用户名: 密码: 验证码:
煤与瓦斯突出预测的岩性地震反演方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤与瓦斯突出灾害已经成为导致中国煤矿特大恶性事故的“头号杀手”,“瓦斯不治,矿无宁日”。中国煤系地层构造十分复杂且地应力大,采掘时极易发生瓦斯突出现象。面对如此严峻的煤矿安全形势,深入研究矿井和瓦斯地质赋存情况,为矿井安全生产提供可靠的地质保障和科学依据刻不容缓。构造煤作为煤与瓦斯突出的高危煤体是发生突出的必要条件,预测煤层中构造煤发育程度是评价瓦斯突出危险可能性的重要依据之一。
     论文利用岩性地震反演方法(包括概率神经网络反演方法、弹性波阻抗反演方法和同步反演方法),研究了阳煤集团新景煤矿佛洼区15#煤层构造煤发育情况,以煤层中构造煤分布的角度评价来完成煤层瓦斯突出危险性预测。
     第一,从构造煤岩石地球物理特征出发,分析了构造煤与原生煤在物理性质和化学性质方面的显著差异,总结归纳出几种常见岩石物理量的相互转化经验公式,为识别煤层中构造煤提供理论依据。
     第二,从地震属性技术和基于模型反演理论入手,分析了地震属性反演的各种方法,研究了基于概率神经网络的叠后地震反演方法。
     第三,从叠前地震反演的理论基础Zeoppritz方程出发,研究了基于Zeoppritz方程近似公式的弹性波阻抗反演理论,以及另一种叠前地震反演方法同步反演。
     第四,完成阳煤集团新景煤矿佛洼区三维地震资料处理和地震岩性反演计算。利用概率神经网络反演方法获得孔隙度数据体;利用声波阻抗反演方法获得声波阻抗数据体;利用弹性波阻抗反演方法获得弹性波阻抗数据体;利用同步反演方法获得λ*ρ和μ*ρ岩性指示因子数据体。
     第五,利用各种岩性数据体对15#煤层中构造煤分布进行预测。将孔隙度数据作为定性解释依据;弹性波阻抗(≤0.17)和声波阻抗(≤0.2)交会区域,λ*ρ值(≤15)和值(≤10)交会区域作为定量解释依据联合解释。
     最后,提出了综合评价因子X的概念,实质是各类岩性数据体给定权重的线性组合。通过综合评价因子将15#煤层划分为5个岩性区域,即无构造煤分布区域、几乎无构造煤分布区域、构造煤分布范围较小区域、构造煤分布范围较大区域和构造煤分布区域。利用综合岩性指标预测了15#煤层瓦斯突出危险的可能性。
Coal and gas outburst accidents considered as "the first killer" of the coal mine,has resulted in huge loss in China. With complex structure and largeground stress,coaland gas outburst easily occur so it is urgent to deeply study the geology of the mineand the gas occurrence to provide the reliable geological protection and scientificbasis. Deformed coal is necessary condition for coal and gas outburst and as ahigh-risk coal it is the significant basis to evaluate the gas accidents risk.
     In this paper, the development of deformed coal in15#coal layer has studied bythe lithologic seismic inversion methods which include PNN, elastic and simultaneousinversion methods, then gas outburst risk can be assessed and predicted from the pointof view the deformed coal’s distribution.
     Firstly, the significant differences of the physical and chemical propertiesbetween the deformedcoal and bituminous coal are described as well as petrophysicalparameters characteristic of the deformed coal. Petrophysical conversion formulasabout common physical quantities are summarized and ordered and it also providesthe basic theoretical basis to evaluate deformed coal.
     Secondly, the probabilistic neural network inversion technique is chosen to applyto complete the porosity inversion which avoids the inherent limitations of theconventional inversion. The theory of attributes inversion methods is analyzed fromthe introduction of attribute technology and model-based inversion theory and finallythe chapter focuses on the theory of probabilistic neural network inversion.
     Thirdly, the theory foundation of pre-stack inversion is Zeoppritz equation andapproximate formula based on the equations. Based the approximate formulas, elasticimpedance inversion is elaboratedas well as simultaneous inversion which is the otherindependent pre-stack inversion method.
     Fourthly, the risk evaluation of coal and gas outburst hazard has completed bythe lithologic seismic inversion method in Yang Quan coal mine. The pre-stack anglegathers and common post stack gathers are prepared after the fidelity processing forinversion and PNN inversion,acoustic inversion,elastic inversion and simultaneousinversion methods are applied to obtain porosity,AI, EI, ZP, Zs, and μ*ρ volumesin order to interpret the deformed coal distribution.
     Fifthly, the porosity volume is used as the qualitative explanation, and the crossplot between EI values(no more than0.17) and AI values(no more than0.2) as well as the cross plot between λ*ρvalues(no more than15) and μ*ρvalues(no more than10) is considered as quantitative results to evaluate the distribution of the deformedcoal.
     Finally, the author has proposed the new concept—comprehensive evaluationfactor X, which is the linear combination of all kinds of lithologic data volumes, todivide the15#coal into five types: no deformed coal area, almost no deformed coalarea, less likelydeformed coalarea, likelydeformed coal area, high-risk deformed coalarea. Based on the information of comprehensive evaluation factorX, the occurrenceof deformed coal is predicted and it is the reliable basis for the evaluation of gasoutburst risk.
引文
[1]何继善.瓦斯突出地球物理研究[M].长沙:中南工业大学出版社,1999.
    [2]程五一,张序明.煤与瓦斯突出区域预测理论及技术[M].北京:煤炭工业出版社,2005.
    [3]周世宁.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [4]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1993.
    [5]张子敏,张玉贵.瓦斯地质规律与瓦斯预测[M].北京:煤炭工业出版社,2005.
    [6]彭苏萍,高云峰,杨瑞召等.AVO探测煤层瓦斯富集的理论探讨和初步实践以淮南煤田为例[J].地球物理学报,2005,48(6):1475-1486.
    [7]于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2000.
    [8]聂百胜,何学秋,王恩元等.用电磁辐射法非接触预测煤与瓦斯突出[J].煤矿安全,2000(2):4l-43.
    [9]王忠文.电磁辐射技术在鹤岗南山煤矿突出预测中的应用[J].矿业安全与环保,2008,35(5):22-25.
    [10]聂百胜.煤与瓦斯突出预测技术研究现状及发展趋势[J].中国安全科学学报,2003,16(6):40-43.
    [11]张宏伟,李胜.煤与瓦斯突出危险性的模式识别和概率预测[J].岩石力学与工程学报,2005.24(19):3577-3581.
    [12]刘长双,温彦良.基于分形理论的煤与瓦斯突出区域预测研究[J].采矿技术,2006,6(4):43-63.
    [13]聂崇举,周昌福.煤矿煤与瓦斯突出的非线性预测系统研究[J].煤炭技术,2010,29(10),94-96.
    [14]王超,宋大钊,杜学胜等.煤与瓦斯突出预测的距离判别分析法及应用[J].采矿与安全工程学报,2009,26(4):470-474.
    [15]孙燕,杨胜强,王彬等.用灰关联分析和神经网络方法预测煤与瓦斯突出[J].中国安全生产科学技术,2008,4(3):14-17.
    [16]苗琦,杨胜强,欧晓英等.煤与瓦斯突出灰色—神经网络预测模型的建立及应用[J].采矿与安全工程学报,2008,25(3):309-313.
    [17]龙王寅,朱文伟.利用测井曲线判识煤体结构探讨[J].中国煤田地质,1999,11(3):64-69.
    [18]王恩元,何学秋,聂百胜等.电磁辐射法预测煤与瓦斯突出原理[J].中国矿业大学学报,2000,29(3):225-229.
    [19]石显鑫,蔡栓荣,冯宏等.利用声发射技术预测预报煤与瓦斯突出[J].煤田地质与勘探,1998,26(3),60-65.
    [20]邹银辉,赵旭生,刘胜.声发射连续预测煤与瓦斯突出技术研究[J].煤炭科学技术,2005,61-65.
    [21]张宏伟,李胜.煤与瓦斯突出危险性的模式识别和概率预测[J].岩石力学与工程学报,2005,24(19):3577-3581.
    [22]王保丽,印兴耀,张繁昌.基于Gray近似的弹性波阻抗方程及反演[J].石油地球物理勘探,2007,42(4):435-439.
    [23]印兴耀,张世鑫,张繁昌等.利用基于Russell近似的弹性波阻抗反演进行储层描述和流体识别[J].石油地球物理勘探,2010,45(3):373-380.
    [24]孟宪军,姜秀娣,黄捍东等.叠前AVA广义非线性纵、横波速度反演[J].石油地球物理勘探,2004,39(6):645-650.
    [25]马劲风.地震勘探中广义弹性波阻抗的正反演[J].地球物理学报,2003,46:118-124.
    [26]孙学凯.煤储层叠前岩性参数反演方法研究[D].徐州:中国矿业大学,2011:69-71.
    [27]赵馨.地震数据处理中叠前数据去噪应用研究[D].北京:中国地质大学(北京),2008:14-36.
    [28]张恒超.叠前多域去噪技术应用开发研究[D].北京:中国地质大学(北京),2006:11-16.
    [29]程玉坤.针对弹性参数反演的叠前去噪技术应用研究[D].中国石油大学,2008:20-27.
    [30]郭爱华.叠前时间偏移技术的应用研究[D].北京:中国地质大学(北京),2006:9-12.
    [31]李庆忠.论地震约束反演的策略[J].石油地球物理勘探,1998,33(4):423-438.
    [32]姚宝魁,孙广忠,尹代勋等.煤与瓦斯突出的区域性预测[M].北京:中国科学出版社,1993.
    [33]杨双安,宁书年,张会星等.三维地震勘探技术预测瓦斯的可行性研究[J].煤田地质与勘探,2006(34):72-74.
    [34]汪志军,刘盛东,路拓等.煤体瓦斯与地震波属性的相关性实验[J].煤田地质与勘探,2011(39):63-68.
    [35]李博,李忠辉,杨明等.电磁辐射技术在演马庄矿防突中的应用[J].煤炭科学技术,2009(37):30-33.
    [36]胡朝元,彭苏萍,杜文凤等.利用地震AVO反演预测煤与瓦斯突出[J].天然气地球科学,2011(22):728-732.
    [37]陈奇.2011年度我国煤矿安全生产情况报告[J].煤矿支护,2012(2):4-6.
    [38]刘企英.利用地震信息进行油气预测[M].北京:石油工业出版社,1994.
    [39]阎馨,付华.基于案例推理和数据融合的煤与瓦斯突出预警[J].东南大学学报(自然科学版增刊),2011(41):59-64.
    [40]阎馨,付华.基于软测量和数据融合的煤与瓦斯突出预测[J].合肥工业大学学报,2009,32(9):1308-1311.
    [41]杨双安,宁书年,张会星等.三维地震勘探技术预测瓦斯的可行性研究[J].煤田地质与勘探,2006(34):72-74.
    [42]曲争辉.构造煤结构及其对瓦斯特性的控制机理研究[D].徐州:中国矿业大学,2010:190-195.
    [43]李娟娟,崔若飞,潘冬明等.概率神经网络技术在煤田地震反演中的应用研究[J].地球物理学进展,2012,27(2):715-721.
    [44]李娟娟,崔若飞,潘冬明等.基于多属性变换的煤田波阻抗反演应用研究[J].工程地球物理学报,2012,9(6):641-645.
    [45]BrownA.R. Seismicattributesand their classification [J]. TheLeadingEdge,1996,15(10):1096.
    [46]BorwnA.R. Internation of three一dimnesional seismic data, Fourth Edition, AAPG Memoir42.
    [47]BrownA.R. Understanding seismic attnbutes: GeoPhysics,2001,66(l),47-48.
    [48]ChenQiang,SindeyS. Seismic artribute technologyofresveroriforeeastingandmonitoring[J].TheLeading Edge,1997,16(5):445-450.
    [49]ChenQiang, SindeyS. Advnaces seismic attribute technology.67thAnn.Intnerat.Mtg.,soc.Expl Geophys., Expandedabsrtacts,1997.
    [50] Specht,Donald.Probabilistic neural networks [J].Neural networks,1990,2:109-118.
    [51] Masters T. Signal and image processing with neural networks[M].John Wiley&Sons Inc.,1994.
    [52] Masters T. Advanced algorithms for neural networks[M].John Wiley&Sons Inc.,1995.
    [53] Patrick Connolly.Elastic impedance [J].The Leading Edge,1999,18(4):438-452.
    [54] Whitcombe D.N.Elastic impedance normalization [J].Geophysics,2002,67:60-62.
    [55] Whitcombe D.N.Extended elastic impedance for fluid and lithology[J].Geophysics.2002,67(1):63-67.
    [56] Bruce Verest. Elastic impedance revisited[C]. EAGE66th conference&exhibition,2004.
    [57] Russell B.H.The application of multivariate statistics and neural networks to the predictionof reservoir parameters using seismic attributes[D].Alberta:University of Calgary,2004:1-16.
    [58] Schultz P.S,Ronen S,Hattori M etc.Seismic guided estimation of log properties,Parts1,2and3[J].The Leading Edge,1994,13(5-7):305-776.
    [59] Hampson D.P,Schuelke J,Quirein J.Using multi-attribute transforms to predict logproperties from seismic data[J].Geophysics,2001,66:220-231.
    [60] Hampson D.P,Russell B.H,Bankhead B.Simultaneous inversion of pre-stack seismic data:Ann.Mtg.Abstracts[J].SEG,2005:1633-1637.
    [61] Vernik L.Estimation of Net-to-gross from P and S Impedance:Part-3D Seismic Inversion[C].71thSEG,2001.
    [62] Amit K Ray and Samir Biswal.An efficient method of effective porosity prediction using anunconventional attribute through multi-attribute regression and probabilistic neural network: Acase study in a deep-water gas field,East Coast of India[C].SEG,2010,1413-1417.
    [63] P. An, W. M. Moon. Reservoir Characterization Using Feed forward NeuralNetworks[C].SEG,2005,258-260.
    [64] M.M.Saggaf,M.Nafi Toksozz,H.M.Mustafa.Estimation of reservoir properties fromseismic data by smooth neural networks [J].Geophysics,2003,68(6):220-236.
    [65] Malleswar Yenugu,Jeremy C.Fisk,Kurt J.Marfurt.Probabilistic Neural Network inversionfor characterization of coalbed methane[C].SEG,2010,2906-2910.
    [66] Pramanik,A.G.,V.Singh,R.Vig,A.K.Srivastava,et al.Estimation of effectiveporosity using geostatistics and multiattribute transforms:A case study [J].Geophysics,2004,69,352-372.
    [67] Koefoed O. On the effect of Poisson’s ratio of rock strata on reflection coefficients of planewaves[J]. Geophysical Prospecting,1955,3:391-387.
    [68] Bortfeld. Approximation to the reflection and transmission coefficients of plane longitudinaland transverse waves[J]. Geophysical Prospecting,1961.
    [69]Richard P.J, Frasier C.W. Scattering of elastic waves from depth-dependentinhomogeneities[J]. Geophysics,1976,41(5):441-458.
    [70] Aki K.I, Richards P.G. Quantitative seismology[M]. W.H. Freeman and Co,1980.
    [71] Shuey. A simplification of the Zoeppritz equations[J]. Geophysics,1985,50:609-614.
    [72] Wyllie M.R.J.The fundamentals of electric log interpretation[M].Academic Press,1963.
    [73] Wyllie M.R.J,Gregory A.R,Gardner G.H.F.An experimental investigation of factorsaffecting elastic wave velocities in porous media[J].Geophysics,1958,23:459-493.
    [74] Wyllie M.R.J,Gregory A.R,Gardner L.W.Elastic wave velocities in heterogeneousand porous media.Geophysics,1956,21:41-70.
    [75]Gassmann F. Uber die elastizitat poroser medien[J]. Vierteljahrsschr. DerNaturforsch.Gesellschaft.1951,96:1-21.
    [76] Raymer L.L,Hunt E.R,Gardner J.S.An improved sonic transit time-to-porositytransform[C].Well Log Analysts21st Annual Logging Symposium,1980.
    [77] Faust L.Y.A velocity function including lithologic variation[J].Geophysics,1950,18:271-288.
    [78] Gardner G.H.F,Gardner L.W,Gregory A.R.Formation velocity and density-Thediagnostic basics for stratigraphic traps[J].Geophysics,1974,39:770-780.
    [79] Lindseth R.O.Synthetic Sonic Log-a process for stratigraphic interpretation[J].Geophysics,1979,44:3-26.
    [80] Castagna J.P,Batzle M.L,Kan R.L.Rock physics-The link between rock properties andAVO response [C].Tulsa,Oklahoma: Investigations in Geophysics,1993:135-171.
    [81] Kim D.Y.Synthetic Velocity Log[C].33rdAnnual International SEG Meeting,1964.
    [82] Rudman A.J.Transformation of resistivity to pseudo-velocity logs[C].AAPG Bulletin,1975,59(7):1151-1165.
    [83] McCoy R.L,Smith R.F.The use of interlog relationship for geological and geophysicalevaluations[C].SPWLA12th Annual Logging Symposium,1979.
    [84] Pickett G. Acoustic character logs and their applications in formation evaluation[J].J.Petr.Tech.,1963,15:650-667.
    [85] Castagna J.P,Batzle M.L,Eastwood R.L.Relationships between compressional-waveand shear-wave velocities in elastic silicate rocks[J].Geophysics,1985,50:571-581.
    [86] Greenberg M.L,Castagna J.P.Shear wave velocity estimation in porous rocks[C].GeophysProspecting,1992,40:195-209
    [87] Dunkin J. W, Levin F. K. The effect of normal moveout on a seismicpulse[J].Geophysics.1973,38(4):635-642.
    [88] Spratt S. Effects of normal moveout errors on amplitude[C].57thAnn.Internat.Soc.Expl.Geophys.,Expanded Abstracts,1987:634-637.
    [89] Ross C.P.AVO and nonhyperbolic moveout:A practical example [J].First Break.15(2):43-48.
    [90] Antonio C.B.AVO Processing calibration[J].The Leading Edge,1998,17(8):1075-1082.
    [91] Kastner U, Buske S. Computing geometrical spreading from traveltime in [C]Ann.Internat.Soc.of Expl.Geophys.1999:1739-1742.
    [92] Ettrich N.Offset-dependent geometrical spreading in isotropic laterally homogeneous mediausing constant velocity gradient models[C].Soc.of Expl.Geophys2000,67:1612-1615.
    [93] Ruger A.Variation of P-wave reflectivity with offset and azimuth in anisotropic media,Applied seismic anisotropy: theory, background, and field studies[C]. Soc. ofExpl.Geophys.2000:277-289.
    [94]Mirza Naseer Ahmad,Philip Rowell. Application of spectral decomposition and seismicattributes to understand the structure and distribution of sand reservoirs within Tertiary rift basinsof the Gulf of Thailand[J]. The Leading Edge,2012(7):630-634.
    [95] Zoeppritz K, Erdbebenwellen VIIB. On the reflection and propagation of seismicwaves[J].Gottinger Naehriehten.1919,66-78.
    [96] Simth G.C,Gidlow P.M.Weighted stacking for rock property estimation and detection ofgas[J].Geophysics,1984,49(6):1637-1648.
    [97] Kalkomey C.T.Potential risks when using seismic attributes as predictors of reservoirproperties [J].The Leading Edge,1997,16(9):247-251.
    [98] Bruce Verest.Elastic impedance revisited[C].EAGE66thconference&exhibition,2004.
    [99] Satinder Chorpa, Kurt J. Marfurt. Seismic attributes for prospect identification and reservoircharacterization [M]. Tulsa: Society of Exploration Geophysicist,2007a.
    [100] Satinder chopra, Calgary Kurt J. Marfurt.Curvature attribute applications to3D surfaceseismic data[J]. The Leading Edge,2007b(5):404-414.
    [101] Satinder chopra, Kurt J. Marfurt.Volumetric curvature attributes add value to3D seismic datainterpretation[J]. The Leading Edge,2007c(7):856-867.
    [102] Satinder chopra, Kurt J. Marfurt.Emerging and future trends in seismic attributes[J]. TheLeading Edge,2008(3):298-318.
    [103] Satinder chopra, Somana Misra, Calgary Kurt J. Marfurt.Coherence and curvature attributeson preconditioned seismic data[J]. The Leading Edge,2011(5):386-393.
    [104]Helene Hafslund Veire, Martin Landr.Simultaneous inversion of PP and PS seismicdata[J].Geophysics,2006(71): R1-R10.
    [105]Houyin, Yujiro Ogawa.Pore structure of sheared coals and related coalbed methane [J].Environmental Geology,2001(40):1455-1461.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700