用户名: 密码: 验证码:
伊犁河南岸土地盐渍化现状分析与风险评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化是世界干旱、半干旱地区土地农业开发所面临的最突出的生态环境问题之一,而盐渍化治理又是一个费时、耗力、难度很大的系统工程。随着伊犁河南岸大渠引水工程的实施,伊犁河谷土地如何安全可持续地农业开发成为一个亟待解决的科学问题。本研究利用大地电导率仪(EM38)于2008年10月、2009年5月和2010年10月分别对伊犁河南岸199个观测点进行表观电导率的连续监测,结合11个层次(0-200cm)取样分析和实验室分析。利用传统统计和地统计学方法对研究区土壤盐分、水分、地下水以及土层厚度等指标进行分析,应用遥感数据进行盐渍化变化分析,利用综合指标法进行盐渍化风险评价。具体研究结果如下:
     1、在伊犁河南岸中心位置150km2的范围内均匀布置22个地下水监测点,通过监测发现该区域地下水埋深在空间上呈现南部深于北部,在时间上(年度内)呈现从深逐渐变浅,而后逐渐变深趋势;地下水的矿化度呈现东北高、西南低,年度内呈现高-低-高的变化趋势。
     2、建立了大地电导仪(EM38)的表观电导率预测有效土层厚度的模型1nD=0.97381nECav+1.6448。据此模型制作了有效土层厚度分布图,研究区有效土层厚度呈现中部偏北最厚,向南和最北逐渐变薄的分布状况。
     3、通过对研究区2008和2009采样点土壤含水量的聚类分析,发现研究区土壤剖面水分存在表聚型、中聚型和底聚型3种分布特征,并且表聚型、中聚型和底聚型三种类型在2008年所占比例为51.35%、35.14%和13.51%,2009年为22%、26%和52%。建立以表观电导率(EM38)预测土壤含水量0-10cm的最优回归方程1nW=0.27601nECav+0.50671nECaH+1.7105。
     4、通过对研究区2008和2009采样点土壤盐分含量的聚类分析,确定了研究区土壤剖面盐分存在表聚型、中聚型和底聚型3种分布特征。同时土壤盐分含量与表观电导率(EM38测定结果)存在显著相关性,其相关性表现出水田大于灌溉旱田,旱田大于裸地,秋季大于春季。据此以总体测量值所建立的0-10cm土层的回归方程lnS=0.3515InECaV+0.4321InECaH-1.6867乍为EM38预测土壤盐分的模型。
     5、利用伊犁河谷2008年和2009年的两期的TM遥感影像结合实地调查分析数据,分析确定了TM4-5-3波段组合是伊犁河南岸土地遥感监测盐渍化最佳选择,并建立了影像灰度值与土壤含盐量关系模型。以实地调查的土壤含盐量数据为依据,使用监督分类的最大似然法对研究区进行了分类并检验混淆矩阵Kappa系数,分类精度达到86.72%,Kappa系数为0.82和0.80。
     6、通过分析伊犁河南岸土地盐渍化各种影响因素,构建了伊犁河南岸以有效土层厚度、土地利用方式、土壤表层含盐量、2m土体平均含盐量、积盐层部位、盐分运移方向、土壤质地与层次、地下水埋深、地下水矿化度、地形地貌等10个指标为核心评价指标体系,利用综合指数法进行土壤盐渍化风险评估,并根据评价结果提出了适宜的开发利用管理措施。
     总之,本研究建立了利用大地电导仪预测有效土层厚度、土壤水分、土壤盐分的模型,该模型为数字土壤信息获取提供了无损快捷的手段和方法。研究区盐分演变与风险评价结果可为伊犁河南岸土地农业可持续开发与利用提供科学依据。
Soil salinization may be the most severe eco-environment problem presented to agricultural areas development in both semi-arid and arid climatic zones around the globe. Reclaiming salt-affected and salinized soils is both a labor-and time-consuming task. With the implementation of the major irrigation channel diversion project that located at the southern bank of Ili River, securing sustainable agricultural land development this becomes an urgent problem in Ili River Valley. In the research, salinization risk was evaluated by comprehensive index method using electromagnetic conductivity meter (EM38) to continuously monitor apparent electrical conductivity at199observation points at the southern bank of Ili River in2008October,2009May and2010October. Soil samples from eleven soil layers at0-200cm soil profiles were taken repeatedly, which were then subjected to laboratory analysis. Statistical and geo-statistical analysis were performed on key indicators (i.e. soil salinity, soil moisture, groundwater, the effective thickness of soil layer). Remote sensing data and analysis were also used in interpreting soil salinity distribution. The main results are as follows:
     1. Twenty-two groundwater monitoring points were evenly distributed in150km2at the southern bank of Ili River center position. The monitoring results revealed that the regional groundwater depth was deeper in the south and shallower in the north of the study area. Groundwater tables exhibited deep-shallow-deep pattern in intra-year variability, while the mineralization of groundwater presented northeast high-southwest low pattern, and high-low-high changing trend in observed year.
     2. A logistic model was fitted to forecast the effective thickness of soil layer with sampling points of apparent conductivity (ECa) by EM38, i.e. lnD=0.97381nECav+1.6448. The spatial distribution of effective soil layer thickness displayed that the soil layer was thick in the north-center, shallower in the south and the north.
     3. It was found that there were three types of soil profile moisture, i.e. surface-concentrated, middle-concentrated, and bottom-concentrated, through analyzing research area of2008and2009sampling points'soil moisture clustering. The three types shared51.35%,35.14%and13.51%in2008, and22%,26%, and52%in2009. The regression equation for0-10cm layer i.e.lnW=0.2160lnECav+0.5067lnECaH+1.7105, was established to predict soil moisture by the apparent electrical conductivity.
     4. The soil profile salinity can also be classified into three types, i.e. surface-concentrated, middle-concentrated, and bottom-concentrated, through analyzing sampling points' clustering of2008and2009in research area, The results also revealed that the regression equation with ECa and soil moisture were extremely significant. As for land use types, the significance of regression followed the order of rice paddies, irrigated cropland, and bare land. For seasons, that of autumn was larger than spring. A0-10cm's model lnS=0.3515lnECav+0.4321lnECaH-1.6867was established on the overall measurement value of EM38to predict soil salinity.
     5. Using TM remote sensing image of Ili River Valley in2008and2009combined with field survey data, it was found that TM4-5-3band combination was the best choice for remote sensing monitoring of salinization at the southern bank of Ili River. Also, a regression equation of grey value and salt content was established at study area. Based on measured soil salinity, the maximum proximity method in supervised classification was used to classify the study area. After deleting confounding spots, Kappa coefficient was calculated by classification mix matrix to test the exactness, they were86.72%and84.64%, respectively, with Kappa being0.82and0.80respectively.
     6. By analyzing the factors affecting land salinization at the south bank of Ili River, evaluation index system was built at the southern bank of Ili River with the effective thickness of soil, land use, soil salt content, average soil salinity at2meters deep, salt migration direction, soil texture and levels, groundwater buried depth, the mineralization degree of groundwater, topography10indicators as the core, evaluate Soil Salinization Risk Assessment using a comprehensive index, and put forward the development and utilization of management suitable measures according to the evaluation results.
     In conclusion, this study established a method using electromagnetic conductivity meter to predict the effective soil layer thickness, soil moisture, soil salinity model, the model provided a nondestructive and fast tool to acquire digital soil information. The salinity evolution and risk assessment at study area can provide scientific basis for sustainable development and utilization for land agriculture at the southern bank of Ili River.
引文
白由路,李保国,胡克林.1999.黄淮海平原土壤盐分及其组成的空间变异特征研究.土壤肥料.3:12-13.
    白由路,李保国.2001.黄淮海平原土壤盐渍化状况的数值分类.土壤通报.32(50):8-13.
    察布查尔锡伯自治县编纂委员会.2007.察布查尔锡伯自治县志.乌鲁木齐:新疆人民出版社.66-70.
    陈述彭.1989.国土普查卫星资料应用研究,第二集.北京:科学出版社.12.
    褚小立,袁洪福,陆婉珍.2004.近红外分析中光谱预处理及波长选择方法进展与应用.化学进展.16(4):15-33.
    戴昌达,姜小光,唐伶俐.2004.遥感图像应用处理与分析.北京:清华大学出版社.66-71.
    丁建丽,塔西甫拉提·特依拜,瓦哈甫·哈力克.2006.基于决策树方法的干旱区盐渍地信息提取研究——以渭库三角洲绿洲为例.中国地理学会2006年学术年会论文摘要集.201-202.
    樊自立.2008.中国西北干旱区生态地下水埋深适宜深度的确定.中国科学院新疆生态与地理研究所.33.
    扶卿华,倪绍祥,王世新,周艺.2007.土壤盐分含量的遥感反演研究.农业工程学报.23(1):48-57.
    耿增超,戴伟.2011.土壤学.北京:科学出版社.18.
    高格,巴雅尔塔.2007.伊犁河谷土地资源类型与利用现状分析.甘肃农业.9(254):47-48.
    关元秀,刘高焕.2003.黄河三角洲盐碱地动态变化遥感监测.国土资源遥感.2(2):6-19.
    关元秀,刘高焕,刘庆生,等.2001.黄河三角洲盐碱地遥感调查研究.遥感学报.18(1):46-52.
    关元秀.2001.黄河三角洲土地盐碱化遥感监测、预测和治理研究.中国科学院地理科学与资源研究所.63-68.
    海米提·依米提,潘晓玲,塔西甫拉提·特依拜,等.2002塔里木盆地水土资源开发及其生态环境效应.资源科学.24(6):45-54.
    何挺,程烨,王静.2002.野外地物光谱测量技术及方法.中国土地科学.1(15):30-36.
    何挺.2003.土地质量高光谱遥感监测方法研究.武汉大学.32-34.
    互动百科.2012.伊犁河.http://www.baike.com/wiki/%E4%BC%8A%E7%8A%81%E6%B2%B3.
    江红南,丁建丽,塔西甫拉提·特依拜.2008.基于ETM+数据的干旱区盐渍化土壤信息提取研究.土壤学报.45(2):7-22.
    亢庆,张增祥,赵晓丽,等.2006.基于遥感技术的干旱区土地盐碱化分级.干旱区资源与环境.20(3):144-153.
    李保国,1990,区域性水盐动态系统预报模型研究.北京农业大学.35-41.
    李海涛,Brunner,李小梅,等.2006.ASTER遥感影像数据在土壤盐渍化评价中的应用.水文地质工程地质.5(05):17-18.
    李海涛,张继贤,王静,等.2002.成像光谱技术及其在土地动态监测中的应用.中国土地科学.16(3):36-42.
    李海涛,李小梅,Philip,等.2006.电磁感应方法在土壤盐渍化评价中的应用研究.水文地质工程地质.33(1):95-98.
    李洪义,史舟,程街亮,等.2008,基于EM38的土壤剖面电导率预测研究.中国农业科学.41(1):295-302.
    李韵珠,陆锦文,黄坚.1985.蒸发条件下粘土层与土壤水盐运移.国际盐渍土改良学术讨论会论文集.176-190.
    李韵珠,李保国,等.1998.土壤溶质运移.北京:科学出版社.32-33.
    刘广明,杨劲松,鞠茂森,等.2003.电磁感应土地测量技术及其在农业领域的应用.土壤.2(3):27-29.
    刘焕军,张柏,王宗明.2008.基于反射光谱特征的土壤盐碱化评价.红外与毫米波学报.27(2):7-21.
    刘杰.2001.松嫩平原红旗灌区水盐运动规律与土壤次生盐渍化.东北农业大学.34-55.
    刘永峰,孙照东.2007.湟水干流地表水资源可利用量估算方法研究.人民黄河.5(29):41-42.
    路鹏.2008.基于高光谱遥感土壤属性信息的量化反演研究.中国科学院遥感应用研究所.
    骆玉霞,陈焕伟.2002.角度分类器与距离分类器比较研究——以盐渍土分类为例.国土资源遥感.(2):3-17.
    马建文,李启青,哈斯巴干.2010.遥感数据智能处理方法与程序设计.北京:科学出版社.12-15.
    马黎春,李保国,蒋平安,等.2007.罗布泊干盐湖电磁感应电导率与“耳纹”成因关系探讨.地球物理学报.50(2)651-654.
    马黎春.2007.罗布泊“大耳朵”干盐湖区盐壳特征及与”耳纹”相关性的探讨.中国农业大学.55-58.
    马兴旺.2001.绿洲水土资源利用的时空分析与模拟及荒漠化防治模式.中国农业大学.36.
    潘兴瑶,夏军,张橹.2008.土壤水分随即模型支持下的土壤水平衡研究进展.资源科学.2(30):460-467.
    庞治国,吕宪国,李取生.2000.3S技术支持下的盐碱化土地现状评价与发展对策研究—以吉林省西部大安市为例.国土与自然资源研究.16(4):25-27.
    彭望录,李天杰.1989.TM数据的Kauth-Thomas变换在盐渍土分析中的作用-以阳高盆地为例.环境遥感.4(3):183-190.
    彭望录.1997.土壤盐渍化量化的遥感与GIS实验.遥感学报.1(3):237-240.
    戚隆溪,陈启生,逢春浩.1997土壤盐渍化的监测和预报研究.土壤学报.5(02):42-44.
    盛建东.2009.干旱区盐渍化土壤数字制图方法研究与应用.中国农业大学.20-42.
    世界江河数据库.2009.中国水利国际合作与科技网.http://www.chinawater.net.cn/riverdata.
    石元春,李保国,李韵珠,等.1991.区域水盐运动监测预报.河北:河北科学技术出版社.34-35.
    石元春,辛德惠.1983.黄淮海平原的水盐运动和旱涝盐碱的综合治理.河北:河北人民出版社.12.
    宋萍,佟少菊,郑兰,等.2009.察布查尔县土壤养分现状与对策.新疆农业科技.46(6):25-26.
    孙建光.2004.青海共和盆地水分时空分异与水土资源生产力.中国农业大学.37-41.
    孙涛,李纪人,潘世兵.2009.西北干旱区土壤盐渍化遥感信息模型.河海大学学报.37(5):6-19.
    孙毅,刘亚琴.1992.土壤光谱特性及光谱反射率与苏打盐渍土含盐量的相关.吉林农业科学.13(1):53-59.
    童庆禧,张兵,郑兰芬.2006.高光谱遥感-原理、技术与应用.北京:高等教育出版社.56-59.
    王耿明,李达,王忠忠.2009.松辽平原盐碱土含盐量的遥感反演研究.水土保持研究.2(3):3-16.
    王静,刘湘南,黄方,唐吉龙,等.2009.基于ANN技术和高光谱遥感的盐渍土盐分预测.农业工程学报.25(12):6-18.
    王文生.1991.应用卫星遥感信息编制内蒙古后套平原土壤盐碱危害图.土壤.3(1):131-133.
    王遵亲.1993.中国盐渍土.北京:科学出版社.12-13.
    翁永玲,宫鹏,朱智良.2007.基于PLSR方法的高光谱遥感土壤盐分估算.第16届全国遥感技术学术交流会论文汇编.131-137.
    翁永玲,宫鹏.2006.土壤盐渍化遥感应用研究进展.地理科学.36(3):21-28.
    翁永玲,戚浩平,方洪宾,赵福岳,路云阁.2010.基于PLSR方法的青海茶卡-共和盆地土壤盐分高光谱遥感反演.土壤学报.47(6):1255-1268.
    翁永玲.2007.黄河三角洲土壤盐分星载高光谱遥感估算方法研究.南京大学.29-34.
    吴亚坤,杨劲松,刘光明.2008.基于EM38的封丘县土壤盐渍化调查研究.干旱地区农业研究.26(5):129-133.
    新疆生产建设兵团.2002,新疆生产建设兵团十地利用总体规划(1997年-2010年).乌鲁木齐:新疆科技卫生出版社.23-151.
    徐彬彬,戴昌达.1980.南疆土壤光谱反射特征与有机质含量的相关分析.科学通报.2(9):6-282.
    杨培岭.2005.土壤与水资源学基础.北京:中国水利水电出版社.34-35.
    姚荣江,杨劲松,刘光明.2008.E M38在黄河三角洲地区土壤盐渍化快速检测中的应用研究.干旱地区农业研究.26(1):67-73.
    叶基瑶,李洪.2008.EM38大地电导率测量仪在滨海盐土电导率测量中的应用及其优势.浙江农业学报.20(6):467-470.
    伊犁哈萨克自治州统计局.2011.伊犁哈萨克自治州统计年鉴-2011.伊宁:伊犁出版社.123-150.
    俞仁培,陈德明.1999.我国盐渍十资源及其开发利用.土壤通报.30(4):158-159.
    岳耀杰,张峰,张国明,等.2010.滨海盐碱地利用变化与优化研究-以黄骅市“台田-浅池”模式为例.资源科学.32(3):423-430.
    詹华明,徐锡华,刘小龙.2010.天津市静海县土壤盐渍化现状及防治对策.地质调查与研究.33(3):456-470.
    张恒云,尚淑招.1992.NOAA-AVNRR资料在监测土壤盐渍化程度中的应用.遥感信息.10(1):24-26.
    张军民.2005.伊犁河流域地表水资源优势及开发利用潜水研究.干旱区资源与环境.19(1):142-146.
    张妙仙,杨劲松.2002.灌溉入渗条件下农田土壤水盐动态简化模型及应用.土壤学报.39(1):81.
    张婷.2011.黄河三角洲土地盐渍化格局的遥感监测及盐渍化过程的空间分析与评价.复旦大学.13-14.
    张蔚榛,张瑜芳.2003.对灌区水盐平衡和控制土壤盐渍化的一些认识.中国农村水利水电.10(1):13-18.
    张蔚榛.1983.地下水非稳定流计算和地下水资源评价.北京:科学出版社.13-16.
    章光新,邓伟,何岩.2005.洮儿河流域地下水TDS时空变异特征研究.水十保持学报.2(02):12-13.
    赵英时.2004.遥感应用分析原理与方法.北京:科学出版社.22-23.
    郑威,陈述彭.1995.资源遥感纲要.北京:中国科学技术出版社.11-15.
    周萍.2006.高光谱十壤成分信息的量化反演.中国地质大学.34-40.
    周清,2004.土壤有机质含量高光谱预测模型及其差异性研究.浙江大学.22-26.
    朱庭芸.1992.灌区土壤盐渍化防治.北京:农业出版社.32-38.
    朱英,王承武.2013.新疆伊犁州直属县市十地利用变化驱动力分析.农村经济与科技.24(2):12
    邹平,杨劲松,等.2007.蒸发条件下土壤水盐热运移的实验设计.土壤.39(1):615-620
    Bao B. R. M., Sankar T. R, Dwivedi R. S, et al.1995, Spectral Behavior of salt-affected soils. International Journal of Remote Sensing.16(12):2125-2136.
    Ben-Dor E., Metternicht G. I.2009. Review of remote sensing-based methods to assess soil salinity-In Metternicht G.I. and Zinck J.A. (ed.). Remote sensing of soil salinization:Impact on land management. CRC Press, Boca Raton, FL.39-60.
    Ben-Dor E., Patkin K., Banin A., Karnieli A.,2002. Mapping of several soil properties using hyperspectral scanner data. A case study over soils in Israel. International Journal of Remote Sensing.23:1043-1062.
    Brena J., Sanvicente H., Pulido L.1995. Salinity assessment in Mexico. In Use of Remote Sensing Techniques in Irrigation and Drainage (eds. Vidal, A. and J.A., Sargardoy), Rome, Italy:FAO. 179-184.
    Bresler E., Dagan.1983. Unsaturated flow in spatially variablefields.3.Solute transport models and their application in twofields.Water Resource.Research.429-435.
    Bresler E., B. L. McNeal, D. L. Carter.1982. Saline and sodic soils:Principles-Dynamics-Modelling: Springer-Verlag, Berlin/Heidelberg/New York.3-540-11120-4.
    Bresler, Valter, Jerebtsova, et al.1989.The influence of the lipid bilayer phase state on the p-aminohippurate (PAH) transport and the activity of the alkaline phosphatase in brush-border membrane vesicles from normal and mutant rats. Biochimical biophysica acta.08/982(2):288-294.
    Casas.1995. Salinity Assessment Based on Combined Use of Remote Sensing and GIS. Use of Remote Sensing Techniques in Irrigation and Drainage. Rome, Italy:FAO.141-150.
    Clark, R.N., Roush, T.L.1984. Reflectance spectroscopy:Quantitative analysis techniques for remote sensing applications. Journal of Geophysics Research.89:6329-6340.
    Crist E.P., Cicone R.C.1984. Application of the Tasseled Cap Concept to Simulated Thematic Mapper. 42-43.
    Crowley J. K., Clark R.N.1992. AVIRIS study of Death Valley evaporite deposits using least-squares band-fitting methods:in Summaries of the Third Annual JPL Airborne Geoscience Workshop. JPL Publication.92(14):29-31.
    Csillage F., Pasztor L, Biehl L.1993. Spectral band selection for the characterization of soil salinity status of soil. Remote Sensing of Environment.80:406-417.
    Davidson, Galloway.1993. Productive Use of Saline Land. Canberra:ACIAR Proceedings.42:124.
    Dehaan R. L., Taylor G R.2002, Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil-salinization. Remote Sensing of Environment.63 (2):406-417.
    Drake N. A.1995. Reflectance Spectra of Evaporate Minerals (400-2500nm):Application for Remote Sensing. International Journal of Remote Sensing.16(14):2555-2571.
    Dutkiewicz A., Lewis M.2009. The Suitability of Airborne Hyperspectral Imagery for Mapping Surface Indicators of Salinity in Dryland Farming Areas. Remote sensing of soil salinization:Impact on land management. Boca Raton, FL:CRC Press.91-112.
    Dutkiewicz A., Lewis M., Ostendorf B.,2009. Evaluation and comparison of hyperspectral imagery for mapping surface symptoms of dryland salinity. International Journal of Remote Sensing.30(3): 693-719.
    Dutkiewicz A.,2006. Evaluating hyperspectral imagery for mapping the surface symptoms of dryland salinity. Australia:The University of Adelaide.
    Dwivedi R.S.1992. Monitoring and the Study of the Effects of Image Scale on Delineation of Salt-affected Soils in the Indo-Gangetic Plains. International Journal of Remote Sensing.13(8): 1527-1536.
    Dwivedi R. S., Rao B. R. M.1992. The Selection of the Best Possible Landsat TM band Combination for Delineating Salt-affected Soils. International Journal of Remote Sensing.13(11):2051-2058.
    Dwivedi R. S., Rao B. R. M.1998. An Inventory of Salt-affected Soils and Waterlogged Areas in the Nagarjunsagar Canal Command Area of Southern India, Using Space-borne Multi-spectral Data. L and Degradation and Development.9:357-367.
    Eldeiry, Garcia. Detecting Soil Salinity in Alfalfa Fields using Spatial Modeling and Remote Sensing. SSSA.J.72:201-211.
    Farifteh J.2007. Imaging spectroscopy of salt-affected soils:Model-based integrated method. PhD Dissertation, ITC, Enschede, the Netherland.
    Farifteh J., Farshad A., George R.J.2006. Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma.130:191-206.
    Farifteh J., Meer F., Meijde M.2005. Spectral characteristics of salt affected soils:impact on imaging spectroscopy. In Proceedings of the 4th workshop on Imaging Spectroscopy:New Quality in Environmental Studies, Warsaw, Porland.48-49.
    Farifteh J., Meer F., Meijde M., Atzberger C.,2008. Spectral characteristics of salt-affected soils:a laboratory experiment. Geoderma,145:196-206.
    Farifteh, Farshad, George.2006. Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma,130:191-205.
    Fernandez-Buces, Siebe.2006. Mapping soil salinity using a combined spectral response index for bare soil and vegetation:A case study in the former lake Texcoco, Mexico. Journal of Arid Environments,65:644-667.
    Foaud A.K.2003. Soil Salinity Detection using Satellite Remote Sensing. Enschede, the Netherlands: Master's thesis International institute for Geo-information Science and earth observation.
    Gerrit Schoups, Jan W. Hopmans.2005. Sustainability of irrigated agriculture in the San Joaquin Valley, California. PNAS,102(43):15352-15356.
    Ghassemi, A. J. Jakeman, H. Nix.1995, Salinisation of land and water resources:Human causes, extent, management and case studies. Australia:Centre for Resource and Environmental Studies.526-527.
    Goward S.N., Xue Y., Czajkowski K.P.2002. Evaluating land surface moisture conditions from the remotely sensed temperature-vegetation index measurements:An exploration with the simplified simple biosphere model. Remote Sensing of Environment,79:225-242.
    Holzkamper, Seppel.2007. A generic tool for optimizing land-use patterns and landscape structures. Environmental Modeling & Software,22:1801-1804.
    Huth, Poulton,2007. An electromagnetic induction method for monitoring variation in soil moisture in agroforestry systems.Aurtralian Journal of Soil Reasearch,45:63-72.
    Howari F.M., Goodell P.C., Miyamoto, S.2002. Spectral properties of salt crusts formed on saline soils. Journal of Environment Quality,31:1453-1461.
    Huisman.2008. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) Ⅲ:Scenario analysis, Advances in Water Resources.1-12.
    Jensen J.R.2004. Introductory Digital Image Processing, third edition. Prentice Hal, Upper Saddle River (NJ), USA
    Jonathan L.H.2001, Physiologieal response to groundwater depth varies among species and with river flow regulation, Eeologieal ApPlieations.11 (4):1046-1059.
    Kauth R.J., G. S.Thomas.1976. The tasseled cap-A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. Proc. the Symposium on Machine Processing of Remotely Sensed Data. (2):40-41.
    Krishnan P., Alexander J.D., Butlerb B.J., Lefkoff A.B.1980. Reflectance technique for predicting soil organic matter. Soil Science Society of America Journal.44:1282-1285.
    Kruse F. A., A. B. Lefkoff, J. B. Boardman.1993. The Spectral Image Processing System (SIPS)-Interactive Visualization and Analysis of Imaging spectrometer Data. Remote Sensing of Environment.47:145-163.
    Lu D., P. Mausel, E. Brondizio.2004. Change detection techniques. International Journal of Remote Sensing.25(12):2365-2401.
    Masoud, Koike.2006. Arid land salinization detected by remotely-sensed land cover changes:A case study in the Siwa region, NW Egypt.Journal of Arid Environments,66:151-167.
    Melendez-Pastor I., J. Navarro-Pedreno, M. Koch, I. Gomez.2010. Applying imaging spectroscopy techniques to map saline soils with ASTER images, Geoderma,158(2010):55-65.
    Metternicht G. I., J. A. Zinck.1997. Spatial discrimination of salt- and sodium-affected soil surfaces. International Journal of Remote Sensing.18(12):2571-2586.
    Metternicht G. I., J. A. Zinck.2009. Spectral behavior of salt types. Remote Sensing of Soil Salinization: Impact on Land anagement. Boca Raton, FL:CRC Press,21-37.
    Metternicht G. I.2001. Assessing temporal and spatial changes of salinity using fuzzy logic, remote sensing and GIS:Foundations of an expert system. Ecology Modelling.144(2-3):163-179.
    Metternicht G. I., J. A. Zinck.2003. Remote sensing of soil salinity:potentials and constraints. Remote Sensing of Environment.85:1-20.
    Mulders M. A., G. F. Epema.1986. The thematic mapper:a new tool for soil mapping in arid areas.ITC journal.1:24-29.
    Price J. C.1990. Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Transactions on Geoscience and Remote Sensing.231-249.
    Richards J. A.1993. Remote Sensing Digital Image Analysis:An Introduction. New York:Pringer-Verlag.
    Saha S. K., M. Kudrat, S.K. Bhan.1990. Digital processing of Landsat TM data for wasteland mapping in parts of Aligarh District, Uttar Pradesh, India. International Journal of Remote Sensing.11: 485-492.
    Sandholt L., K. Rasmussen, J. Andersen.2002. A simple interpretation of the surface temperature/ vegetation index space for assessment of surface moisture status. Remote Sensing of Environment. 79:213-224.
    Singh A. N., R. S. Dwivedi.1989. Delineation of salt-affected soils through digital analysis of Landsat MSS data. International Journal of Remote Sensing.10:83-92.
    Singh A. N., S. J. Kristof, M. R. Baumgardner.1977. Delineating salt-affected soils in the Gangetic plain India by digital analysis of Landsat data. Purdue University Laboratory for Applications of Remote Sensing, Technical report.11:14-77.
    Spies B. R., P. Woodgate.2005. Salinity mapping methods in the Australian context Australia:Prepared for the Natural Resource Management Ministerial Council though Land and Water Australia and the National Dryland Salinity Program.
    Szilagyi A., M. F. Baumgardner.1991. Salinity and spectral reflectance of soils. Proceedings Ann. Meeting ASPRS/ACSM (USA:Baltimore, Maryland).34:430-437.
    Tanji K. K.1981. Raver basin hydrosalinity modelling. Agriclture Water Manage. (6):25-40.
    Taylor G. R., A. H. Mah, F. A. Kruse, et al.1996. Characterization of saline soils using Airbrone Radar Imagery. Remote Sensing of Environment.57 (3):127-142.
    Taylor G., R. Dehaan.2000. Salinity mapping with hyperspectral imagery. http://www.geology.unsw. edu.au/research/R-Sensing.
    Thomas S. M., K. Magaly, G. U. Jose.2009. Applications of Hyperspectral Imagery to Soil Salinity Mapping. Remote sensing of soil salinization:Impact on land management. Boca Raton, FL:CRC Press.113-140.
    Triantafilis, Laslett, Mc Bratney.2000. Calibrating an Electromagnetic Induction Instrument to Measure Salinity in Soil under Irrigated Cotton. SSSA.64:1009-1017.
    Tripathi N.K., B. K. Rai, P. Dwivedi.1997. Spatial Modeling of Soil Alkalinity in GIS Environment Using IRS Data. Proceedings of the 16th Asian Conference on Remote Sensing.79:87-100.
    Vapnik V. N.1995. The Nature of Statistical Learning Theory. New York:Springer-Verlag.
    William A. Jury, Henry Vaux.2005. The role of science in solving the world's emerging water problems. PNAS. (102):15715-15720.
    Zhang T. T., Zeng S. L., Gao Y., et al.2011. Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecological Indicators,145:378-388.
    Zheng, Wallin, Hao.1997. Rates and patterns of landscape change between 1972 and 1988 in the Changbai Mountain area of China and North Korea. Landscape Ecology.12:241-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700