用户名: 密码: 验证码:
两种单子叶植物蓝色花相关基因的功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花,核心在颜色,色彩作为花卉最具视觉冲击力的审美特征,是决定花的观赏价值的最重要因素之一。其潜在的经济价值带动了整个花卉以及切花市场的发展。然而,每个植物通常因为含有有限的生物合成基因,特异基因的表达,关键酶类的底物特异性,或者基因的时空调节等影响因素,只积累有限的几种花青素而展示有限种类的花色,因此得到广谱的花色是观赏类花卉育种的一个重要目标。
     百合是单子叶植物亚纲百合科百合属多年生草本球根植物,是世界上著名的五大切花之一,在世界花卉交易中占有非常重要的市场份额。百合由于缺乏F3’5’H基因而缺乏飞燕草素,所以自然界中没有紫色或蓝色的百合花。因此,创造蓝色百合成为很多育种家追求的目标。本研究选用单子叶植物蝴蝶兰和风信子为材料,研究了F3’5’H基因在不同花期和不同器官中的表达模式;应用农杆菌介导的模式植物矮牵牛转化系统分析了百合花特异启动子调控的蝴蝶兰F3’5’H对于花色的影响,比较了百合花特异启动子调控的蝴蝶兰F3’5’H分别结合两个辅助表达基因后对花色的影响,并借助粒子轰击系统,检测了这些载体瞬时转化索邦百合后的细胞颜色变化,主要结果如下:
     1.研究了单子叶植物蝴蝶兰和风信子中F3’5’H基因的表达模式。采用了实时定量PCR技术(qRT-PCR),分析了两个材料5个花期的花瓣和根,茎,叶中F3’5’H基因的表达情况。结果表明,蝴蝶兰中,F3’5’H的表达花中高于营养器官中的表达,5个花期中,正在发育的花蕾中的表达量最高,小花蕾,大花蕾和正在开放的花中的表达量差异不大,完全开放的花中表达量最低。在根和茎中有表达,叶中表达最弱。风信子中,F3’5’H在茎中的表达非常高,在完全开放的花,根和大花蕾中次之,叶中表达最弱。
     2.百合花特异启动子调控的蝴蝶兰F3’5’H利用农杆菌介导的叶盘法转化粉色矮牵牛后,花色从粉色变成了深粉色,qRT-PCR结果证实蝴蝶兰F3’5’H最大的表达量出现在花冠中,然后在叶子,根和花筒中,其表达量逐渐下降。在花药,萼片和茎中表达量非常低。蝴蝶兰F3’5’H在花冠中的表达量是叶子中表达量的11倍,是茎中的79倍。它的表达也在矮牵牛中积累了飞燕草素。
     3.百合花特异启动子调控的蝴蝶兰F3’5’H和两个辅助表达基因利用农杆菌介导的叶盘法共转化粉色矮牵牛后,相较于野生态对照和单独转化蝴蝶兰F3’5’H,转化了蝴蝶兰F3’5’H和风信子DFR后,花冠显示了更深的颜色,尤其是花冠上褶皱的地方,同时也会观察到一些蓝色细胞。转化蝴蝶兰F3’5’H和矮牵牛DifF后,花色只显示了轻微的变红。
     4.百合花特异启动子调控的蝴蝶兰F3’5’H和两个辅助表达基因利用基因枪瞬时转化索邦百合花瓣后,相较于对照,单独转化蝴蝶兰F3’5’H后,使细胞的颜色从粉色变成了淡紫色,转化了蝴蝶兰F3’5’H和风信子DFR后,产生了深紫色的细胞,转化蝴蝶兰F3’5’H和矮牵牛DifF后,细胞没有发现颜色的改变。
Flower color, as the most visual impact aesthetic characteristics, is one of the importantfactors in determining the ornamental value of floricultural plants. Its potential economicvalue leads to the development of the flowers and the cut flower market. However, due to thelimited biosynthetic genes in plants, the expression of these specific set of genes, keyenzymes of substrate specificity, or influence factors, such as temporal and spatial regulationgenes lead to produce limited types of anthocyanin accumulation and demonstrate limitedflower color. Therefore, a broad spectrum of flower color is an important goal for flowerbreeding.
     Lilium is a monocotyledonous plants belonging to the family Liliaceae. It is also one ofthe world famous five cut flowers, and occupies very important share of the market. Due tothe lack of delphinidin-based anthocyanins in Lilium, there are no purple or blue color innature. Therefore, the creation of blue flower becomes the target of many breeders. The studymainly focused on the expression pattern of F3’5’H from Phalaenopsis hybrid ‘SuperFirebird’ and Hyacinthus orientalis 'Sky Jacket', the transformation Phalaenopsis F3’5’Hunder the control of the chalcone synthase promoter in petunia flowers. To increase theaccumulation of delphinidin, Hyacinth DFR(HyDFR) and petunia DifF were overexpressedwith Phalaenopsis F3’5’H. We also used transient transformation of lily petals by particlebombardment with the three constructs. The main results are as followings.
     1. The expression patterns of F3’5’H in Phalaenopsis hybrid ‘Super Firebird’ andHyacinthus orientalis 'Sky Jacket' were investigated. For Phalaenopsis, the results formqRT-PCR indicated that the expression level in the flowers were higher than in the vegetativeorgans. The maximum expression occurred in the stage2of five development stages,followed by the stage1, stage3and stage4, very low in the stage5and weak in the leaf. ForHyacinth, the maximum expression of F3’5’H displayed in the stems, followed by in the stage5, root, stage3, and was weak in the leaf.
     2. The binary vectors (p1300-pPZP-F3’5’H) that the flower-specific CHS promoter from Lilium Oriental ‘Sorbonne’(CHS pro) controlled Phalaenopsis F3’5’H (PhF3’5’H) wasintroduced into petunia. Flower color pigmentation in transgenic petunia changed from pinkto deeper pink. The results of qRT-PCR confirmed that PhF3'5'H was specifically expressedin the p1300-pPZP-F3’5’H transformants. The maximum expression displayed in the flowerlimb, then (decreasingly) in the leaf, roots and flower tube. The expression level in the anther,sepal and stem were relatively low. By contrast, the PhF3'5'H mRNA level in the flowers oftransgenic plants was approximately11-times higher than in the leaf and79-times higher thanin the stem. The expression of PhF3’5’H eventually increased the content of delphinidin.
     3. For co-expression analysis, PhF3’5’H was fused with HyDFR, or petunia DifF togenerate p1300-pPZP-F3’5’H-DFR and p1300-pPZP-F3’5’H-DifF, repectively. Plantstransformed with p1300-pPZP-F3’5’H-DFR showed a deeper color in the petal limb,especially in drape. A number of blue cells were also found. Flowers transformed withp1300-pPZP-F3’5’H-DifF demonstrated a slight change in flower color pigmentation, turningred compared to the controls.
     4. A transient transformation of lily petals was performed using particle bombardmentwith the three constructs. Transformants with p1300-pPZP-F3’5’H produced a color changefrom pink to pale purple. Simultaneous expression of PhF3’5’H and HyDFR produced adarker purple color than PhF3’5’H alone, but no color change was observed in flowertransformed with p1300-pPZP-F3’5’H-DifF.
引文
安田齐.1989.花色的生理生化[M].北京:中国林业出版社15-54
    戴思兰.2010.园林植物遗传学(第2版)[M].北京:中国林业出版社171-198
    哈本著.戴伦凯译.1983.黄酮类化合物[M].北京:科学出版社52-63
    李崇晖.2010.牡丹花瓣类黄酮成分分析及其对花色的影响[D].中国科学院研究生院
    孟丽.2006.蓝色花形成关键基因的分离及其表达分析[D].北京林业大学
    孟丽和戴思兰.2004. F3’5’H基因与蓝色花的形成[J].分子植物育种413-420.
    孟丽和戴思兰.2005.瓜叶菊F3’5’H基因cDNA的克隆、序列分析及其原核表达[J].分子植物育种3(2):780-786
    祁银燕.2009.蓝色花形成相关基因cDNA克隆与百合转化品种的选择.硕士学位论文.西北农林科技大学
    孙翊.2011.瓜叶菊PCFH基因对花青素苷合成及花色的影响.博士学位论文.北京林业大学
    王玉萍,刘庆昌和翟红.2006.植物类胡萝卜素生物合成相关基因的表达调控及其在植物基因工程中的应用[J].分子植物育种4(1):103-110
    杨少勇,安银岭,樊国盛等.2003.蓝色花植物花色素的着色机理[J].北京林业大学学报25(5):68-75
    赵昶灵,郭维明和陈俊愉.2003.植物花色呈现的生物化学、分子生物学机制及其基因工程改良.西北植物学报23(6):1024-1035
    Andersen M, Markham KR.2006. Flavonoids: chemistry, biochemistry, and applications. CRC Press
    Azadi P, Chin DP, Kuroda K, Khan RS, Mii M.2010. Macro elements in inoculation and co-cultivationmedium strongly affect the efficiency of Agrobacterium-mediated transformation in Lilium. Plant Cell,Tissue Organ Culture101:201-209
    Angiosperm phylogeny group.2003. An update of the Angiosperm Phylogeny Group classification for theorders and families of flowering plants: APG II. Botanical Journal of the Linnean Society141:399-436
    Albert NW, Arathoon S, Collette VE, Schwinn KE, Jameson PE, Lewis DH, Zhang HB, Davies KM.2009.Activation of anthocyanin synthesis in Cymbidium orchids: variability between known regulators.Plant Cell, Tissue Organ Culture100:355-360
    Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, Walbot V.1998. Functionalcomplementation of anthocyanin sequestration in the vacuole by widely divergent glutathioneS-transferase. The Plant Cell10:1135-1149
    Bartley GE, Seolnik PA.1995. Plant carotenoids: pigments for photoprotection, visual attraction and humanhealth.The Plant Cell7:1027-1038
    Bloor SJ.1997. Blue flower color derived from flavonol-anthocyanin co-pigmentation in Ceanothuspapillosus. Phytochemistry45:1399-1405
    Brugliera F, Tanaka Y, Mason J.2004. Flavonoid3’,5’-hydroxylase gene sequences and usestherefor.WO/2004/020637
    Brugliera F, Tull D, Holton TA, Karan M, Treloar N, Simpson K, Skurczynska J, Mason JG.2000.Introduction of a cytochrome b5enhances the activity of flavonoid3',5'-hydroxylase (a cytochromeP450) in transgenic carnation. Sixth International Congress of Plant Molecular Biology (supplement)18: S6-S8
    Baysdorfer C, Robinson JM.1985. Metabolic interactions between spinach leaf nitrite reductase andferredoxin-NADP reductase: Competition for reduced ferredoxin. Plant physiology77:318-320
    Capell T, Christou P.2004. Progress in plant metabolic engineering. Current opinion in biotechnology15:148-154
    Chandler S, Tanaka Y.2007. Genetic modification in floriculture. Critical reviews in plant sciences26:169-197
    Chandler SF, Brugliera F.2011. Genetic modification in floriculture. Biotechnology letters33:207-214
    Cohen A.2011. Biotechnology in lilies–dreams vs. reality. II International Symposium on the GenusLilium900:149-160
    de Vetten N,Ter Horst J, Van Schaik HP, de Boer A, Mol J, Koes R.1999. A cytochrome b5is required forfull activity of flavonoid3',5'-hydroxylase, a cytochrome P450involved in the formation of blueflower colors. Proceedings of the National Academy of Sciences, USA96:778-783
    Dafny-Yelin M, Tzfira T.2007. Delivery of multiple transgenes to plant cells. Plant physiology145:1118-1128
    Datta K, Baisakh N, Thet KM, Tu J, Datta S.2002. Pyramiding transgenes for multiple resistance in riceagainst bacterial blight, yellow stem borer and sheath blight. Theoretical and Applied Genetics106:1-8
    Dixon RA, Steele CL.1999. Flavonoids and isoflavonoids-a gold mine for metabolic engineering. Trendsin plant science4:394-400
    Forkmann G, Martens S.2001. Metabolic engineering and applications of flavonoids. Current Opinion inBiotechnology12:155-160
    Forkmann G, Heller W.1999. Biosynthesis of flavonoids. In Comprehensive Natural ProductsChemistry.Volume1. Polyketides and Other Secondary Metabolites Including Fatty Acids and TheirDerivatives. Edited by Sankawa, U. pp.713-748. Elsevier, Oxford
    Farre G, Ramessar K, Twyman RM, Capell T, Christou P.2010. The humanitarian impact of plantbiotechnology: recent breakthroughs vs bottlenecks for adoption. Current opinion in plant13:219-225
    Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N.2009. Pathwayengineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoidformation. Journal of experimental botany60:1319-1332
    Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K.2003. A rationale for the shift in colour towardsblue in transgenic carnation flowers expressing the flavonoid3’,5’-hydroxylase gene. Phytochemistry63:15–23
    Giannasi DE, Harborne JB.1988. The Flavonoids: Advances in Research Since1980. New York: Chapmanand Hall
    Goto T, Kondo T.1991. Structure and Molecular Stacking of Anthocyanins-flower Color Variation.Angewandte Chemie International Edition in English30:17-33
    Grotewold E.2006. The genetics and biochemistry of floral pigments. Annual Review of Plant Biology57:761-780
    Grotewold E.2006. The Science of flavonoids. New York. Springer
    Graham SE, Peterson JA.1999. How similar are P450s and what can their differences teach us? Archivesof biochemistry and biophysics369:24–29
    Grunewald W, De Smet I, Lewis DR, Lofke C, Jansen L, Goeminne G, Vanden Bossche R, Karimi M, DeRybel B, Vanholme B, Teichmann T, Boerjan W, Van Montagu MCE, Gheysen G, Muday GK, FrimlJ, Beeckman T.2012. Transcription factor WRKY23assists auxin distribution patterns duringArabidopsis root development through local control on flavonol biosynthesis. Proceedings of theNational Academy of Sciences, USA109:1554-1559
    Gottsberger G, Gottlieb OR.1981. Blue flower pigmentation and evolutionary advancement. BiochemicalSystematics and Ecology9:13-18
    Goderis IJ, De Bolle MF, Fran ois IE, Wouters PF, Broekaert WF, Cammue BP.2002. A set of modularplant transformat ion vectors allowing flexible insertion of up to six expression units. Plant molecularbiology50:17-27
    Goodman CD, Casati P, Walbot V.2004. A multidrug resistance-associated protein involved inanthocyanin transport in Zea mays. The Plant Cell16:1812-1826
    Holton TA, Tanaka Y.1994a. Blue roses-a pigment of our imagination? Trends in Biotechnology12:40-42
    Hodges SA, Derieg NJ.2009. Adaptive radiations: From field to genomic studies. Proceedings of theNational Academy of Sciences, USA106(supplement.1):9947-9954
    Holton TA, Tanaka Y.1994b. Transgenic flowering plants. Patent Publication Number WO/94/28140
    Holton TA.1996. Transgenic plants exhibiting altered flower color&methods for producing same. PatentPublication Number WO/96/36716
    Halpin C.2005. Gene stacking in transgenic plants-the challenge for21stcentury plant biotechnology. PlantBiotechnology Journal3:141-155
    Halpin C. Barakate A, Askari BM, Abbott JC, Ryan MD.2001. Enabling technologies for manipulatingmultiple genes on complex pathways. Plant Molecular Biology47:295-310
    Honda T, Saito N.2002. Recent progress in the chemistry of polyacylated anthocyanins as flower colorpigment. Heterocycles56:633-692.
    Jobling SA, Westcott RJ, Tayal A, Jeffcoat R, Schwall GP.2002. Production of a freeze–thaw-stable potatostarch by antisense inhibition of three starch synthase genes. Nature Biotechnology20:295-299
    Jorgensen RA.1995. Cosuppression, flower color patterns, and metastable gene expression states. Science268:686-691
    Kahn R, Durst F.2000. Function and evolution of plant cytochrome P450in: Recent Advances inPhytochemistry: Evolution in Plant Metabolic Pathways (Romeo, J., Ibrahim, R.,Varin, L. and DeLuca, V., Eds.), pp.151-190, Elsevier Science Ltd, Oxford
    Katsumoto Y, Mizutani M, Fukui Y, Brugliera F, Holton T, Karan M, Nakamura N, Yonekura-SakakibaraK, Togami j, Pigeaire A, Tao GQ, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T,Mason JG, Tanaka Y.2007. Engineering of the rose flavonoid biosynthetic pathway successfullygenerated blue-hued flowers accumulating delphinidin. Plant and cell physiology48:1589-1600
    Kondo T, Yoshida K, Nakagawa A, Kawai T, Tamura H, Goto T.1992. Structural basis of blue-colourdevelopment in flower petals from Commelina communis. Nature358:515-518
    Kay R, Chan A, Daly M, McPherson J.1987. Duplication of CaMV35S promoter sequences creates astrong enhancer for plant genes. Science236:1299-1302
    Kitamura S, Shikazono N, Tanaka A.2004. TRANSPARENT TESTA19is involved in the accumulation ofboth anthocyanins and proanthocyanidins in Arabidopsis. The Plant Journal37:104-114
    Kumar V, Nadda G, Kumar S, Yadav SK.2013. Transgenic Tobacco Overexpressing Tea cDNA EncodingDihydroflavonol4-Reductase and Anthocyanidin Reductase Induces Early Flowering and ProvidesBiotic Stress Tolerance. PLOS ONE8: e65535
    Livak KJ, Schmittgen TD.2001. Analysis of relative gene expression data using real-time quantitative PCRand the2(T)(-Delta Delta C)method. Methods25:402-408
    Liu YL, Lou Q, Xu WR, Xin Y, Bassett C, Wang YJ.2011. Characterization of a chalcone synthase (CHS)flower-specific promoter from Lilium orienial ‘Sorbonne’. Plant cell reports30:2187-2194
    Lapierre C. Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leple JC, Boerjan W, Ferret V, De NadaiV, Jouanin L.1999. Structural alterations of lignins in transgenic poplars with depressed cinnamylalcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on theefficiency of industrial kraft pulping. Plant Physiology119:153-163
    Marrs KA, Alfenito MR, Lloyd AM, Walbot V.1995. A glutathione S-transferase involved in vacuolartransfer encoded by the maize gene bronze-2. Nature375:397-400
    Martens S, Knott J, Seitz CA, Janvari L, Yu SN, Forkmann G.2003. Impact of biochemical pre-studies onspecific metabolic engineering strategies of flavonoid bisynthesis in plant tissues. Biochemicalengineering journal14:227-235
    Ma JK, Drake PM, Christou P.2003. The production of recombinant pharmaceutical proteins in plants.Nature Reviews Genetics4:794-805
    Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, Lehner T.1995. Generation and assembly ofsecretory antibodies in plants. Science268:716-719
    Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul JM, Debeaujon I, Klein M.2007. TheArabidopsis MATE transport TT12acts as a vacuolar flavonoid/H+-antiporter active inproanthocyanidin-accumulating cells of the seed coat. The Plant Cell19:2023-2038
    Mol J, Grotewold E, Koes R.1998. How genes paint flowers and seeds. Trends in Plant Science6:212-217
    Miller R, Owens SJ, Rorslett B.2011. Plants and colour: Flowers and pollination. Optics&LaserTechnology43:282-294
    Mori S, Kobayashi H, Hoshi Y, Kondo M, Nakano M.2004. Heterologous expression of the flavonoid3’,5’-hydroxylase gene of Vinca major alters flower color in transgenic Petunia hybrida. Plant CellReports22:415-421
    Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S,Honkura R, Nishimiya S,Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohashi Y.1996.Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous andmonocotyledonous plants. Plant and Cell Physiology37:49-59
    Murashige T, Skoog F.1962. A revised medium for rapid growth and bioassays with tobacco tissuecultures. Physiologia plantarum15:473-479
    Nakatsuka T, Nishihara M, Mishiba K, Yamamura S.2005. Two different mutations are involved in theformation of white-flowered gentian plants. Plant Science169:949-958
    Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S.2004. Comparative genomics of riceand Arabidopsis. Analysis of727cytochrome P450genes and pseudogenes from a monocot and adicot. Plant Physiology135:756-772
    Niyogi KK.2000. Safety valves for photosynthesis. Current opinion in plant biology3:455-560
    Noda K, Glover BJ, Linstead P, Martin C.1994. Flower colour intensity depends on specialized cell shapecontrolled by a Myb-related transcription factor. Nature.369:661-664
    Naqvi S, Farre G, Sanahuja G, Capell T, Zhu CF, Christou P.2010. When more is better: multigeneengineering in plants. Trends in Plant Science15:48-56
    Odell JT, Nagy F, Chua NH.1985. Identification of DNA sequences required for activity of theCauliflower mosaic virus35S promoter. Nature313:810-812
    Petroni K, Tonelli C.2011. Recent advances on the regulation of anthocyanin synthesis in reproductiveorgans. Plant Science181:219-229
    Potenza C, Aleman L, Sengupta-Gopalan C.2004. Targeting transgene expression in research, agricultural,and environmental applications: promoters used in plant transformation. In Vitro Cellular&Developmental Biology-Plant40:1-22
    Poustka F, Irani N.G, Feller A, Lu Y, Pourcel L, Frame K, Grotewold E.2007. A trafficking pathway foranthocyanins overlaps with the endoplasmic reticulum-to vacuole proteinsorting route in Arabidopsisand contributes to the formation of vacuolar inclusions. Plant physiology145:1323-1335
    Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier AJ, Stobart AK, Lazarus CM.2004.Production of very long chain polyunsaturated omega-3and omega-6fatty acids in plants. Naturebiotechnology22:739-745
    Robinson KEP, Firoozabady E.1993. Transformation of floriculture crops. Scientia horticulturae55:83-99
    Roh SM, Lawson RH.1988. Tissue culture in the improvement of Eustoma. HortScience23:658
    Springob K, Nakajima J, Yamazaki M, Saito K.2003. Recent advances in the biosynthesis andaccumulation of anthocyanins. Natural product reports20:288-303
    Strack D, Vogt T, Schliemann W.2003. Recent advances in betalain research. Phytochemistry.62:247-269
    Stafford HA.1990. Flavonoid Metabolism. CRC Press
    Shimada S, Otsuki H, Sakuta M.2007. Transcriptional control of anthocyanin biosynthetic genes in theCaryophyllales. Journal of Experimental Botany58:957-967
    Sharma A, Mahinghara BK, Singh AK, Kulshrestha S, Raikhy G, Singh L, Verma N, Hallan V, Ram R,Zaidi AA.2005. Identification, detection and frequency of lily viruses in Northern India. ScientiaHorticulturae106:213-227
    Seitz C, Ameres S, Forkmann G.2007. Identification of the molecular basis for the functional differencebetween flavonoid3’-hydroxylase and flavonoid3’,5’-hydroxylase. FEBS Letters581:3429-3434
    Seitz C, Eder C, Deiml B, Kellner S, Martens S, Forkmann G.2006. Cloning, functional identification andsequence analysis of flavonoid3’-hydroxylase and flavonoid3’,5’-hydroxylase cDNAs revealsindependent evolution of flavonoid3’,5’-hydroxylase in the Asteraceae family. Plant molecularbiology61:365-381
    Shiono M, Matsugaki N, Takeda K.2005. Structure of the blue cornflower pigment. Nature436:791
    Shoji K, Miki N, Nakajima N, Momonoi K, Kato C, Yoshida K.2007. Perianth bottom-specific blue colordevelopment in tulip cv. Murasakizuisho requires ferric ions. Plant and cell physiology48:243-251
    Shimada Y, Ohbayashi M, Nakano-Shimada R, Okinaka Y, Kiyokawa S, Kikuchi Y.2001. Geneticengineering of the anthocyanin biosynthetic pathway with flavonoid3’,5’-hydroxylase: specificswitching of the pathway in petunia. Plant Cell RePorts20:456-462
    Slater A, Scott N, Fowler M.2003. Plant Molecular Biology. Oxford University Press, Oxford
    Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C.2006. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning inthe genus Antirrhinum. The Plant Cell18:831-851
    Tanaka Y, Tsuda S, Kusumi T.1998. Metabolic engineering to modify flower color. Plant and cellphysiology39:1119-1126
    Tanaka Y, Brugliera F.2006. Flower colour. In Flowering and its Manipulation. Edited by Ainsworth, C.pp.201-239. Blackwell, Oxford.
    Tanaka Y, Katsumoto Y, Brugliera F, Mason J.2005. Genetic engineering in floriculture. Plant Cell, Tissueand Organ Culture80:1-24
    Tanaka Y, Brugliera F, Chandler S.2009. Recent Progress of Flower Colour Modification byBiotechnology. International journal of molecular sciences10:5350-5369
    Tanaka Y, Ohmiya A.2008. Seeing is believing: engineering anthocyanin and carotenoid biosyntheticpathways.Current Opinion in Biotechnology19:190-197
    Tanaka Y, Brugliera F, Kalc G, Senior M, Dyson B, Nakamura N, Yukihisa K, Chandler S.2010. FlowerColor Modification by Engineering of the Flavonoid Biosynthetic Pathway: Practical Perspectives.Bioscience Biotechnology and Biochemistry74:1760-1769
    Tanaka Y.2006. Flower colour and cytochromes P450. Phytochemistry Reviews5:283-291
    Togami J, Tamura M, Ishiguro K, Hirose C, Okuhara H,Ueyama Y, Nakamura N, Yonekura-Sakakibara K,Fukuchi-Mizutani M, Suzuki K, Fukui Y, Kusumi T, Tanaka Y.2006. Molecular characterization ofthe flavonoid biosynthesis of Verbena hybrida and functional analysis of verbena and Clitoria ternateaF3’5’H genes in transgenic verbena. Plant biotechnology23:5-11
    Tsuda S, Fukui Y, Nakamura N, Katsumoto Y, Yonekura-Sakakibara K, Fukuchi-Mizutani M, Ohira K,Ueyama Y, Ohkawa H, Holton TA, Kusumi T, Tanaka Y.2004. Flower color modification of PetuniaHybrida commercial varieties by metabolic engineering. Plant Biotechnology21:377-386
    Twyman RM.2003. Growth and development: control of gene expression, regulation of transcription. In:Thomas B, Murphy DJ, Murray B (eds) Encyclopedia of Applied Plant Sciences.Elsevier Science,London, pp558-567
    Twyman RM, Christou P, Stoger E.2002. Genetic transformation of plants and their cells. In PlantBiotechnology and Transgenic Plants (Oksman-Caldentey, K.M. and Barz, W., eds), pp.111-141,Marcel Dekker Inc
    Tatsuzawa F, Saito N, Seki H, Hara R, Yokoi M, Honda T.1997. Acylated cyanidin glycosides in thered-purple flowers of Phalaenopsis. Phytochemistry45:173-177
    Tatsuzawa F, Saito N, Seki H, Yokoi M, Yukawa T, Shinoda K, Honda T.2004. Acylated anthocyanins inthe flowers of Vanda (Orchidaceae). Biochemical systematics and ecology32:651-664
    Werck-Reichhart D, Feyereisen R.2000. Cytochromes P450: a success story. Genome Biology1:3003.1-3003.9
    Wang JW, Ming F, Han YY, Shen DL.2006. Flavonoid3’,5’-hydroxylase from Phalaenopsis: a novelmember of cytochrome P450s, its cDNA cloning, endogenous expression and molecular modeling.Biotechnology letters28:327–334
    Wang Y, van Kronenburg B, Menzel T, Maliepaard C, Shen X, Krens F.2012. Regeneration andAgrobacterium-mediated transformation of multiple lily cultivars. Plant Cell, Tissue and OrganCulture111:113-122
    Winkel BS.2004. Metabolic channeling in plants. Annual Review of Plant Biology55:85-107
    WinkeI-Shirley B.2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology,and biotechnology. Plant physiology126:485-493
    Xu W, Grain D, Gourrierec J, Harsco t E, Berger A, Jauvion V, Scagnelli A, Berger N, Bidzinski P,Kelemen Z, Salsac F, Baudry A, Routaboul JM, Lepiniec L, Dubos C.2013. Regulation of flavonoidbiosynthesis involves an unexpected complex transcriptional regulation of TT8expression, inArabidopsis. New Phytologist198:59-70
    Yoshida K, Mori M, Kondo T.2009. Blue flower color development by anthocyanins: from chemicalstructure to cell physiology. Natural Product Reports26:857-964
    Yoshida K, Kitahara S, Ito D, Kondo T.2006. Ferric ions involved in the flower color development of theHimalayan blue poppy, Meconopsis grandis. Phytochemistry67:992-998
    Yoshida K, Toyama-Kato Y, Kameda K, Kondo T.2003. Sepal color variation of Hydrangea macrophyllaand vacuolar pH measurement with proton-selective microelectrode. Plant and cell physiology44:262-268
    Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P.2007. Transgenic strategies for thenutritional enhancement of plants. Trends in plant science12:548-555
    Zhang H, Wang L, Deroles S, Bennett R, Davies K.2006. New insight into the structures and formation ofanthocyanic vacuolar inclusions in flower petals. BMC Plant Biology6:29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700