahzad F., Mahmood S.A., Gloaguen R.2009. Drainage network and lineament analysis: An approach forPotwar Plateau (Northern Pakistan)[J]. Journal of Mountain Science,6(1):14-24.
    [102] Shen Z K, Zhao C., Yin A., et al.2000. Contemporary crustal deformation in eastern Asia constrained byGlobal Positioning System measurements [J]. J. Geophys Res,105:5721-5734.
    [103] Shyu, J.B.H., K. Sieh, J.-P. Avouac, et al.2005. Millennial Slip Rate of the Longitudinal Valley Fault fromRiver Terraces: Implications for Convergence across the Active Suture of Eastern Taiwan [J]. Journal ofGeophysical Research.
    [104] Snyder N.P., Whipple K.X., Tucker G.E., et al.2000. Landscape response to tectonic forcing: Digitalelevation model analysis of stream profiles in the Mendocino triple junction region, northern California [J].Bulletin of the Geological Society of America,112(8):1250.
    [105] Stein R.S., Briole P., Ruegg J.C., et al.1991. Contemporary, Holocene, and Quaternary deformation of theAsal Rift, Djibouti: Implications for the mechanics of slow spreading ridges [J]. J. geophys. Res,96(21):721-789,806.
    [106] Strahler A.N.1952. Hypsometric (area-altitude) analysis of erosional topography [J]. Geological Society ofAmerica Bulletin,63(11):1117.
    [107] Tapponnier P., Mercier J.L., Armijo R., et al.1981. Field evidence for active normal faulting in Tibet[J].Nature,294(5840):410-414.
    [108] Tapponnier P., Molnar P.1977. Active faulting and tectonics in China[J]. Journal of Geophysical Research,82(20):2905-2930.
    [109] Vander W.J., Klinger Y., Sieh K., et al.2006. Long-term slip rate of the southern San Andreas fault from10Be-26Al surface exposure dating of an offset alluvial fan[J]. J. geophys. Res,111: B4407.
    [110] Vander W.J., Tapponnier P., Ryerson F.J., et al.2002. Uniform postglacial slip‐rate along the central600km of the Kunlun Fault (Tibet), from26Al,10Be, and14C dating of riser offsets, and climatic origin of theregional morphology[J]. Geophysical Journal International,148(3):356-388.
    [111] Wang H., Liu M., Cao J., et al.2011, Slip rates and seismic moment deficits on major active faults inmainland China [J]. J. Geophys. Res., v.116, B02405, doi:10.1029/2010JB007821.
    [112] Wei Z.Y., He H.L., Shi F., et al.2010. Topographic characteristics of rupture surface associated with the12May2008Wenchuan earthquake [J]. Bulletin of the Seismological Society of America,100(5B):2669.
    [113] Whipple K.X., Hancock G.S., Anderson R.S.2000. River incision into bedrock: Mechanics and relativeefficacy of plucking, abrasion, and cavitation [J]. Geological Society of America Bulletin,112(3):490.
    [114] Whipple K.X., Kirby E., Brocklehurst S.H.1999. Geomorphic limits to climate-induced increases intopographic relief [J]. Nature,401(6748):39-43.
    [115] William B. Bull.2007. Tectonic geomorphology of mountains-a new approach to paleoseismology [M].Blackwell publishing:1-316.
    [116] Wobus C., Whipple K.X., Kirby E., et al.2006. Tectonics from topography: Procedures, promise, andpitfalls[J]. Tectonics, Climate and Landscape Evolution,398:55-74.
    [117] X.M. Hu, Y.L. Li, J.C. Yang.2005. Quaternary paleolake development in the Fen river basin, north China[J]. Geomorphology,(65):1-13.
    [118] X.W. Xu, Q.D. Deng.1996. Nonlinear characteristics of paleoseismicity in China[J]. Journal ofGeophysical Research,101(B3):6209-6231.
    [119] Xu X.W., Ma X.Y.1992. Geodynamics of the Shanxi Rift system, China [J]. Tectonophysics,208:325-340.
    [120] Xu X.W., Ma X.Y., Deng, Q.D.1993. Neotectonic activity along the Shanxi rift system, China [J].Tectonophysics (219):305-325.
    [121] Y. Ota, Y.G. Chen, W.S. Chen.2005. Review of paleoseismologcial and active fault studies in Taiiwan inthe light of the Chichi earthquake of September21,1999[J]. Tectonophysics,(408):63-77.
    [122] Y.G. Chen, W.S. Chen, Y. Wang, et al.2002. Geomorphic evidence for prior earthquakes: lessons from the1999Chichi earthquake in central Taiwan [J]. Geology,30(2):171-174.
    [123] Y.L. Li, J.C. Yang, X.M. Hu.2000. Origin of ground fissures in the Shanxi graben system, northern China[J]. Engineering Geology,(55):267-275.
    [124] Zelilidis A.2000. Drainage evolution in a rifted basin, Corinth graben, Greece [J]. Geomorphology,35(1-2):69-85.
    [125] Zhang Y.Q., Mercier J.L., Vergély P.1998. Extension in the graben systems around the Ordos (China), andits contribution to the extrusion tectonics of south China with respect to Gobi-Mongolia [J]. Tectonophysics,285(1-2):41-75.
    [126] Zhang Y.Q., Ma Y.S., Yang N., et al.2003. Cenozoic extensional stress evolution in North China [J].,Journal of Geodynamics,36:591-613.
    [127] Zoback M.D., Zoback M.L., Mount V.S., et al.1987. New evidence on the state of stress of the SanAndreas fault system[J]. Science,238(4830):1105.
    [128]安成邦,冯兆东,唐领余.2003.黄土高原西部全新世中期湿润气候的证据[J].科学通报,48(21):2280-2287.
    [129]安美建,李方全.1998.山西地堑系现今构造应力场[J].地震学报,20(5):461-465.
    [130]安卫平,杨景春,李有利,等.1995.临汾盆地第四纪断层活动的几种表现[J].山西地震,(3-4):54-59.
    [131]安卫平,赵晋泉,闫小兵,等.2008.岷江断裂羌阳桥一带古堰塞湖沉积及构造变形与古地震[J].地震地质,30(4):980-988.
    [132]安芷生,Kukla G.,刘东生.1989.洛川黄土地层学[J].第四纪研究,(2):155-168.
    [133]安芷生,卢演俦.1984.华北晚更新世马兰期气候地层划分[J].科学通报,(4):228-231.
    [134]安芷生,吴锡浩,汪品先,等.1991a.最近130ka中国的古季风——Ⅰ.古季风记录[J].中国科学(B辑化学生命科学地学),(10):1076-1081.
    [135]安芷生,吴锡浩,汪品先,等.1991b.最近130ka中国的古季风——Ⅱ.古季风变迁[J].中国科学(B辑化学生命科学地学),(11):1209-1215.
    [136]安芷生,波特S.,吴锡浩,等.1993.中国中、东部全新世气候适宜期与东亚夏季风变迁[J].科学通报,(14):1302-1305.
    [137]安芷生,王苏民,吴锡浩,等.1998.中国黄土高原的风积证据:晚新生代北半球大冰期开始及青藏高原的隆升驱动[J].中国科学D辑:地球科学,28(6):481-490.
    [138]安芷生,艾莉.2005.尚未完成的地质年代表——第四纪悬而未决的前程[J].地层学杂志,(2):99-103.
    [139]北京大学地震地质教研室,等.1982.地震地质学[M].北京:地震出版社,1-427.
    [140]毕丽思.2011.基于DEM的活动构造带地貌参数研究[D].硕士学位论文,导师:何宏林.北京:中国地震局地质研究所.
    [141]毕丽思,何宏林,徐岳仁,等.2011.基于高分辨率DEM的裂点序列提取和古地震序列的识别-以霍山山前断裂为实验区[J].地震地质,33(4):963-977.
    [142]柏冠军,吴汉宁,赵希刚,等.2007.重力资料识别鄂尔多斯盆地线性构造方法研究[J].地球物理学进展,(5):1386-1392.
    [143]曹凯,王国灿,王岸.2007.东昆仑山昆仑河纵剖面形貌分析及构造涵义[J].地球科学:中国地质大学学报,32(05):713-721.
    [144]曹艳峰,韩军青.2009.运城盆地全新世时期的野火活动与生态环境演变[J].干旱区资源与环境,(2):125-129.
    [145]曹艳峰,黄春长,韩军青,等.2007.黄土高原东西部全新世剖面炭屑记录的火环境变化[J].地理与地理信息科学,(1):92-96.
    [146]曹忠权,吴裕文.1986.罗云山断裂带第四纪活动特征[J].地震,6(6):35-40.
    [147]查小春,黄春长,庞奖励.2006.运城盆地洪积平原全新世环境演变与侵蚀阶段研究[J].干旱区资源与环境,(1):131-135.
    [148]常利军,王椿镛,丁志峰,等.2008a.青藏高原东北缘上地幔各向异性研究[J].地球物理学报,(2):431-438.
    [149]常利军,王椿镛,丁志峰.2008b.四川及邻区上地幔各向异性研究[J].中国科学D辑:地球科学,38(12):1589-1599.
    [150]常利军,王椿镛,丁志峰.2009.中国东部上地幔各向异性研究[J].中国科学D辑:地球科学,39(9):1169-1178.
    [151]常利军,王椿镛,丁志峰.2011.鄂尔多斯块体及周缘上地幔各向异性研究[J].中国科学D辑:地球科学,(5):686-699.
    [152]晁洪太,邓起东,李家灵,等.2000.第四纪松散沉积物中隐性活断层的显微构造特征[J].地震地质,22(2):147-154.
    [153]陈桂华,徐锡伟,闻学泽,等.2006.数字航空摄影测量学方法在活动构造中的应用[J].地球科学-中国地质大学学报,31(3):405-410.
    [154]陈国顺,王汝雕,杨天家,等.1982.临汾中、晚更新世古地震与新构造运动[A].见:史前地震与第四纪地质文集,82-90.
    [155]陈国顺,王发锟,刘凯,等.1985.太原至霍县地区一些重力地貌的形成可能与全新世的强震活动有关[J].华北地震科学,(2):96.
    [156]陈国顺,黄振昌,王洪力,等.1995.1695年临汾大震的发震断层及有关问题初探[J].山西地震,(3-4):39-42.
    [157]陈洪云,孙有斌.2008.黄土高原风尘沉积的物质来源研究:回顾与展望[J].第四纪研究,28(5):892-900.
    [158]陈立春,冉勇康,常增沛.2003a.色尔腾山山前断裂得令山以东段晚第四纪活动特征与古地震事件[J].地震地质,25(4):555-565.
    [159]陈立春,冉勇康,杨晓平.2003b.色尔腾山山前断裂晚第四纪活动与破裂分段模型[J].中国地震,19(3):255-265.
    [160]陈立春,陈桂华,陈立泽,等.2006.柯坪塔格推覆系活动构造的ETM影像特征与解译[J].地震地质,28(2):289-298.
    [161]陈立春,王虎,冉勇康,等.2010.玉树MS7.1级地震地表破裂与历史大地震[J].科学通报,55(13):1200-1205.
    [162]陈彦杰,宋国城,陈昭男.2006.非均衡山脉的河流水力侵蚀模型[J].科学通报,51(7):865-869.
    [163]陈颙,陈运泰.1974.晋中南地区地壳结构的初步研究[J].地球物理学报,(3):186-199.
    [164]陈运泰.2009.地震预测:回顾与展望[J].中国科学D辑:地球科学,39(12):1633-1658.
    [165]程鹏,周卫健,余华贵,等.2007.黄土-古土壤序列-14C年代学研究进展[J].海洋地质与第四纪地质,(2):85-89.
    [166]程三友,李英杰.2010.抚仙湖流域地貌特征及其构造指示意义[J].地质力学学报,(4):383-392.
    [167]程绍平,邓起东,闵伟,等.1998.黄河晋陕峡谷河流阶地和鄂尔多斯高原第四纪构造运动[J].第四纪研究,(3):238-248.
    [168]程绍平,杨桂枝.1996.大同-阳原盆地南缘断裂带的晚第四纪分段和构造地貌变异[J].地震地质,18(4):289-300.
    [169]程绍平,杨桂枝.2002.山西中条山断裂带的晚第四纪分段模型[J].地震地质,24(3):289-302.
    [170]程新原,安卫平.1994.临汾地区共轭活动构造与地震关系的研究[J].山西地震,(1):7-11.
    [171]程新原,苏宗正,王汝雕,等.1995.临汾盆地的近代地壳运动[J].山西地震,(3-4):60-67.
    [172]仇士华,蔡莲珍.1989. AMS14C在地学中应用的发展近况[J].第四纪研究,8(1):57-64.
    [173]崔之久,杨建强,赵亮,等.2004.鄂尔多斯大面积冰楔群的发现及20ka以来中国北方多年冻土南界与环境[J].科学通报,(13):1304-1310.
    [174]邓成龙,袁宝印.2001.末次间冰期以来黄河中游黄土高原沟谷侵蚀-堆积过程初探[J].地理学报,56(1):92-98.
    [175]邓起东,王克鲁,汪一鹏,等.1973.山西隆起区断陷地震带地震地质条件及地震发展趋势概述[J].地质科学,(1):37-47.
    [176]邓起东,范福田.1980.华北断块区新生代、现代地质构造特征[A].见中国科学院地质研究所和国家地震局地质研究所编,华北断块区的形成与发展[M].北京:科学出版社:192-205.
    [177]邓起东.1982.中国活动断裂[A].见:中国地震学会地震地质专业委员会编.中国活动断裂.北京:地震出版社:19-27.
    [178]邓起东,汪一鹏,廖玉华,等.1984a.断层崖崩积楔及贺兰山山前全新世活动历史[J].科学通报,29(9):557-560.
    [179]邓起东.1984b.断层性状、盆地类型及其形成机制[J].地震科学研究(1-6期连载),1(1):59-64;1(2):57-64;1(3):56-64;1(4):58-64;1(5):58-64;1(6):51-59.
    [180]邓起东,尤惠川.1985a.断层崖研究与地震危险性估计-以贺兰山东麓断层崖为例[J].西北地震学报,(1):29-38.
    [181]邓起东,尤惠川.1985b.鄂尔多斯周缘断陷盆地带的构造活动特征及其形成机制[J].国家地震局地质研究所,现代地壳运动研究[M].北京:地震出版社:58-78.
    [182]邓起东.1992a.临汾盆地地震构造研究[R].北京:国家地震局地质研究所.
    [183]邓起东,于贵华,叶文华.1992b.地震地表破裂参数与震级关系的研究[J].活动断裂研究:2,北京:地震出版社,247-264.
    [184]邓起东,苏宗正,王挺梅,等.1993a.临汾盆地地震构造基本特征和潜在震源区的划分[J].见:马宗晋主编,山西临汾地震研究与系统减灾[M].北京:地震出版社,67-95.
    [185]邓起东,苏宗正,王挺梅,等.1993b.临汾盆地晚第四纪沉积与最新构造运动[J].见:马宗晋主编,山西临汾地震研究与系统减灾[M].北京:地震出版社,111-129.
    [186]邓起东,米仓伸之,徐锡伟,等.1994.山西高原六棱山北麓断裂晚第四纪运动学特征初步研究[J].地震地质,16(4):339-343.
    [187]邓起东,冉勇康,王景钵,等.1995a.河北宣化盆地南缘断裂的古地震遗迹[J].地震地质,17(1):44-46.
    [188]邓起东,徐锡伟.1995b.山西断陷盆地带的活动断裂和分段性研究[J].现代地壳运动研究:6,北京:地震出版社,225-242.
    [189]邓起东,程绍平,闵伟,等.1999.鄂尔多斯块体新生代构造活动和动力学的讨论[J].地质力学学报,5(3):113-120.
    [190]邓起东,晁洪太,闵伟,等.2002a.海域活动断裂探测和古地震研究[J].中国地震,18(3):311-315.
    [191]邓起东,张培震,冉勇康,等.2002b.中国活动构造基本特征[J].中国科学D辑:地球科学,32(12):1020-1030.
    [192]邓起东,张培震,冉勇康,等.2003.中国活动构造与地震活动[J].地学前缘,10(特刊):66-73.
    [193]邓起东,陈立春,冉勇康.2004a.活动构造定量研究与应用[J].地学前缘,11(4):383-392.
    [194]邓起东,高孟潭,赵新平,等.2004b.陆内盆地与强震活动[J].地震学报,26(4):343-346.
    [195]邓起东,闻学泽.2008.活动构造研究-历史、进展与建议[J].地震地质,30(1):1-30.
    [196]刁桂苓,胡新亮,张骁,等.2007.洪洞临汾大震震源断层的相互作用和地震趋势分析[J].华北地震科学,(2):1-4.
    [197]丁国瑜.1992.有关活断层分段的一些问题[J].中国地震,8(2):1-10.
    [198]丁国瑜,田勤俭,孔凡臣,等.1993.活断层分段——原理、方法及应用[M].北京:地震出版社.1-143.
    [199]丁国瑜.2011.丁国瑜文集[M].北京:地震出版社.1-604.
    [200]丁敏,黄春长,周群英,等.2002.渭河阶地全新世土壤粒度成分高分辨率研究[J].干旱区研究,19(4):69-71.
    [201]丁仲礼,余志伟,刘东生.1991.中国黄土研究新进展(三)时间标尺[J].第四纪研究,(4):336-348.
    [202]范晋芳,马新红,马志正,等.2009.临汾凹陷一万年来环境演化研究[J].山西师范大学学报(自然科学版),(2):83-86.
    [203]范俊喜,马瑾,甘卫军.2003.鄂尔多斯地块运动的整体性与不同方向边界活动的交替性[J].中国科学D辑:地球科学,33(增):119-128.
    [204]方小敏,李吉均,朱俊杰,等.1997.甘肃临夏盆地新生代地层绝对年代测定与划分[J].科学通报,42(14):1457-1471.
    [205]方仲景,程绍平,王景钵,等.1989.河北怀来黄土窑古地震剖面[J].地震地质,11(2):66-68.
    [206]方仲景,程绍平,冉勇康.1993.延怀盆岭构造及其晚第四纪断裂运动的某些特征[J].地球物理学进展,(4):265-266.
    [207]付淑清,陈淑娥,李勇,等.2005.渭河中上游地区全新世气候不稳定性初步研究[J].干旱区资源与环境,(S1):85-89.
    [208]傅建利,李有利.2001.三门峡水库对黄河河流地貌的影响[J].水土保持研究,(2):59-65.
    [209]高孟潭,金学申,安卫平,等.2004.1303年洪洞8级地震GIS系统与震害分布特征分析[J].地震学报,26(4):363-368.
    [210]顾兆炎,许冰,吕延武,等.2006.怒江峡谷构造地貌的演化:阶地宇宙成因核素定年的初步结果[J].第四纪研究,(2):293-294.
    [211]郭飚,刘启元,陈九辉,等.2004.青藏高原东北缘—鄂尔多斯地壳上地幔地震层析成像研究[J].地球物理学报,(5):791-798.
    [212]郭华东,张兵,雷莉萍,等.2010.玉树地震高倒塌率建筑物及诱因:遥感认识[J].中国科学D辑:地球科学,40(5):538-540.
    [213]郭兰兰,冯兆东,李心清,等.2007.鄂尔多斯高原巴汗淖湖泊记录的全新世气候变化[J].科学通报,(5):584-590.
    [214]郭良迁,胡新康,王秀文,等.2004.山西断陷带的形变应变特征及地震活动[J].大地测量与地球动力学,(4):64-71.
    [215]郭良迁,占伟,杨国华,等.2010.山西断陷带的近期位移和应变率特征[J].大地测量与地球动力学,30(4):36-42.
    [216]郭增建,马宗晋.1988.中国特大地震研究[M].北京:地震出版社:6-51.
    [217]郭增建,吴瑾冰.2003.1303年山西洪洞8级大地震有关问题的讨论[J].山西地震,(3):31-33.
    [218]郭正堂,刘东生,安芷生.1994.渭南黄土沉积中15万年来的古土壤及其形成时的古环境[J].第四纪研究,(3):256-269.
    [219]国家地震局地震地质大队,北京大学地质地理系.1975.临汾盆地活动构造体系特征与地震活动-临汾地区地震地质工作总结[M].1-45.
    [220]国家地震局《鄂尔多斯周缘活动断裂系》课题组.1988.鄂尔多斯周缘活动断裂系[M].北京:地震出版社:1-328.
    [221]国家地震局地质研究所.1987.郯庐断裂[D].北京:地震出版社,1-254.
    [222]国家地震局地质研究所,宁夏回族自治区地震局.1990.海原活动断裂带[M].北京:地震出版社,1-286.
    [223]国家地震局《深部物探成果》编写组.1986.中国地壳上地幔地球物理探测成果[M].北京:地震出版社,1-404.
    [224]韩恒悦,米丰收,刘海云.2001.渭河盆地带地貌结构与新构造运动[J].地震研究,24(3):251-257.
    [225]韩竹军,冉勇康,徐锡伟.2002.隐伏活断层未来地表破裂带宽度与位错量初步研究[J].地震地质,(4):484-494.
    [226]韩竹军,徐杰,冉勇康,等.2003.华北地区活动地块与强震活动[J].中国科学D辑:地球科学,33(S1):108-118.
    [227]何宏林,池田安隆,何玉林,等.2008.新生的大凉山断裂带——鲜水河-小江断裂系中段的裁弯取直[J].中国科学D辑:地球科学,38(5):564-574.
    [228]何宏林.2011.活动断层填图中的航片解译问题[J].地震地质,33(4):938-950.
    [229]何忠,黄春长,周杰,等.2010.淮河上游全新世黄土及其沉积动力系统研究[J].中国沙漠,(4):816-823.
    [230]贺明华,苏宗正,阎凤忠.1988.临汾盆地新构造格局与地震活动[J].山西地震,(4):7-12.
    [231]侯建军,韩慕康.1994.渭河盆地全新世隐伏构造活动[J].地理学报,49(3):258-265.
    [232]侯建军.1985.1556年陕西省华县大震的地震地质条件[J].西北地震学报,7(1):66-74.
    [233]胡春生,潘保田,高红山,等.2006.最近150ka河西地区河流阶地的成因分析[J].地理科学,(5):5603-5608.
    [234]胡惠民.1987.山西地堑系的现代构造活动特征[J].中国地震,3(4):67-73.
    [235]胡新亮,刁桂苓,高景春,等.2002.山西洪洞、临汾历史大震区现今地震的重新定位[J].华北地震科学,20(2):10-15.
    [236]胡小猛,傅建利,李有利,等.2002.中更新世中晚期以来汾河流域地貌阶段性发育及成因分析[J].地质力学学报,(2):165-172.
    [237]胡小猛,傅建利,马志正,等.2002.太原盆地洪山第四纪剖面的发现[J].地层学杂志,(3):226-229.
    [238]胡小猛,杨景春.2001.根据临汾盆地的演化过程分析“丁村组”的年代[J].地理研究,(5):616-622.
    [239]胡小猛,杨景春.2001.临汾盆地末次间冰期以来地貌演化的构造和气候响应[J].地质力学学报,(2):176-180.
    [240]胡小猛,杨景春.2001.临汾盆地中更新世中晚期以来的演化历史及成因分析[J].上海师范大学学报(自然科学版),(3):72-76.
    [241]胡晓猛,傅建利,李有利,等.2002.中更新中晚期以来汾河流域地貌阶段性发育及成因分析[J].地质力学学报,8(2):165-172.
    [242]胡晓猛,杨景春.2001.临汾盆地末次间冰期以来地貌演化的构造和气候响应[J].地质力学学报,7(2):176-180.
    [243]胡晓猛.1995.山西霍山山前断裂的水平运动研究[J].安徽师大学报(自然科学版),18(3):47-52.
    [244]胡晓猛.2000.汾河流域地貌、沉积对构造运动和气候变化的响应[D].博士学位论文,导师:杨景春.北京:北京大学.
    [245]黄春长,庞奖励,黄萍,等.2002.关中盆地西部黄土台塬全新世气候事件研究[J].干旱区地理,(1):10-15.
    [246]黄春长,延军平,马进福,等.1997.渭河阶地全新世成壤过程及人类因素研究[J].陕西师范大学学报(自然科学版),25(2):72-76.
    [247]黄春长.1989a.黄土高原南部晚更新世黄土古土壤与气候变迁[J].地理学报,(1):1-10.
    [248]黄春长.1989b.秦岭两侧谷地更新世古文化及其地理环境[J].西北大学学报(自然科学版),(1):87-90.
    [249]黄春长.1989c.渭河流域全新世黄土与环境变迁[J].地理研究,(1):20-31.
    [250]黄春长.1990.我国西北高原盆地全新世沉积与环境变迁[J].干旱区地理,(2):1-8.
    [251]黄春长.1998.环境变迁[M].北京:科学出版社,1-199.
    [252]黄万波,童永生,邓惠森,等.1974.山西霍县上新统[J].古脊椎动物与古人类,(1):54-59.
    [253]计凤桔,郑荣章,李建平,等.2000.延怀盆地及毗邻地区主要河流低阶地地貌面的年代学研究[J].地震地质,22(S1):13-18.
    [254]贾佳,夏敦胜,魏海涛,等.2009.耀县黄土记录的全新世东亚冬夏季风非同步演化[J].第四纪研究,29(5):966-975.
    [255]贾兰坡.1955.山西襄汾县丁村人类化石及旧石器发掘报告[J].科学通报,(1):46-51.
    [256]江南生,辛书庆.1979.山西霍山断裂带的应力矿物分析及力学性质讨论[A].地质力学论丛:5.北京:科学出版社,25-32.
    [257]吉亚鹏,高红山,潘保田,等.2011.渭河上游流域河长坡降指标SL参数与Hack剖面的新构造意义[J].兰州大学学报:自然科学版,47(4):1-6.
    [258]江娃利,聂宗笙,张康富.1992.山西交城断裂错断全新世洪积扇[J].地震地质,14(3):216.
    [259]江娃利,肖振敏,谢新生.2000.鄂尔多斯块体周边正倾滑活动断裂历史强震地表破裂分段[J].地震学报,22(5):517-526.
    [260]江娃利,谢新生.2002.正倾滑活动断裂垂直位移定量研究中相关问题的讨论[J].地震地质,24(2):177-187.
    [261]江娃利,谢新生,王焕贞,等.2003a.山西大同盆地恒山北缘断裂全新世古地震活动[J].中国地震,19(1):8-19.
    [262]江娃利.2003b.内蒙狼山—色尔腾山山前活动断裂古地震事件识别及同震垂直位移[J].地壳构造与地壳应力文集:15.北京:地震出版社,45-52.
    [263]江娃利,王焕贞.2004a.山西大同与晋中盆地全新世活动断裂断裂定量研究中热释光与14C测年方法应用[J].第四纪研究,24(3):332-340.
    [264]江娃利,邓起东,徐锡伟,等.2004b.1303年山西洪洞8级地震地表破裂带[J].地震学报,26(4):355-362.
    [265]江娃利,谢新生,张景发,等.2009.四川龙门山活动断裂带典型地段晚第四纪强震多期活动证据[J].中国科学D辑:地球科学,39(12):1688-1700.
    [266]江为为,郝天珧,宋海斌.2000.鄂尔多斯盆地地质地球物理场特征与地壳结构[J].地球物理学进展,(3):45-53.
    [267]孔凡臣,丁国瑜.1991.山西及邻区水系与黄土冲沟的分形几何学分析结果及其与构造活动的关系[J].地震地质,13(3):221-229.
    [268]孔昭宸,杜乃秋.1992.山西襄汾陶寺遗址孢粉分析[J].考古,(2):178-181.
    [269]郎玲玲,程维明,朱启疆,等.2007.多尺度DEM提取地势起伏度的对比分析——以福建低山丘陵区为例[J].地球信息科学,(6):1-6.
    [270]李斌,Lovlie R.,苏朴,等.2008.山西襄汾大柴更新统剖面划分的新观点[J].地球物理学报,(4):1040-1047.
    [271]李传友.2005.青藏高原东北部几条主要断裂带的定量研究[D].学位论文,导师:张培震.北京:中国地震局地质研究所.
    [272]李传友,张培震,张剑玺,等.2007.西秦岭北缘断裂带黄香沟段晚第四纪活动表现与滑动速率[J].第四纪研究,27(1):54-63.
    [273]李吉均,方小敏,潘保田,等.2001.新生代晚期青藏高原强烈隆起及其对周边环境的影响[J].第四纪研究,21(5):381-391
    [274]李建彪,冉勇康,郭文生.2005.河套盆地托克托台地湖相层研究[J].第四纪研究,(5):630-639.
    [275]李建彪.2006.河套盆地晚第四纪成湖环境变化与构造活动研究[D].学位论文,导师:冉勇康,郭文生.北京:中国地震局地质研究所.
    [276]李建华.1988.据卫星影象判读试论1695年临汾8级地震的构造背景[J].地震地质,10(3):45-51.
    [277]李建华.1991.1303年山西洪洞-赵城8级地震的形变遗迹[J].现代地壳运动研究(5):北京:地震出版社,199-206.
    [278]李丽,郝振纯.2003.基于DEM的流域特征提取综述[J].地球科学进展,18(02):251-256.
    [279]李鹏,周仕勇,陈永顺,等.2010.利用双平面波干涉面波层析成像方法研究山西断陷盆地及鄂尔多斯地台三维速度结构[J]. CT理论与应用研究,19(3):47-60.
    [280]李琼.2008.构造抬升背景下河流地貌对长期气候变化响应的数值实验研究[D].学位论文,导师:潘保田.兰州:兰州大学.
    [281]李容全,邱维理,张亚立,等.2005.对黄土高原的新认识[J].北京师范大学学报(自然科学版),41(4):431-436.
    [282]李容全,张居中.1997.论地学与考古学的相互关系[J].北京师范大学学报(自然科学版),(1):135-142.
    [283]李祥根,冉勇康.1983.华山北坡及渭南塬前活断层[J].华北地震科学,(2):10-18.
    [284]李祥根,冉勇康.1985.在我国用地貌测量统计方法估计断层陡坎年龄的几个例子[J].华北地震科学,(3):37-43.
    [285]李小强,安芷生,周杰,等.2003.全新世黄土高原塬区植被特征[J].海洋地质与第四纪地质,(3):109-114.
    [286]李新坡,莫多闻,朱忠礼,等.2007.一个片流过程控制的冲积扇——太原盆地风峪沟冲积扇[J].北京大学学报(自然科学版),(4):560-566.
    [287]李新坡,莫多闻,朱忠礼.2006.侯马盆地冲积扇及其流域地貌发育规律[J].地理学报,(3):241-248.
    [288]李新坡.2007.中国北方地区冲积扇地貌发育特征与影响因素分析[D].学位论文,导师:莫多闻.北京:北京大学.
    [289]李延兴,张静华,郭良迁,等.2005.鄂尔多斯的逆时针旋转与动力学[J].大地测量与地球动力学,(3):50-56.
    [290]李有利,杨景春.1993.山西洪洞郇堡地震滑坡的研究[A].中国地理学会地貌与第四纪专业委员会编,地貌过程与环境.北京:地震出版社:94-99.
    [291]李有利,苏宗正,杨景春.1994.运城盆地新构造运动与古河道演变[J].山西地震,(1):3-6.
    [292]李有利,杨景春.1994.运城盐湖沉积环境演化[J].地理研究,13(1):70-74.
    [293]李有利,杨景春,李保俊.1995.甘肃张掖黑河口断层晚更新世晚期以来的活动[J].北京大学学报:自然科学版,31(3):351-357.
    [294]李有利,杨景春.1997.河西走廊平原区全新世河流阶地对气候变化的响应[J].地理科学,17(003):248-252.
    [295]李有利,谭利华,张世民,等.1999.山西地堑系地震重力地貌发育及其与水土流失的关系[J].水土保持研究,6(4):26-32.
    [296]李有利,傅建利,杨景春,等.2001.黄河水量明显减少对下游河流地貌的影响[J].水土保持研究,(2):7-12.
    [297]李有利,傅建利.2002.山西临猗杨范第四纪沉积剖面初步研究[J].北京大学学报(自然科学版),38(4):517-522.
    [298]李有利,史兴民,傅建利,等.2004.山西南部1.2MaB.P.的地貌转型事件[J].地理科学,(3):292-297.
    [299]刘策,宋少华,孔祥辉,等.2011.西峰蔡家咀黄土剖面记录的末次盛冰期到全新世最佳期气候变化[J].地理科学,(4):508-512.
    [300]刘东生,等.1965a.黄土的物质成分与结构[M].北京:科学出版社.1-124.
    [301]刘东生,等.1965b.中国的黄土堆积[M].北京,科学出版社:1-244.
    [302]刘东生,等.1985.黄土与环境[M].北京:科学出版社:1-467.
    [303]刘东生,施雅风,王汝建,等.2000.以气候变化为标志的中国第四纪地层对比表[J].第四纪研究,20(2):108-128.
    [304]刘国栋.1985.华北平原新生代裂谷系及其深部过程[J].现代地壳运动研究:1,北京:地震出版社,17-25.
    [305]刘护军.2004.渭河盆地的形成演化与东秦岭的隆升[D].学位论文,导师:薛祥煦.西安:西北大学.
    [306]刘光勋,杨景春.1979.临汾盆地活动构造体系与地震活动[A].地质力学论丛:6.北京:科学出版社,140-150.
    [307]刘光勋,于慎鄂,张世民,等.1991.山西五台山北麓活动断裂带[J].活动断裂研究:1,北京:地震出版社,118-130.
    [308]刘嘉麒,陈铁梅,聂高众,等.1994.渭南黄土剖面的年龄测定及十五万年来高分辨时间序列的建立[J].第四纪研究,(3):193-202.
    [309]刘建辉,张培震,郑德文,等.2010.贺兰山晚新生代隆升的剥露特征及其隆升模式[J].中国科学D辑:地球科学,40(1):50-60.
    [310]刘国栋.1992.临汾地区地壳结构与动力学研究[R].国家地震局地质研究所.
    [311]刘静,徐锡伟,李岩峰,等.2007.以海原断裂甘肃老虎山段为例浅析走滑断裂古地震记录的完整性-兼论古地震研究中的若干问题[J].地质通报,26(6):650-660.
    [312]刘昆,黄春长,杨前进,等.2004.汾渭盆地全新世成壤环境演变比较研究[J].干旱区研究,(3):294-298.
    [313]刘升.2008.山西洪洞地区强地震地质遗迹与地震危险性评估[D].学位论文,导师:张传恒.北京:中国地质大学(北京).
    [314]刘巍,赵新平,安卫平,等.1993.山西地区的震源机制解结果[J].山西地震,(2):7-12.
    [315]刘峡.2007.华北地区现今地壳运动及形变动力学数值模拟[D].学位论文,导师:傅容珊.中国科学技术大学.
    [316]刘小丰.2007.渭河上游河流阶地的成因与地貌演化[D].学位论文,导师:潘保田.兰州:兰州大学.
    [317]刘旭东,张世民.2007.正断层崩积楔粒度特征及沉积环境[J].地震地质,29(4):813-825.
    [318]刘运明,李有利.2007.山西保德黄河最高阶地形成的时代[J].地理与地理信息科学,(1):101-103.
    [319]刘正荣,孟繁兴,等.1975.以临汾盆地为例论用考古学方法研究现代构造运动与地震的关系[J].地球物理学报,18(2):127-136.
    [320]刘子亭,杨小平,朱秉启.2010.巴丹吉林沙漠全新世环境记录的年代校正与古气候重建[J].第四纪研究,30(5):925-933.
    [321]卢演俦,高维明,陈国星,等编.2001.新构造与环境[M].北京:地震出版社:1-453.
    [322]陆德复,朱新人.1984.汾河新构造断裂带及其地震地质意义[J].山西地震,(4):14-18.
    [323]路鹏,杨国华,张风霜,等.2007.昆仑山口西8.1级地震与山系断陷带水平运动变化的探讨[J].国际地震动态,(7):92-98.
    [324]罗焕炎,孔祥红,高维安.1988.山西断陷盆地带形成机制的初步数值模拟[J].地震地质,10(1):71-77.
    [325]马保起,许桂林,盛小青,等.1999.山西交城断裂活动的构造地貌学研究[J].地壳构造与地壳应力文集:12,北京:地震出版社,7-15.
    [326]马胜利,陈顺云,刘培洵,等.2008.断层阶区对滑动行为影响的实验研究[J].中国科学D辑:地球科学,38(7):842-851.
    [327]马志正,韩军青,李有利,等.2000.山西襄汾县赵店动物群的发现及初步研究[J].山西师范大学学报(自然科学版),(3):72-77.
    [328]马志正,韩军青,高兰玉.2001.汾河下游三万年来环境变迁及表现特征[J].山西师范大学学报(自然科学版),15(2):81-89.
    [329]马志正,范晋芳,马新红,等.2010.临汾凹陷晚更新世以来河流阶地堆积的构造响应[J].山西师范大学学报(自然科学版),(4):100-104.
    [330]闵子群主编.1995.中国历史强震目录[M].北京:地震出版社,37.
    [331]马宗晋,聂高众,张培震.1995.地球构造变动对土壤分带格局和古气候事件的影响[J].第四纪研究,15(1):1-12.
    [332]马宗晋主编.1993.山西临汾地震研究与系统减灾[M].北京:地震出版社:1-602.
    [333]毛凤英,张培震.1995.古地震研究的逐次限定方法与新疆北部主要断裂带的古地震研究[A].活动断裂研究(4).北京:地震出版社:153-164.
    [334]孟繁兴,临洪文.1972.略谈利用古建筑及其附属物研究山西历史两次大震的一些问题[J].文物,(4):5-21.
    [335]孟宪梁,杜春涛,王瑞,等.1983.1679年三河—平谷大震的地震断裂带[J].地震,(3):18-23.
    [336]孟宪梁,于慎愕,奚云.1985.山西洪洞8级地震形变遗迹研究[J].地震地质,7(4):1-10.
    [337]孟宪梁,于慎谔.1986.山西临汾盆地东缘挤压构造的发现及其意义[J].华北地震科学,(3):72-73.
    [338]闵伟.1998.区域古地震研究[D].学位论文,导师:邓起东,程绍平.北京:中国地震局地质研究所.
    [339]闵伟,张培震,邓起东.2000.区域古地震复发行为的初步研究[J].地震学报,22(2):163-170.
    [340]莫多闻,邱林尊,阎甫田,等.1991.用孢粉方法分析临侯盆地晚新生代环境演变[J].山西师大学报(自然科学版),(2):58-63.
    [341]莫多闻.1991.山西临汾盆地晚新生带环境演变研究[J].北京大学学报(自然科学版),27(6):738-746.
    [342]倪四道,王伟涛,李丽.2010.2010年4月14日玉树地震:一个有前震的破坏性地震[J].中国科学D辑:地球科学,40(5):535-537.
    [343]宁树正,任金卫,单新建,等.2006.星载InSAR技术在西藏崩错地区构造地貌研究中的应用[J].地震地质,28(1):111-118.
    [344]牛晓露,庞奖励,黄春长,等.2011.陕西周原地区全新世黄土-古土壤序列风化程度研究[J].干旱区研究,(2):306-312.
    [345]欧阳自远,李春来,邹永廖,等.2010.绕月探测工程的初步科学成果[J].中国科学D辑:地球科学,40(3):261-280.
    [346]庞奖励,黄春长,刘安娜,等.2007.黄土高原南部全新世黄土-古土壤序列若干元素分布特征及意义[J].第四纪研究,(3):357-364.
    [347]彭贵,李桂英.1994.地质样品14C年龄测定值可靠性的评价[J].中国地震学会地震地质专业委员会,中国活动断层研究,北京:地震出版社,240-252.
    [348]彭晓莹,钟巍,赵引娟,等.2005.全新世大暖期气候环境特征及其机制的再认识[J].华南师范大学学报(自然科学版):(2):52-60.
    [349]齐书勤.1980.山西地震史料的特点及其古为今用[J].山西地震,(3):7-11.
    [350]齐书勤.1983.试论1303年山西8级大震的几个问题[J].华北地震科学,1(1):36-44.
    [351]齐书勤.2005.1303年山西8级大震研究刍议[J].中国地震,21(2):224-234.
    [352]强祖基,谢富仁.1988.临汾裂谷现代构造应力场特征及其数值模拟[J].地球物理学报,(5):556-565.
    [353]乔秀夫,高林志.1999.华北中新元古代及早古生代地震灾变事件及与Rodinia的关系[J].科学通报,(16):1753-1758.
    [354]秦小光,宁波,殷志强,等.2011.末次间冰期以来渭南黄土地区土壤有机碳碳库的演变[J].地球科学(中国地质大学学报),(2):386-392.
    [355]邱士华,陈铁梅,蔡莲珍.1990.中国14C年代学研究[M].北京:科学出版社:1-366.
    [356]邱祝礼,李有利,南峰.2005.断层陡崖、沟谷演化模型及三维可视化[J].水土保持研究,(4):35-38.
    [357]冉勇康,方仲景,李志义,等.1992.河北怀来—涿鹿盆地北缘活断层的古地震事件与断层分段[J].中国地震,8(3):74-85.
    [358]冉勇康,段瑞涛,邓起东,等.1997a.海原断裂高湾子地点三维探槽的开挖与古地震研究[J].地震地质,19(2):97-107.
    [359]冉勇康,邓起东,杨晓平,等.1997b.1679年三河-平谷8级地震发震断层的古地震及其重复间隔[J].地震地质,19(3):193-201.
    [360]冉勇康,方仲景,段瑞涛,等.1998.河北矾山盆地北缘断层八营段的古地震重复模型[J].中国地震,14(1):47-58.
    [361]冉勇康,邓起东.1998.海原断裂的古地震及特征地震破裂的分级性讨论[J].第四纪研究,(3):271-278.
    [362]冉勇康,邓起东.1999a.大地震重复特征与平均重复间隔的取值问题[J].地震地质,(4):316-323.
    [363]冉勇康,邓起东.1999b.古地震学研究的历史、现状和发展趋势[J].科学通报,44(1):12-20.
    [364]冉勇康,张培震,胡博,等.2002.大青山山前断裂呼和浩特段晚第四纪古地震活动历史[J].中国地震,18(1):15-27.
    [365]冉勇康,张培震,陈立春.2003a.河套断陷带大青山山前断裂晚第四纪古地震完整性研究[J].地学前缘,10(S1):207-216.
    [366]冉勇康,陈立春,杨晓平,等.2003b.鄂尔多斯地块北缘主要活动断裂晚第四纪强震复发特征[J].中国科学D辑:地球科学,33(S1):135-143.
    [367]冉勇康,陈立春.2004.中国长线工程场地地震安全性评价工作中的活动构造问题[J].地震地质,26(4):733-741.
    [368]冉勇康,陈立春,陈桂华,等.2008a.汶川MS8.0地震发震断裂大地震原地重复现象初析[J].地震地质,30(3):630-643.
    [369]冉勇康,陈立春,程建武,等.2008b.安宁河断裂冕宁以北晚第四纪地表变形与强震破裂行为[J].中国科学D辑:地球科学,38(5):543-554.
    [370]冉勇康,史翔,王虎,等.2010.汶川MS8地震最大地表同震垂直位移量及其地表变形样式[J].科学通报,55(2):154-162.
    [371]任俊杰,张世民.2006.忻定盆地晚更新世晚期的一次构造运动[J].地震地质,28(3):487-496.
    [372]山西省地震工程勘察研究院.山西地震等震线图集[D].北京:地震出版社,2009,1-82.
    [373]山西省地质矿产局.1989.山西省区域地质志[R].北京:地质出版社:585-678.
    [374]山西省地质矿产局213地质队.1990.霍山测区1:5万区域地质调查报告.1-207.
    [375]山西省地质局.1972.区域地质调查报告(1:20万)[R],运城幅,三门峡幅.
    [376]山西省地质局.1975.区域地质调查报告(1:20万)[R].汾阳幅,平遥幅.
    [377]山西省地质局.1976.区域地质调查报告(1:20万)[R],临汾幅,沁源幅.
    [378]山西省地质局.1978.区域地质调查报告(1:20万)[R],韩城幅,侯马幅.
    [379]陕西省地震局.1996.秦岭北缘活动断裂带[M].北京:地震出版社,1-218.
    [380]师亚芹,冯希杰,种瑾,等.2009.黄土覆盖的阶地陡坎附近渭河断裂活断层探测[J].地震地质,31(1):9-21.
    [381]施炜.2006.鄂尔多斯高原东西两侧构造地貌特征分析及新构造意义[D].学位论文,导师:王润生,张岳桥,马寅生.北京:中国地质大学(北京).
    [382]施炜.2008.黄河中游晋陕峡谷的DEM流域特征分析及其新构造意义[J].第四纪研究,28(20):288-298.
    [383]施雅风,崔之久,李吉均,等.1989.中国东部第四纪冰川与环境问题[M].北京:科学出版社:1-462.
    [384]施雅风,孔昭宸,王苏民,等.1992.中国全新世大暖期的气候波动与重要事件[J].中国科学,22(12):1300-1308.
    [385]施雅风,孔昭宸,王苏民,等.1993.中国全新世大暖期鼎盛阶段的气候与环境[J].中国科学,23(8):865-873.
    [386]石元春.1989.中国黄土中土壤的发生学研究[J].第四纪研究,8(1):113-122.
    [387]史兴民,杨景春.2003.河流地貌对构造活动的响应[J].水土保持研究,(3):48-51.
    [388]宋美琴,郑勇,葛粲,等.2012.山西地震带中小地震精确位置及其显示的山西地震构造特征[J].地球物理学报,55(2):513-525, doi:10.6038/j.issn.0001-5733.2012.02.014.
    [389]苏刚.1988.鄂尔多斯地块的反时针扭动及其地震和地质意义[J].山西地震,(3):
    [390]苏刚.1984.以运动地块为单元的区域地震活动研究-鄂尔多斯地块和它的地震活动[J].西北地震学报,(2):.
    [391]苏怀.2006.兰州东部地区1,240ka以来的河流阶地研究[D].学位论文,导师:潘保田.兰州:兰州大学.
    [392]苏宗正,贺明华,阎凤忠.1988.临汾盆地赤峪断裂的活动性研究及有关问题讨论[J].山西地震,(4):13-17.
    [393]苏宗正,邓起东.1995.三万年来山西临汾盆地古地理环境的变迁[J].山西大学学报(自然科学版),18(1):87-94.
    [394]苏宗正,袁正明,赵晋泉.2003.1303年山西洪洞8级大地震研究综述[J].山西地震,(3):4-9,22.
    [395]苏宗正,赵晋泉.2002.山西临汾郭家庄地震断层发现新剖面[J].山西地震,(1):46-47.
    [396]苏宗正.1985.鄂尔多斯块体东部边界带新地质构造与地震活动的几个特点[J].西北地震学报,(S1):40-43.
    [397]苏宗正.1988.山西断陷带地震活动的新构造背景[J].山西地震,(4):2-6.
    [398]孙爱芝,韩晓丽,张德怀.2010.黄土高原不同地貌类型区全新世植被变化研究[J].西南师范大学学报(自然科学版),(6):68-72.
    [399]孙继源,邢集善,叶志光,等.1992.华北地区板内构造及深部过程初探[J].地质科技情报,(1):4-13.
    [400]孙建中,李虎侯.1985.马兰黄土的热释光年龄[J].地震地质,7(2):10-12.
    [401]孙建中,赵景波,等.1991.黄土高原第四纪[M].北京:科学出版社:1-228.
    [402]孙千里,肖举乐.2006.岱海沉积记录的季风/干旱过渡区全新世适宜期特征[J].第四纪研究,26(5):781-790.
    [403]孙维汉.1964.山西汾河中游新生代地层剖面[J].地质论评,(6):445-454.
    [404]孙洁,史书林,江钊,等.1993.山西临汾盆地及外围地区大地电磁与地壳构造活动研究[J].见:马宗晋主编,山西临汾地震研究与系统减灾[M].北京:地震出版社,261-282.
    [405]谭志海,黄春长,庞奖励,等.2010.渭河流域全新世土壤剖面木炭屑记录及其古环境意义[J].中国生态农业学报,18(1):25-30.
    [406]唐有彩,冯永革,陈永顺,等.2010山西断陷带地壳结构的接收函数研究[J].地球物理学报,53(9):2102-2109, doi:10.3969/j.issn.0001-5733.2011.08.008.
    [407]滕吉文,王夫运,赵文智,等.2008.鄂尔多斯盆地上地壳速度分布与沉积建造和结晶基底起伏的构造研究[J].地球物理学报,(6):1753-1766.
    [408]田勤俭,张立人,郝平,等.2005.昆仑山口西8.1级地震地表破裂参数相互关系的新认识[J].地震地质,27(1):20-30.
    [409]汪一鹏.1979.我国板内地震和中新生代应力场[J].地震地质,1(3):1-11.
    [410]王岸,王国灿,向树元.2003.东昆仑东段北坡河流阶地发育及其与构造隆升的关系[J].地球科学-中国地质大学学报,28(6):675-679.
    [411]王春华,钱瑞华,孙君秀.1982.汾渭断陷带形成机制及其地震活动性的实验研究[A].见:中国地震学会地震地质专业委员会编:中国活动断裂.北京:地震出版社,141-146.
    [412]王春华,钱瑞华,廖素琼.1985.汾渭地堑系形成条件及地震活动性的实验研究[J].现代地壳运动研究(1):北京:地震出版社,165-170.
    [413]王春华,廖素琼.1986.鄂尔多斯断块区构造活动的动力学条件与地震关系的模拟研究[J].现代地壳运动研究(2):北京:地震出版社,87-93.
    [414]王杜涛.2009.山西临汾盆地末次间冰期以来古气候变化研究[D].学位论文,导师:胡小猛.上海:上海师范大学.
    [415]王辉,刘杰,申旭辉,等.2010.断层分布及几何形态对川西及邻区应变分配的影响[J].中国科学D辑:地球科学,40(4):458-472.
    [416]王健,吴宣,张晓东,等.2004.1303年山西洪洞8级地震高烈度区内地震活动特征及其物理意义[J].地震学报,26(4):347-354.
    [417]王均平.2006.黄河中游晚新生代地貌演化与黄河发育[D].学位论文,导师:潘保田.兰州:兰州大学.
    [418]王克鲁,盛学斌,严富华,等.1996.山西临汾盆地黄土及其形成古环境[J].地震地质,18(4):339-348.
    [419]王林,何仲太,马保起.2008.岱海流域地貌演化及其对断裂活动性的指示意义[J].第四纪研究,(2):310-318.
    [420]王敏,李强,王凡,等.2011.全球定位系统测定的2011年日本宫城M_W9.0级地震远场同震位移[J].科学通报,(20):1593-1596.
    [421]王乃樑,韩慕康.1982.构造地貌学的理论、方法、应用与动向[A].见:中国地理学会第一次构造地貌学术讨论会论文选集[M].北京:科学出版社,1-9.
    [422]王乃樑,杨景春,夏正楷,等.1996.山西地堑系新生代沉积与构造地貌[M].北京:科学出版社:1-392.
    [423]王琪,张培震,马宗晋.2002.中国大陆现今构造变形GPS观测数据与速度场[J].地学前缘,(2):415-429.
    [424]王琪,张培震,牛之俊,等.2001.中国大陆现今地壳运动和构造变形[J].中国科学:D辑地球科学,31(7):529-536.
    [425]王强,李彩光,田国强,等.2000.7.1Ma以来运城盆地地表系统巨变及盐湖形成的构造背景[J].中国科学D辑:地球科学,30(4):420-428
    [426]王汝雕.1983.临汾盆地历史强震发震条件的初步讨论[J].山西地震,(3):1-7.
    [427]王汝雕.2003.从新史料看元大德七年山西洪洞大地震[J].山西地震,(3):10-15.
    [428]王树芝,王增林,何驽.2011.陶寺遗址出土木炭研究[J].考古,(3):91-96.
    [429]王苏民,吴锡浩,张振克,等.2001.三门古湖沉积记录的环境变迁与黄河贯通东流研究[J].中国科学D辑:地球科学,31(9):760-768.
    [430]王涛,徐鸣洁,王良书,等.2007.鄂尔多斯及邻区航磁异常特征及其大地构造意义[J].地球物理学报,(1):163-170.
    [431]王挺梅,李新元,郑炳华,等.1991.1695年山西临汾地震发震构造的新地质证据[J].地震地质,13(1):26-27.
    [432]王秀文,郭跃宏,范雪芳.2001.山西地区近期垂直形变场分析[J].地壳形变与地震,(2):64-69.
    [433]王秀文,宋美琴,杨国华,等.2010.山西地区应力场变化与地震的关系[J].地球物理学报,53(5):1127-1133.
    [434]王跃杰,赵晋泉,阎正萃,等.2004.2003年11月25日山西洪洞甘亭ML5.0地震灾害损失评估[J].山西地震,(1):10-14.
    [435]王志才.2004.青藏高原东北缘新生代以来的构造变形特征与时空演化:以陇西—武山地区为例[D].学位论文,导师:张培震.北京:中国地震局地质研究所.
    [436]王兴武,喻正麒,郭立卿,等.1983.山西的晚新生代地层[M].山西省地质矿产局区域地质调查队.
    [437]魏海燕,黄春长,查小春,等.2010.黄河中游晋陕峡谷段全新世晚期洪水滞留沉积研究[J].地质论评,56(5):745-752.
    [438]文启忠,郑洪汉,韩家懋,等.1982.甘肃陇西盆地的黄土[J].地理科学,(3):202-209.
    [439]闻学泽.2000.山西1303年大地震破裂对相邻断裂段地震复发行为的影响[J].中国地震,16(1):22-27.
    [440]闻学泽,范军,易桂喜,等.2008.川西安宁河断裂上的地震空区[J].中国科学D辑:地球科学,38(7):797-807.
    [441]吴忱.2001.华北山地的水系变迁与新构造运动[J].华北地震科学,19(4):1-6.
    [442]吴卫民,李克,马保起,等.1995.大青山山前断裂带大型组合探槽的全新世古地震研究[J].活动断裂研究:4,北京:地震出版社,123-131.
    [443]吴卫民,李克,马保起,等.1996.大青山山前断裂带晚第四纪活动速率研究[J].地壳构造与地壳应力文集:8,北京:地震出版社,1-10.
    [444]吴艳宏,吴瑞金,王强,等.2001.运城盆地11kaBP以来气候环境变迁与湖面波动[J].海洋地质与第四纪地质,21(2):83-86.
    [445]武烈,巩玉琪,苏宗正,等.1981a.山西地震带地壳结构变化与地震活动特征[J].山西地震,(2):1-4.
    [446]武烈,贾宝卿.1981b.洪洞八级地震[J].地震,(2):4-6.
    [447]武烈.1985.洪洞和临汾八级地震的闭锁结构及发震构造[J].地震研究,(1):65-72.
    [448]武烈,贾宝卿,赵学普.1993.山西地震[M].北京:地震出版社:1-210.
    [449]武烈.1995.关于1695年临汾大地震若干问题的商榷和思考[J].山西地震,(3-4):20-23.
    [450]武强,董东林,武雄,等.2000.临汾市地裂缝灾害模拟与灾情预报的GIS研究[J].中国科学(D辑:地球科学),(4):429-435.
    [451]夏敦胜,马玉贞,陈发虎,等.1998.秦安大地湾高分辨率全新世植被演变与气候变迁初步研究[J].兰州大学学报,34(1):119-127
    [452]夏正楷.1992.泥河湾盆地的水下黄土堆积及其古气候意义[J].地理学报,(1):58-65.
    [453]肖振敏,江娃利.山西断陷带历史强震及全新世古地震地表破裂特征[J].地壳构造与地壳应力文集,1998,地震出版社,1-12.
    [454]谢富仁,舒塞兵,窦素芹,等.2000.海原、六盘山断裂带至银川断陷第四纪构造应力场分析[J].地震地质,(2):139-146.
    [455]谢觉民,杨国华,郭良迁.2000.华北地区跨断层垂直形变分区特征及其对块体划分的意义[J].地震地质,(4):387-394.
    [456]谢新生,肖振敏,王维襄.1996.晋中南断陷盆地中新生代构造演化及临汾盆地现今构造应力场研究[J].地壳构造与地壳应力文集:9,北京:地震出版社,111-118.
    [457]谢新生,江娃利,王瑞,等.2003.山西大同盆地口泉断裂全新世古地震活动[J].地震地质,25(3):359-374.
    [458]谢新生,江娃利,王焕贞,等.2004.山西太谷断裂带全新世活动及其与1303年洪洞8级地震的关系[J].地震学报,26(3):281-293.
    [459]谢新生,赵晋泉,江娃利,等.2007.山西交城断裂带西张探槽全新世古地震研究[J].地震地质,29(4):744-755.
    [460]谢新生,江娃利,孙昌斌,等.2008.山西交城断裂带多个大探槽全新世古地震活动对比研究[J].地震地质,30(2):412-430.
    [461]邢集善,姚典群,黎明,等.1989.试从地球物理资料论山西地堑系的构造特征[J].山西地质,4(2):95-109.
    [462]邢集善,叶志光,孙振国,等.1991.山西板内构造及其演化特征初探[J].山西地质,6(1):3-15.
    [463]邢集善,刘建华,赵晋泉.2002.华北板内深部构造[J].山西地震,4(4):3-12.
    [464]邢集善,杨巍然,邢作云,等.2007.中国东部深部构造特征及其与矿集区关系[J].地学前缘,16(3):114-130.
    [465]邢集善,杨巍然,邢作云,等.2009.中国东部中生代软流圈上涌与构造-岩浆-矿集区[J].地学前缘,(4):225-239.
    [466]邢作云,赵斌,涂美义,等.2005.汾渭裂谷系与造山带耦合关系及其形成机制研究[J].地学前缘,12(2):247-262.
    [467]邢作云,邢集善,赵斌,等.2006a.华北地区两个世代深部构造的识别及其意义——燕山运动与深部过程[J].地质论评,(4):433-441.
    [468]邢作云,邢集善,赵斌.2006b.华北地区深部构造特征[J].地质科技情报,(6):17-23.
    [469]徐伟,刘旭东,张世民.2011.口泉断裂中段晚第四纪以来断错地貌及滑动速率确定[J].地震地质,33(2):335-346.
    [470]徐锡伟,邓起东,尤惠川.1986.山西系舟山西麓断裂右旋错动证据及全新世滑动速率[J].地震地质,8(3):44-46.
    [471]徐锡伟,邓起东.1987.山西忻定盆地的活动断裂与地震活动性-晋北剪切带尾端张性区构造特征的研究[J].现代地壳运动研究(3):北京:地震出版社,37-50.
    [472]徐锡伟,邓起东.1988.晋北张性区盆岭构造及其形成的力学机制[J].中国地震,4(2):19-27.
    [473]徐锡伟.1989.山西地堑系的新构造活动特征及其形成机制-兼论华北及其邻区块体复合转动模式[D].博士学位论文,导师:马杏垣,邓起东.北京:国家地震局地质研究所.
    [474]徐锡伟,邓起东.1990a.山西霍山山前断裂晚第四纪活动特征和1303年洪洞8级地震[J].地震地质,12(1):21-30.
    [475]徐锡伟.1990b.剪切带尾端张性区构造扩展的模拟实验及其地震危险性分析[J].华北地震科学,8(3):40-46.
    [476]徐锡伟,邓起东,董瑞树,等.1992.山西地堑系强震的活动规律和危险区段的研究[J].地震地质,14(4):305-316.
    [477]徐锡伟,邓起东,韩竹军.1993a.霍山山前断裂晚第四纪活动和古地震研究[J].见:马宗晋主编,山西临汾地震研究与系统减灾[M].北京:地震出版社,136-148.
    [478]徐锡伟,邓起东.1993b.1303年洪洞地震的地震构造[J].见:马宗晋主编,山西临汾地震研究与系统减灾[M].北京:地震出版社,149-158.
    [479]徐锡伟,米仓伸之,铃木康弘,等.1996.山西六棱山北麓晚第四纪不规则断裂作用的地貌学研究[J].地震地质,18(2):169-181.
    [480]徐锡伟,尤惠川.2002.活断层地震地表破裂“避让带”宽度确定的依据与方法,地震地质,24(4):470-483.
    [481]徐锡伟,于贵华,马文涛,等.2003.中国大陆中轴构造带地壳最新构造变动样式及其动力学内涵[J].地学前缘,10(S1):160-167.
    [482]徐锡伟,于贵华,马文涛,等.2008a.昆仑山地震(Mw7.8)破裂行为、变形局部化特征及其构造内涵讨论[J].中国科学D辑:地球科学,38(7):785-796.
    [483]徐锡伟,闻学泽,叶建青,等.2008b.汶川Ms8.0地震地表破裂带及其发震构造[J].30(3):597-629.
    [484]徐煜坚,申屠炳明,汪一鹏.1988.渭河盆地北缘断裂带活动特征的初步研究[J].地震地质,10(4):77-88.
    [485]徐岳仁,申旭辉,何宏林,等.2011. CBERS-02B数据在霍山山前活动断裂带1:5万填图中的应用[J].中国科学F辑:信息科学,41(增):202-212.
    [486]徐岳仁,何宏林,申旭辉,等.2011.利用CBERS数据开展资兴市东江水库库区地质灾害动态监测试验研究[J].北京大学(自然科学版),47(4):689-697.
    [487]徐岳仁,张军龙,陈长云.2012. DGPS和SPOT-5异轨立体像对在岷江源构造地貌研究中的应用[J].北京大学学报(自然科学版),48(4):574-582.
    [488]薛宏运,鄢家全.1984.鄂尔多斯地块周围的现代地壳应力场[J].地球物理学报,(2):144-152.
    [489]许建红,谢新生,孙昌斌.2011.山西罗云山山前断裂带中段龙祠-峪口全新世活动证据[J].地震地质,33(4):855-864.
    [490]闫冬冬,吕胜华,赵洪壮,等.2011.六棱山北麓中段冲沟地貌发育的定量研究及其新构造意义[J].地理科学,(02):244-250.
    [491]杨国华,赵承坤,韩月萍,等.2000.应用GPS技术检测山西断裂带的水平运动[J].地震学报,22(5):465-471.
    [492]杨国华.谢觉民.韩月萍.2001.华北主要构造单元及边界带现今水平形变与运动机制[J].地球物理学报,44(5):645-653.
    [493]杨国华,王敏,韩月萍,等.2002.山西断裂带活动趋势与动态特征[J].中国地震,18(2):148-156.
    [494]杨怀仁,俞序君,韩同春.1957.山西西南部黄土地形发育和地形区划[J].地理学报,23(1):17-53.
    [495]杨景春,郭正堂,曹家栋.1985.用地貌学方法研究贺兰山山前断层全新世活动状况[J].地震地质,7(4):23-31.
    [496]杨景春,刘光勋,等.1987汾河南段河流阶地与新构造运动.见国家地震局地壳应力研究所编,地壳构造与地壳应力文集1[M].北京:地震出版社,30-41.
    [497]杨景春,谭利华,李有利,等.1998.祁连山北麓河流阶地与新构造演化[J].第四纪研究,(3):229-237.
    [498]杨景春,胡晓猛,李有利,等.1999.山西地堑系地裂缝发育及其与水土流失的关系[J].水土保持研究,(4):10-14.
    [499]杨景春,李有利.2005.地貌学原理[M].北京:北京大学出版社:188-210.
    [500]杨利荣.2004.末次冰期以来陕北沙漠/黄土过渡带气候记录与环境变迁[D].硕士论文,导师:岳乐平.西安:西北大学.
    [501]杨前进,黄春长,刘昆,等.2004.洪积扇上全新世古土壤的特点及环境意义——以临汾盆地东坡沟剖面为例[J].沉积学报,(2):332-336.
    [502]杨前进.2004.临汾盆地全新世成壤环境演变及人类活动影响[D].学位论文,导师:黄春长.西安:陕西师范大学.
    [503]杨巍然,孙继源,纪克诚,等.1995a.大陆裂谷对比-汾渭裂谷系与贝加尔裂谷系例析[M].北京:中国地质大学出版社,1-122.
    [504]杨巍然,纪克诚,孙继源,等.1995b.大陆裂谷研究中的几个前沿课题[J].地学前缘,2(1-2):93-102.
    [505]杨巍然,曾佐勋,李德威,等.2009.板内地震过程的三层次构造模式[J].地学前缘,18(1):206-217.
    [506]杨晓平,冉勇康,胡博,等.2002.内蒙古色尔腾山山前断裂(乌句蒙口-东风村段)的断层活动与古地震事件[J].中国地震,18(2):127-140.
    [507]杨晓平,冉勇康,胡博,等.2003.内蒙古色尔腾山山前断裂带乌加河段古地震活动[J].地震学报,(1):62-71.
    [508]杨卓欣,赵金仁,张先康,等.2000.华北莫霍面构造形态—深地震测深数据的三维反演[J].地震地质,22(1):74-80.
    [509]姚大全,汤有标,李杰,等.1993.活动断裂带上的粘滑和蠕滑标志及其研究意义[J].地球物理学进展,(4):140-148.
    [510]姚国干,蒋耘,余学明.1984.1303年陕西赵城8级地震及其有关参数的研究[J].地震研究,7(3):313-326.
    [511]姚檀栋,秦大河,田立德,等.1996.青藏高原2ka来温度与降水变化——古里雅冰芯记录[J].中国科学D辑:地球科学,26(4):348-353.
    [512]姚檀栋,施雅风,秦大河,等.1997.古里雅冰芯中末次间冰期以来气候变化记录研究[J].中国科学D辑:地球科学,27(5):447-452.
    [513]姚檀栋.1999.末次冰期青藏高原的气候突变——古里雅冰芯与格陵兰GRIP冰芯对比研究[J].中国科学D辑:地球科学,29(2):175-184.
    [514]姚檀栋,杨梅学,康兴成.2001.从古里雅冰芯与祁连山树轮记录看过去2000年气候变化[J].第四纪研究,(6):514-519.
    [515]姚振兴.1974.临汾盆地地壳界面的反射波和地壳结构[J].地球物理学报,(4):239-246.
    [516]尹金辉,陈杰,郑勇刚,等.2005.海原断裂带刺儿沟古地震剖面炭屑~(14)C年龄及其意义[J].地震地质,27(4):578-585.
    [517]尹金辉,郑勇刚,刘粤霞.2005a.古地震-14C年龄的日历年代校正[J].地震地质,27(4):678-688.
    [518]尹金辉,郑勇刚,刘粤霞.2005b.内蒙古大青山南麓古土壤14C测年研究[J].核技术,(2):113-117.
    [519]易桂喜,闻学泽,徐锡伟.2004.山西断陷带太原-临汾部分的强地震平均复发间隔与未来危险段落研究[J].地震学报,26(4):387-395.
    [520]尤惠川,邓起东,冉勇康.2004.断层崖演化与古地震研究[J].地震地质,26(1):33-45.
    [521]原廷宏,冯希杰.2010.一五五六年华县特大地震[M].北京:地震出版社,1-386.
    [522]袁道阳,杨明.1999.西秦岭北缘断裂带的位移累积滑动亏损特征及其破裂分段性研究[J].地震研究,(4):382-389.
    [523]于之水,郝书俭,尹克伦.1993.临汾盆地主要隐伏活动断裂浅层地震勘探[J].见:马宗晋主编,山西临汾地震研究与系统减灾[M].北京:地震出版社,198-214.
    [524]张安良,米丰收,种瑾.1989.1556年陕西华县大地震形变遗迹及华山山前断裂古地震研究[J].地震地质,11(3):73-81.
    [525]张安良,种瑾,米丰收.1990.秦岭北麓断裂带太平口古地震剖面[J].地震地质,12(4):333-334.
    [526]张安良,种瑾,米丰收,等.1991.秦岭北缘断裂带晚第四纪活动特征及其古地震研究[J].活动断裂研究:1,北京:地震出版社,105-117.
    [527]张安良,种瑾,米丰收.1992.渭河断陷南缘断裂带新活动特征与古地震[J].华北地震科学,(4):55-62.
    [528]张安良,种瑾,米丰收,等.1993.秦岭北缘活动断裂带晚第四纪活动特征及运动机理[J].活动断裂研究:2,北京:地震出版社,177-189.
    [529]张本昀,李容全.1997.洛阳盆地全新世气候环境[J].北京师范大学学报(自然科学版),(2):275-280.
    [530]张步春,贾三发.1986.山西地震带的地震地质背景[J].现代地壳运动研究(2):北京:地震出版社,44-54.
    [531]张长厚.2008.大陆板内构造变形及其动力学机制[J].地学前缘,17(3):140-149.
    [532]张会平,张培震,吴庆龙,等.2008.循化-贵德地区黄河水系河流纵剖面形态特征及其构造意义[J].第四纪研究,(2):299-309.
    [533]张慧芝.2005.明清时期汾河流域经济发展与环境变迁研究[D].学位论文,导师:朱士光.西安:陕西师范大学.
    [534]张军龙,申旭辉,徐岳仁,等.2009.汶川8级大地震的地表破裂特征及分段[J].地震,29(1):149-163.
    [535]张培震.1999.中国大陆岩石圈最新构造变动与地震灾害[J].第四纪研究,19(5):404-413.
    [536]张培震,王琪,马宗晋.2002.中国大陆现今构造运动的GPS速度场与活动地块[J].地学前缘,9(2):430-441.
    [537]张培震,邓起东,张国民,等.2003.中国大陆的强震活动与活动地块[J].中国科学D辑:地球科学,33(S1):12-20.
    [538]张培震,闵伟,邓起东,等.2003.海原活动断裂带的古地震与强震复发规律[J].中国科学D辑:地球科学),33(8):705-713.
    [539]张培震,王敏,甘卫军,等.2003. GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J].地学前缘,10(增):81-92.
    [540]张培震,郑德文,尹功明,等.2006.有关青藏高原东北缘晚新生代扩展与隆升的讨论[J].第四纪研究,26(1):5-13.
    [541]张培震,闻学泽,徐锡伟,等.2009.2008年汶川8.0级特大地震孕育和发生的多单元组合模式[J].科学通报,54(7):944-953.
    [542]张世民,王丹丹,刘旭东,等.2008.北京南口-孙河断裂晚第四纪古地震事件的钻孔剖面对比与分析[J].中国科学D辑:地球科学,38(7):881-895.
    [543]张世民,任俊杰,聂高众.2007.五台山北麓第四纪麓原面与河流阶地的共生关系[J].科学通报,52(2):215-222.
    [544]张维祥,胡双熙.1989.陇东黄土塬区黑垆土形成的时代与过程[J].科学通报,(16):1252-1255.
    [545]张文佑,李荫槐,马福臣,等.1981.地堑形成的力学机制[J].地质科学,(1):1-11.
    [546]张文佑.1984.断块构造导论[M].北京:石油工业出版社.1-385.
    [547]张月鸿.2004.汾渭平原全新世成壤环境演变的高分辨率研究[D].硕士论文,导师:黄春长.西安:陕西师范大学.
    [548]张裕明,汪良谋.华北断块区中、新生代构造特征及其动力学问题[A].见见中国科学院地质研究所和国家地震局地质研究所编,华北断块区的形成与发展[M].北京:科学出版社:143-157.
    [549]张岳桥,Vergely P.,Mercier J. L.1999.华北地区上新世至第四纪断裂作用型式与左旋扩展[J].地质力学学报,(3):40-46.
    [550]张岳桥,廖昌珍,施炜,等.2006a.鄂尔多斯盆地周边地带西构造演化及其区域动力学背景[J].高校地质学报,12(3):285-297.
    [551]张岳桥,廖昌珍.2006b.晚中生代—新生代构造体制转换与鄂尔多斯盆地改造[J].中国地质,(1):28-40.
    [552]张岳桥,施炜,廖昌珍,等.2006c.鄂尔多斯盆地周边断裂运动学分析与晚中生代构造应力体制转换[J].地质学报,(5):639-647.
    [553]张之立,方兴,阎虹.1987.山西地堑形成的力学模式及山西地震带的特点[J].地震学报,9(1):28-36.
    [554]赵国光,苏刚.2002.活动构造定量研究中的地貌年代问题[J].地壳构造与地壳应力文集:14.北京:地震出版社,1-10.
    [555]赵洪壮,李有利,杨景春,等.2010a.面积高度积分的面积依赖与空间分布特征[J].地理研究,(2):271-282.
    [556]赵洪壮,李有利,杨景春.2010b.北天山流域河长坡降指标与Hack剖面的新构造意义[J].北京大学学报(自然科学版),46(2):237-244.
    [557]赵晋泉,张大卫,高树义,等.2003.1303年山西洪洞8级大地震郇堡地滑之研究[J].山西地震,(3):16-22.
    [558]赵晋泉,王跃杰,范雪芳,等.2004.2003年11月25日山西洪洞甘亭ML5.0地震考察报告[J].山西地震,(1):1-9.
    [559]赵景波,侯甬坚,杜鹃,等.2003.关中平原全新世环境演变[J].海洋地质与第四纪地质,26(1):17-22.
    [560]赵景波,郝玉芬,岳应利.2006.陕西洛川地区全新世中期土壤与气候变化[J].第四纪研究,(6):969-975.
    [561]赵景波,顾静.2009.关中平原全新世土壤与环境研究[J].地质论评,(5):753-760.
    [562]赵越,黎敦明,刘健,等.2008.构造地貌——认识高原历史的钥匙[J].地质通报,(12):1961-1967.
    [563]郑洪汉.1984.黄河中游全新世黄土[J].地球化学,(3):237-246.
    [564]郑洪汉.1989.中国北方晚更新世河湖相地层与风积黄土[J].地球化学,(4):343-351.
    [565]郑洪汉.1991.中国北方晚更新世环境[M].重庆:重庆出版社,1-141.
    [566]中国地震学会地震地质专业委员会.1982.中国活动断裂[M].北京:地震出版社:291-294.
    [567]中国第四纪研究委员会.1959.三门峡第四纪地质会议文集[M].北京:科学出版社:1-146.
    [568]中国第四纪研究委员会全新世分会,陕西省地震局.1982.史前地震与第四纪地质文集[A].西安:陕西科学技术出版社,1-186.
    [569]中国科学院地球物理研究所.2003.山西省地震队宏观调查组.1303年9月17日山西省洪赵县地震考察报告[J].山西地震,(3):23-30.
    [570]中国科学院地质研究所,国家地震局地质研究所.1980.华北断块区的形成与发展[M].北京:科学出版社:1-378.
    [571]中国科学院地质研究所.1964.第四纪地质问题[M].北京:科学出版社:1-233.
    [572]中国科学院黄河中游水土保持综合考察队,中国科学院地质研究所.1962.黄河中游第四纪地质调查报告[M].北京:科学出版社:1-254.
    [573]周昌熹.1983.确定倾斜断裂面上擦痕产状的几何准则[J].地质与勘探,(12):33-34.
    [574]周明鎮,黄万波,张玉萍,等.1965.晋西南几个晚新生代地层剖面的观察[J].古脊椎动物与古人类,(3):256-269.
    [575]周群英.2003.渭河流域全新世成壤环境演变及人类活动影响高分辨率研究[D].学位论文,导师:黄春长.西安:陕西师范大学.
    [576]周廷儒,李华章,刘清泗,等.1991.泥河湾盆地新生代古地理研究[M].北京:科学出版社:1-162.
    [577]周卫健,周明富,海德J.1989.距今三万年来北庄村沉积序列的14C年代学[J].科学通报,(14):1096-1099.
    [578]周卫健.1995.最近13000年我国环境敏感带的季风气候变迁及14C年代学[D].博士学位论文,导师:薛祥煦,西安:西北大学.
    [579]朱海之.1987.我国黄土地区地震崩滑灾害的研究[J].现代地壳运动研究(3):北京:地震出版社,165-175.
    [580]朱日祥,陈凌,吴福元,等.2011.华北克拉通破坏的时间、范围与机制[J].中国科学:地球科学,41(5):583-592.
    [581]竺可桢.1973.中国近五千年来气候变迁的初步研究[J].中国科学,(2):168-189.
    [582]中国岩石圈动力学地图集编委会(丁国瑜主编).1991.中国岩石圈动力学概论.北京:地震出版社,279-289.
    [583]祝治平,张建狮,张成科,等.1999.山西中南部壳幔结构的研究[J].地震学报,21(1):42-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700