用户名: 密码: 验证码:
霉菌蛋白酶基因的克隆、表达及水解特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
霉菌是我国传统豆类发酵食品的主要生产菌种,有着悠久的应用历史。由于长期受到环境条件(高蛋白培养基)的驯化,这些霉菌具有分泌多种胞外蛋白酶的能力;这些胞外蛋白酶对植物蛋白具有高效的水解能力,特别对大豆蛋白而言,水解产物无苦味且水解程度高。目前,国内外学者对霉菌的研究主要集中于优化固体(或者液体)发酵条件来提高霉菌蛋白酶的产量或对酶学性质的研究;而对霉菌蛋白酶基因的克隆表达方面的研究鲜有报道。鉴于此,本课题对几种霉菌蛋白酶基因进行了克隆表达、定点突变和水解大豆分离蛋白等方面的研究。
     利用RACE和PCR技术从Actinomucor elegans、Rhizopus chinensis、Aspergillus niger和Aspergillus oryzae等几种霉菌中克隆获得3个新氨肽酶基因(GenBank登录号分别为HQ825158、JQ657815和JQ657814,下同)、2个新丝氨酸蛋白酶基因(GU356536和JF922913);进一步获得4个丝氨酸蛋白酶基因(L19059、XM_001391433、XM_001824768和XM_001820092)、5个酸性蛋白酶基因(XM_001399818、XM_001401056、D13894、AB090877和AB044079)和1个中性蛋白酶基因(AF099904)。本试验共克隆获得15个蛋白酶基因。
     根据生物信息学的理论和方法,对这些蛋白酶基因进行了较全面的预测和分析。结果表明,这些蛋白酶基因的密码子偏好性均不相同,并且编码的氨基酸残基长度也不一致。6种丝氨酸蛋白酶属于蛋白酶K家族,亲缘关系较近;以蛋白酶K晶体结构(PDBcode:1IC6A)作为模板进行同源建模分析可知:这些蛋白酶分子内均无二硫键,具有1个Ca2+结合位点;蛋白酶之间以及与蛋白酶K在底物结合区域、氢键、盐键和二硫键等方面均存在差异,这些差异可能是这些酶具有独特水解作用的原因。
     5种酸性蛋白酶属于酸性蛋白酶Asp家族,是胞外蛋白酶,亲缘关系较近;以Aspergillopepsin I晶体结构(PDB code:1IBQ B)作为模板进行同源建模可知:蛋白酶分子内均有1个二硫键,具有1个Zn2+结合位点。蛋白酶之间在活性位点的溶剂可及表面积、氢键、盐键、底物结合区域和ψ-loop结构等方面均存在差异,这些差异可能使这些蛋白酶具有独特的酶学性质。
     对中性蛋白酶和氨肽酶的功能位点、Motif结构和进化关系进行了分析;由于中性蛋白酶和氨肽酶未具有较为适合的同源建模模板,因此未能构建模拟出二级结构和三级结构的模型。
     分别将A. elegans、R. chinensis的Alp基因、A.niger的AlpI基因、A. oryzae的AlpII基因和A. elegansAmp基因克隆至表达载体pET-22b(+)上,转化至大肠杆菌BL21菌株中进行诱导表达;结果表明这些蛋白酶基因均被诱导表达出未有活性的重组蛋白酶。将蛋白酶基因克隆至表达载体pPIC9K上,电转整合至毕赤酵母Km71菌株的基因组上进行诱导表达。结果表明只有A.niger的AlpI基因、A.oryzae的AlpII基因和NpI基因能成功表达。进一步分别对3种重组蛋白酶进行了分离纯化和酶学性质研究。结果表明:重组黑曲霉AlpI在10L发酵罐中诱导表达时,发酵液的蛋白酶酶活达到4050U/mL,该酶最适反应pH值和温度分别为8.0-9.0和45℃,在pH为6.0-9.0和温度低于40℃时具有较好的热稳定性,PMSF完全抑制酶活,Ca2+、Mn2+和K+对酶具有促进作用,Zn2+、Fe2+和Mg2+都具有抑制作用。
     重组米曲霉AlpII在10L发酵罐中诱导表达时,发酵液的蛋白酶酶活达4100U/mL;该蛋白酶最适反应pH值和温度分别为8.5-9.5和50℃,在pH值为6.0-10.0和温度低于40℃时具有较好的稳定性;PMSF完全抑制酶活;Ca2+和Mg2+具有促进酶的作用,Zn2+、Fe2+和Mn2+具有轻微的抑制作用。
     重组米曲霉NpI在10L发酵罐中诱导表达时,发酵液的蛋白酶酶活达43101U/mL;该酶最适反应pH和温度分别为8.0和55℃,在pH为5.0-9.0和45℃以下具有较好的稳定性,EDTA强烈抑制酶活,Cu2+和Zn2+能显著的抑制酶活。
     为了提高重组蛋白酶的热稳定性利于工业的开发利用,采用定点突变技术来增加蛋白酶的二硫键。结果表明:重组米曲霉AlpII的突变酶G33C-S126C(将33位点和126位点氨基酸G和S突变为C)提高了热稳定性;但是突变酶I179C-T253C的热稳定性发生了降低;突变酶G33C-S126C-179C-T253C不能被表达。重组黑曲霉AlpI的3种突变酶(G34C-S127C、I180C-T254C和G34C-S127C-180C-T254C),均不能在毕赤酵母KM71菌株中成功表达。对米曲霉NpI的“HExxH~19aa~E”Motif结构中的活性位点(H429、H433和E453)进行一系列的突变,结果表明该3个位点对NpI非常重要,进一步说明该酶属于锌蛋白酶家族。
     以大豆蛋白为底物,考察了重组蛋白酶对大豆分离蛋白的水解能力。结果表明重组米曲霉ApII最佳温度、pH值、水解时间和加酶量分别为45℃、10.0、1-1.5h和1000U/g,此时大豆分离蛋白水解度为15.8%。重组黑曲霉ApI最佳的温度、pH值、水解时间和加酶量分别为40℃、10.0、1h和1000U/g,此时的大豆分离蛋白水解度为15.6%。重组米曲霉NpI最佳的温度、pH值、水解时间和加酶量分别为45℃、8.0、1-1.5h和1500U/g,此时的大豆分离蛋白水解度为16.4%。
Some fungi strains were the predominant strains used in the production of traditionalfermentation food of soybean in china. Because of a long time of acclimatization on the highprotein medium, these strains could synthesize and secrete several proteinases, which hadgood suitability to plant protein and showed high hydrolysis efficiency to plant protein,especially for soybean protein. At present, researches of both domestic and abroad werefoucused on improving yields of proteases by optimizing solid or liquid fermentation andenzymic properties, while neglected cloning and expression of protease genes from fungi. Forthis reason, our research focused on clone and expression of protease genes from severalfungi, site-directed mutagenesis, and hydrolysis efficiency to soybean protein.
     Three new aminopeptidase genes from fungi, such as Actinomucor elegans, Rhizopuschinensis and Mucor racemosus, etc. were achieved, and respectively submitted to GenBank(access number HQ825158, JQ657815and JQ657814, the below is same), and two newserine protease genes (GU356536and JF922913). Further, other protease genes were gainedby RT-PCR techniques, these genes were as follow: four serine protease genes (L19059,XM_001391433, XM_001824768and XM_001820092), five acid proteases genes(XM_001399818, XM_001401056, D13894, AB090877and AB044079), and one neutralprotease genes (AF099904). In a word, fifteen proteases genes were obtain in our research.
     These protease genes were predicted and analyzed by in detail based on thebioinformatics theory and technology. The results showed all protease genes, which haddifferent preference for codon usage, coded different length of amino acid residues. Six kindsof proteases belonged to Proteinase K family and exhibited the closest genetic relationshipeach other. Moreover, according to the six proteases structure modeled via homologymodeling with Proteinase K (PDB code:1IC6) as the crystal coordinate, it was found that sixproteases had no disulfide bonds and possessed a Ca2+binding site, and that the differences insubstrate-binding region, hydrogen bond, salt bridge and disulfide bond between proteaseswere probably responsible for the special hydrolysis ability.
     Five kinds of proteases belonged to acid protease Asp family, and were extracellularproteases, and exhibited the closest genetic relationship each other. Moreover, according to the five proteases structure modeled via homology modeling with Aspergillopepsin I (PDBcode:1IBQ B) as the crystal coordinate, it was found that five proteases respectively had adisulfide bond and possessed a Zn2+binding site. The differences in the solvent accessiblesurface area of active sites, hydrogen bond, salt bridge, substrate-binding region and ψ-loopstructure between five proteases were probably responsible for the special enzymaticcharacteristics.
     Active sites, motif structure and evolutionary relationship of the neutral protease and theaminopeptidase genes respectively were predicted and analyzed. Because these proteases hadno suitable homology models, the secondary structure and the tertiary structure were notpredicted.
     The fragments containing protease genes, which respectively were from A.elegans, R.chinensis, A.niger, A.oryzae and A.elegans, were cloned into pET-22b(+) expression vector,then were transformed into E. coli Bl21and expressed under the induction of IPTG. Theresults showed the expressed recombinant proteases were inactive proteases. These proteasegenes were cloned into the secreted expression pPIC9K vector, and the recombinant vectorswere transferred into Pachia pastoris KM71strain, then the recombinant KM71strains wereinduced using methyl hydrate. The results showed only three protease genes could beexpressed sucessfuly, and the three protease genes respectively was AlpI gene of A.niger,AlpII gene of A.oryzae and NpI gene of A.oryzae. Furtherly, the characters of the threerecombinant proteases separated and purified respectively were studied. The results ofrecombinant protease(rAlpI) of A.niger showed that (1) when the protease were induced toexpress in a10-L fermentor,the protease activity of the fermentation broth was up to4050U/mL;(2) the optimum pH value and temperature of the protease were respectively8.0-9.0and50℃,and the protease was stable at a pH value of6.0-9.0below40℃;(3) PMSFcould absolutely inhibite the activity of the protease, and the the activity of recombinantprotease was respectively activated by Ca2+, Mn2+and K+, and slightly inhibited by Zn2+、Fe2+and Mg2+.
     The results of recombinant protease(rAlpII) of A.oryzae showed that (1) when theprotease was induced to express in a10-L fermentor,the protease activity of the fermentationbroth was up to4100U/mL;(2) the optimum pH value and temperature of the protease were respectively8.5-9.5and50℃, and the protease was stable at a pH value of6.0to10.0below40℃;(3) PMSF could completely inhibite the activity of protease, and the activity ofrecombinant protease was respectively activated by Ca2+and Mg2+, and slightly inhibited byZn2+,Fe2+and Mn2+.
     The results of recombinant protease(rNpI) of A.oryzae showed (1) when the proteasewas induced to express in a10-L fermentor,the protease activity of the fermentation brothwas up to43101U/mL;(2)the optimum pH value and temperature of the protease wererespectively8.0and55℃, and the protease was stable at a pH value of5.0to9.0below45℃;(2)EDTA could completely inhibited the activity of protease, and the activity of recombinantprotease was inhibited by Cu2+and Zn2+.
     In order to improve the thermal stability of the recombinant proteases for industrialexploitation and utilization, the site directed mutagenesis have been used to add the disulfidebonds into the recombinant proteases. The results showed that the thermal stability of themutant enzyme AlpII G33C-S126C of A.oryzae, which indicated that amino acids residuals ofsite33and site126were mutated into C, were improved, while the mutant enzymeI179C-T253C was reduced, and the mutant enzyme G33C-S126C-179C-T253C could not beexpressed in P. pastoris. The three mutant enzymes of A.niger, G34C-S127C, I180C-T254Cand G34C-S127C-180C-T254C, could not be expressed in P. pastoris, too. A series ofmutations to “HExxH~19aa~E” Motif of the rNpI of A.oryzae were constructed, the resultsshowed the three active sites were important to the the rNpI, and further was confirmed theprotease NpI as a gluzincin.
     Using isolated soybean proteins as substrate, the hydrolysis efficiency of the threerecombinant proteinases was studied. The results indicated (1) that the rApII of A.oryzae hadthe highest hydrolysis degree (15.8%) at45℃, pH10.0,1-1.5h and1000U/g;(2) the rApI ofA.niger had the highest hydrolysis degree (15.6%) at40℃, pH10.0,1h and1000U/g;(3) therNpI of A.oryzae had the highest hydrolysis degree (16.4%) at45℃, pH8.0,1-1.5h and1500U/g.
引文
[1] Sumantha A, Larroche C, Pandey A. Microbiology and industrial biotechnology offood-grade proteases: a perspective [J]. Food Technology and Biotechnology,2006,44(2):211-220.
    [2]胡学智,王俊.蛋白酶生产和应用的进展[J].工业微生物,2008,38(4):49-61.
    [3]吕刚,韩笑,张秀娟,等.天冬氨酸蛋白酶的研究进展[J].吉林化工学院学报,2008,25(1):13-18.
    [4] Morihara K. Comparative specificity of microbial proteinases[J].Advances in Enzymologyand Related Areas of Molecular Biology,1974,41:179-243.
    [5] Guntelberg AV, Otteson M. Preparation of crystals containing the plakalbumin-formingenzyme from Bacillus subtilis[J]. Nature,1952,170(4332):802.
    [6] Smith EL, DeLange RJ, Evans WH, et al. Subtilisin Carlsberg. V. the complete sequences:comparison with subtilisin BPN; evolutionary relationships[J]. The Journal of BiologicalChemistry,1968,243(9):2184-2191.
    [7]袁勤生,赵健.酶与酶工程[M].上海:华东理工大学出版社,2005:73.
    [8] Vermelho AB, Meirelles MN; Lopes A. et al. Detection of extracellular proteases frommicroorganisms on agar plates [J]. Memorias do Instituto Oswaldo Cruz,1996,91(6):755-760.
    [9]沈萍,陈向东.微生物学实验(第4版)[M].北京:高等教育出版社,2010,187-191.
    [10] Beg QK, Saxena RK, Gupta R. De-repression and subsequent induction of proteasesynthesis by Bacillus mojavensis under fed-batch operations [J]. Process Biochemistry,2002,37(10):1103-1109
    [11] Singh A, Ghosh V K, Ghosh P. Production of thermostable acid protease by Aspergillusniger[J]. Letters in Applied Microbiology,1994,18(3):177-180.
    [12] Tunga R, Banerjee R, Bhattacharyya BC. Optimization of some additives to improveprotease production under SSF[J]. Indian Journal of Experimental Biology,2001,39(11):1144-1148.
    [13] Javier Barrios-González. Solid-state fermentation: Physiology of solid medium, itsmolecular basis and applications[J]. Process Biochemistry,2012,47(2):175-185.
    [14] Gupta R, Beg QK, Lorenz P. Bacterial alkaline proteases: molecular approaches andindustrial applications [J]. Applied Microbiology Biotechnology,2002,59(1):15-32.
    [15] Mao WY, Pan RR, Freedman D. High production of alkaline protease by Bacilluslicheniformis in a fed-batch fermentation using a synthetic medium[J]. Journal of IndustrialMicrobiology,1992,11(1):1-6.
    [16] Aleksieva P, Mutafov S. Continuous culture of Humicola lutea120-5for acid proteinaseproduction[J]. World Journal of Microbiology and Biotechnology,1997,13(3):353-354.
    [17] Banerjee R, Bhattacharyya BC. Optimization of multiple inducers effect on proteasebiosynthesis by Rhizopus oryzae[J]. Bioprocess Engineering,1992,7(5):225-228.
    [18] Sandhya C, Sumantha A, Szakacs G, et al. Comparative evaluation of neutral proteaseproduction by Aspergillus oryzae in submerged and solid-state fermentation[J]. ProcessBiochemistry,2005,40(8):2689-2694.
    [19] Holker U, Lenz J. Solid-state fermentation-are there any biotechnological advantages?[J]. Current Opinion in Microbiology,2005,8(3):301-306.
    [20] Chutmanop J, Chuichulcherm S, Chisti Y. Protease production by Aspergillus oryzae insolid-state fermentation using agroindustrial substrates[J]. Journal of Chemical Technologyand Biotechnology,2008,83(7):1012-1018.
    [21] Wang RH, Law RCS, Webb C. Protease production and conidiation by Aspergillusoryzae in flour fermentation[J]. Process Biochemistry,2005,40(1):217-227.
    [22] Battaglino RA, Huergo M, Pilosof AMR, et al. Culture requirements for the productionof protease by Aspergillus oryzae in solid-state fermentation[J]. Applied Microbiology andBiotechnology,1991,35(3):292-296.
    [23] Sumantha A, Sandhya C, Szakacs G, et al. Production and partial purification of a neutralmetalloprotease by fungal mixed substrate fermentation[J]. Food Technology andBiotechnology,2005,43(4):313-319.
    [24]孙巍,刘学铭.酶的固体发酵生产研究进展[J].生物技术通报,2008(2):64-67.
    [25] Smacchi E, Fox PF, Gobbetti M. Purification and characterization of two extracellularproteinases from Arthrobacter nicotianae9458[J]. FEMS Microbiology Letters,1999,170(2):327-333.
    [26] Singh J, Batra N, Sobti RC. Serine alkaline protease from a newly isolated Bacillus sp.SSR1[J]. Process Biochemistry,2001,36(8):781-785.
    [27] Thangam EB, Rajkumar GS. Purification and characterization of an alkaline proteasefrom Alcaligenes faecalis[J]. Biotechnology and Applied Biochemistry,2002,35(2):149-154.
    [28] Larcher G, Cimon B, Symoens F, et al. A33kDa serine proteinase from Scedosporiumapiospermum[J].The Biochemical Journal,1996,315:119-126.
    [29] Chakrabarti SK, Matsumura N, Ranu RS. Purification and characterization of anextracellular alkaline serine protease from Aspergillus terreus (IJIRA6.2)[J]. CurrentMicrobiology,2000,40(4):239-244.
    [30]潘进权,罗晓春,谢明权.雅致放射毛霉AS3.2778碱性蛋白酶的纯化及水解特性[J].华南理工大学学报(自然科学版),2008,36(12):106-111.
    [31] Saeki K, Iwata J, Watanabe Y, et al. Purification and characterization of an alkalineprotease from Oerskovia xanthineolytica TK-1[J]. Journal of Fermentation andBioengineering,1994,77(5):554-556.
    [32] Lee JK, Kim YO, Kim HK, et al. Purification and characterization of a thermostablealkaline protease from Thermoactinomyces sp. E79and the DNA sequence of the encodinggene[J]. Bioscience, Biotechnology, and Biochemistry,1996,60(5):840-846
    [33] Yeoman KH, Edwards C. Purification and characterization of the protease enzymes ofStreptomyces thermovulgaris grown in rapemeal-derived media[J]. Journal of AppliedMicrobiology,1997,82(2):149-156.
    [34] Petinate SDG, Branquinha MH, Coelho RRR, et al. Purification and partialcharacterization of an extracellular serine-proteinase of Streptomyces cyaneus isolated fromBrazilian cerrado soil[J]. Journal of Applied Microbiology,1999,87(4):557-563.
    [35] Donaghy JA, McKay AM. Production and properties of an alkaline protease byAureobasidium pullulans[J]. The Journal of Applied Bacteriology,1993,74:662-666.
    [36] Poza M, de Miguel T, Sieiro C, et al. Characterization of a broad pH range protease ofCandida caseinolytica[J]. Journal of Applied Microbiology,2001,91(5):916-921.
    [37]张美香,刘娜,蔡静平.微生物源酸性蛋白酶的研究进展[J].河南工业大学学报(自然科学版),2009,30(6):88-92.
    [38]谢承佳.微生物高温蛋白酶的研究和应用进展[J].安徽农业科学,2010,38(30):16765-16766.
    [39] Li AN, Ding AY, Chen J, et al. Purification and characterization of two thermostableproteases from the thermophilic fungus Chaetomium thermophilum[J]. Journal ofMicrobiology and Biotechnology,2007,17(4):624-631.
    [40]沈萍.微生物学[M].北京:高等教育出版社,2000,231-237.
    [41]张超垒,王成忠,张志国,等.我国凝乳酶产生菌育种的研究进展[J].2011,39(4):36-38.
    [42] Zamost BL, Brantley QI, Elm DD, et al. Production and characterization of athermostable protease produced by an asporogenous mutant of Bacillus stearothermophilus[J].Journal of Industrial Microbiology,1990,5(5):303-312.
    [43]邵淑娟,李铁柱,李倬林,等.产凝乳酶黑曲霉JG的微波诱变育种研究[J].中国酿造,2010(7):48-50.
    [44]欧平.工业微生物化学诱变育种研究及应用进展[J].贺州学院学报,2008,24(3):139-144.
    [45]熊俐,杨跃寰,胡洋.物理诱变技术在食品工业微生物育种上的应用进展[J].江苏农业科学,2010(5):457-459.
    [46] Xu DF, Pan L, Zhao HF, et al. Breeding and identification of novel koji molds with highactivity of acid protease by genome recombination between Aspergillus oryzae andAspergillus niger[J].Journal of Industrial Microbiology and Biotechnology,2011,38(9):1255-1265.
    [47]潘延云,张贺迎,周艳芬,等.原生质体融合构建高产碱性蛋白酶工程菌[J].应用与环境生物学报,2002,8(4):422-426.
    [48] Ranga V, Saini Gurvinder Kaur. Biochemical and molecular characterization of wild-typeand fused protoplasts of Beauveria bassiana and Metarhizium anisopliae[J]. FoliaMicrobiologica,2011,56(4):289-295.
    [49]谢友菊,王国英,林爱星.遗传工程概论(第2版)[M].北京:中国农业出版社,2005:1.
    [50] Wells JA, Ferrari E, Henner DJ, et al. Cloning, sequencing, and secretion of Bacillusmyloliquefaciens subtilisin in Bacillus subtilis[J]. Nucleic Acids Research,1983,11(22):7911-7925.
    [51] Liu SQ, Meng ZH, Yang JK, et al. Characterizing structural features of cuticle-degradingproteases from fungi by molecular modeling[J]. BMC Structural Biology,2007,7:33.
    [52] Liang LM, Yang JK, Li J, et al. Cloning and homology modeling of a serine proteasegene (PrC) from the nematophagous fungus Clonostachys rosea[J]. Annals of Microbiology,2011,61(3):511-516.
    [53]解庭波.大肠杆菌表达系统的研究进展[J].长江大学学报(自然科学版),2008,5(3):77-82.
    [54] Hu J, Qin HJ, Gao FP, et a1. A systematic assessment of mature MBP in membraneprotein production: Overexpression, membrane targeting and purification[J]. ProteinExpression and Purification,2011,80(1):34-40.
    [55]范翠英,冯利兴,樊金玲,等.重组蛋白表达系统的研究进展[J].生物技术,2012,22(2):76-80.
    [56]彭清忠,张惟材,朱厚础.枯草杆菌表达系统的研究进展[J].生物技术通讯,2001,12(3):220-225.
    [57]董清华,沈元月.酵母表达系统研究进展与展望[J].北京农学院学报,2008,23(2):72-75.
    [58] Potvin G, Ahmad A, Zhang ZS. Bioprocess engineering aspects of heterologous proteinproduction in Pichia pastoris:A review[J]. Biochemical Engineering Journal,2012,64:91-105.
    [59]姚晶,吴正钧,任婧.巴氏毕赤酵母表达系统的研究进展[J].江苏农业科学,2012,40(3):35-38.
    [60] Ward OP. Production of recombinant proteins by filamentous fungi[J]. BiotechnologyAdvances,2012,30(5):1119-1139.
    [61]肖怀秋,林亲录,李玉珍,等.微生物碱性蛋白酶研究进展[J].中国食品添加剂,2005,5:60-64.
    [62]潘延云,张贺迎,周艳芬,等.原生质融合构建高产碱性蛋白酶工程菌[J].应用与环境生物学报,2002,8(4):422-426.
    [63] Stahl M, Ferrari E. Replacement of the Bacillus subtilis subtilisin structural gene with invitro-derived deletion mutant[J]. Journal of Bacteriology,1984,158(2):411-418.
    [64] Koide Y, Nakamura A,Uozumi T, et a1. Cloning and sequencing of the major intracellularserine protease gene of Bacillus subtilis[J]. Journal of Bacteriology,1986,167(1):110-116.
    [65] Kaneko R, Koyama N, Tsai YC, et a1. Molecular cloning of the structural gene foralkaline elastase YaB, a new subtilisin produced by an alkalophilic Bacillus strain[J]. Journalof Bacteriology,1989,171(9):5232-5236.
    [66] Van der Laan JC, Gerristse G, Mulleners LJ, et a1. Cloning, characterization, andmultiple chromosomal integration of a Bacillus alkaline protease gene[J]. Applied andEnvironmental Microbiology,1991,57(4):901-909.
    [67] Jang JS, Kang DO, Chun MJ, et al. Molecular cloning of a subtilisin J from Bacillusstearothermophilus and its expression in Bacillus subtilis[J]. Biochemical and BiophysicalResearch Communications,1992,184(1):277-282.
    [68] Zaghloul TI, Abdelaziz A, Mostafa MH. High level of expression and stability of thecloned alkaline protease (aprA) gene in Bacillus subtilis[J]. Enzyme and MicrobialTechnology,1994,16(6):534-537.
    [69] Hakamada Y, Kobayashi T, Hitomi J, et al. Molecular cloning and nucleotide sequencingof the gene for an alkaline protease from the alkalophilic Bacillus sp. KSM-K16[J]. Journal ofFermentation and Bioengineering,1994,78(1):105-108.
    [70] Pan J, Huang Q, Zhang YZ. Gene cloning and expression of an alkaline serine proteasewith dehairing function from Bacillus pumilus[J].Current Microbiology,2004,49(3):165-169.
    [71] An SY, Ok M, Kim JY, et al. Cloning, high-level expression and enzymatic properties ofan intracellular serine protease from Bacillus sp WRD-2[J]. Indian Journal of Biochemistry&Biophysics,2004,41(4):141-147.
    [72] Tang XM, Shen W, Lakay FM, et al. Cloning and over-expression of an alkaline proteasefrom Bacillus licheniformis[J]. Biotechnology Letters,2004,26(12):975-979.
    [73] Demidyuka IV, Kalashnikova AE, Gromovab TY, et al. Cloning, sequencing, expression,and characterization of protealysin, a novel neutral proteinase from Serratia proteamaculansrepresenting a new group of thermolysin-like proteases with short N-terminal region ofprecursor[J]. Protein Expression and Purification,2006,47(2):551-561.
    [74] Karbalaei-Heidari HR, Ziaee A, Amoozegar MA, et al. Molecular cloning and sequenceanalysis of a novel zinc-metalloprotease gene from the Salinivibrio sp. strain AF-2004and itsextracellular expression in E. coli[J].Gene,2008,408(1):196-203.
    [75] Zhang M, Zhao C, Du LX, et al. Expression, purification, and characterization of athermophilic neutral protease from Bacillus stearothermophilus in Bacillus subtilis[J]. Sciencein China Series C: Life Sciences,2008,51(1):52-59
    [76] Wang F, Hao JH,Yang CY, et al. Cloning, expression, and identification of a novelextracellular cold-Adapted alkaline protease gene of the marine bacterium strainYS-80-122[J]. Applied Biochemistry and Biotechnology,2010,162(5):1497-1505.
    [77] Abbasi-Hosseini SM, Eftekhar F, Yakhchali B, et al. Cloning and enhanced expression ofan extracellular alkaline protease from a soil isolate of Bacillus clausii in Bacillus subtilis[J].Iranian Journal of Biotechnology,2011,9(4):275-280.
    [78] Kaur I, Gurvinder SK, Gupta VK. Molecular cloning and nucleotide sequence of thegene for an alkaline protease from Bacillus circulans MTCC7906[J]. Indian Journal ofMicrobiology,2012,52(4):630-637.
    [79] Lee JK, Kim YO., Sunitha K, et al. Expression of thermostable alkaline protease genefrom Thermoactinomyces sp. E79in E. coli and heat activation of the gene product[J].Biotechnology Letters,1998,20(9):837-840.
    [80] Li J, Shi PJ, Han XY, et al. Functional expression of the keratinolytic serine proteasegene sfp2from Streptomyces fradiae var. k11in Pichia pastoris[J]. Protein Expression andPurification,2007,54(1):79-86.
    [81] Gohel SD, Singh SP. Cloning and expression of alkaline protease genes from twosalt-tolerant alkaliphilic actinomycetes in E. coli[J]. International Journal of BiologicalMacromolecules,2012,50(3):664-671.
    [82] Ni XM, Chi ZM, Ma CL, et al. Cloning, characterization, and expression of the geneencoding alkaline protease in the marine yeast Aureobasidium pullulans10[J]. MarineBiotechnology,2008,10(3):319-327.
    [83] Li J, Chi ZM, Liu ZQ, et al. Cloning and characterization of a novel aspartic proteasegene from marine-derived Metschnikowia reukaufii and its expression in E. coli[J]. AppliedBiochemistry and Biotechnology,2009,159(1):119-132.
    [84] Kim T, Lei XG. Expression and characterization of a thermostable serine protease (TfpA)from Thermomonospora fusca YX in Pichia pastoris[J]. Applied Microbiology andBiotechnology,2005,68(3):355-359.
    [85] Sheng JZ, An K, Deng CS, et al. Cloning a cuticle-degrading serine protease gene withbiologic control function from Beauveria brongniartii and its expression in Escherichiacoli[J]. Current Microbiology,2006,53(2):124-128.
    [86] Li AN, Li DC. Cloning, expression and characterization of the serine protease gene fromChaetomium thermophilum[J]. Journal of Applied Microbiology,2009,106(2):369-380.
    [87] Mohamed H, Noomen H, Kemel J, et al. Gene cloning and expression of a detergentstable alkaline protease from Aspergillus clavatus ES1[J]. Process Biochemistry,2010,45(10):1746-1752.
    [88] Yu G, Liu JL, Xie LQ, et al. Characterization, cloning, and heterologous expression of asubtilisin-like serine protease gene VlPr1from Verticillium lecanii[J]. Journal ofMicrobiology,2012,50(6):939-946.
    [89] Zhang DP, Spadaro D, Valente S, et al. Cloning, characterization, expression andantifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5involved inthe biological control of postharvest pathogens[J]. International Journal of Food Microbiology,2012,153(3):453-464.
    [90]吴华昌,邓静,吴晓莉,等.蛋白质工程在改造工业用酶中的应用[J].四川轻化工学院学报,2004,17(2):79-82.
    [91] Winter G, Fersht AR, Wilkinson AJ, et al. Redesigning enzyme structure by site-directedmutagenesis: tyrosyl tRNA synthetase and ATP binding[J]. Nature,299(5885):756-758.
    [92] Takagi H, Takahashi T, Momose H,et al. Enhancement of the thermostability of subtilisinE by introduction of a disulfide bond engineered on the basis of structural comparison with athermophilic serine protease[J].The Journal of Biological Chemistry,1990265(12):6874-6878.
    [93] Pantoliano M, Ladner R, Bryan P, et al. Protein engineering of subtilisin BPN': enhancedstabilization through the introduction of two cysteines to form a disulfide bond[J].Biochemistry,1987,26(8):2077-2082.
    [94] Mitchinson C, Wells J. Protein engineering of disulfide bonds in subtilisin BPN'[J].Biochemistry,1989,28(11),4807-4815.
    [95] Wright H T. Nonenzymatic deamidation of asparaginyl and glutaminyl residues inproteins[J].1991,26(1):1-52.
    [96] Narhi L, Stabinsky Y, Levitt M, et al. Enhanced stability of subtilisin by three pointmutations[J]. Biotechnology and applied biochemistry,1991,13(1):12-24.
    [97] Smith C, Toogood H, Baker H, et al. Calciummediated thermostability in the subtilisinsuperfamily: the crystal structure of Bacillus Ak.1protease at1.8resolution[J]. Journal ofMolecular Biology,1999,294(4):1027-1040.
    [98] Pantoliano M, Whitlow M, Wood J, et al. The engineering of binding affinity at metal ionbinding sites for the stabilization of proteins: subtilisin as a test case[J]. Biochemistry,1988,27(22),8311-8317.
    [99] Estell D, Graycar T, Wells J. Engineering an enzyme by sitedirected mutagenesis to beresistant to chemical oxidation[J]. The Journal of Biological Chemistry,1985,260(11):6518-6521.
    [100] Ballinger M, Tom J, Wells J. Designing subtilisin BPN' to cleave substrates containingdibasic residues[J]. Biochemistry,1995,34(41):13312-13319.
    [101] Ballinger M, Tom J, Wells J. Furilisin: a variant of subtilisin BPN' engineered forcleaving tribasic substrates[J]. Biochemistry,1996,35(42):13579-13585.
    [102] Rheinnecker M. Baker G, Eder J, et al. Engineering a novel specificity in subtilisinBPN'[J]. Biochemistry,1993,32(5):1199-1203.
    [103] Mei H, Liaw Y, Li Y, et al. Engineering subtilisin YaB: restriction of substratespecificity by the substitution of Gly124and Gly151with Ala[J]. Protein Engineering.1998,11(2):109-117.
    [104] Eijsink VGH, Gaseidnes S, Borchert TV, et al. Directed evolution of enzyme stability[J].Biomolecular Engineering,2005,22(1-3):21-30.
    [105] Strausberg S, Alexander P, Gallagher D, et al. Directed evolution of a subtilisin withcalcium-independent stability[J]. Bio/Technology,1995,13(7):669-673.
    [106] Strausberg S, Ruan B, Fisher K, et al. Directed coevolution of stability and catalyticactivity in calcium-free subtilisin[J]. Biochemistry,2005,44(9):3272-3279.
    [107] Miyazaki K,Wintrode PL, Grayling RA, et al. Directed evolution study of temperatureadaptation in a psychrophilic Enzyme[J]. Journal of Molecular Biology,2000,297(4):1015-1026.
    [108] Chen KQ, Arnold FH. Enzyme engineering for nonaqueous solvents: randommutagenesis to enhance activity of subtilisin E in polar organic media[J]. Bio/Technology,1991,9(11):1073-1077.
    [109] Chen KQ, Arnold FH. Tuning the activity of an enzyme for unusual environments:sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide[J].Proceedings of the National Academy of Sciences of the United States of America,1993,90(12):5618-5622.
    [110] Pogson M, Georgiou G, Iverson BL. Engineering next generation proteases[J]. CurrentOpinion in Biotechnology,2009,20(4):390-397.
    [111] Daugherty PS. Protein engineering with bacterial display[J].Current Opinion inStructural Biology,2007,17(4):474-480.
    [112] O’Loughlin TL, Greene DN, Matsumura I. Diversification and specialization of HIVprotease function during in vitro evolution[J]. Molecular Biology and Evolution,2006,23(4):764-772.
    [113]Fabian Koèhler. A yeast-based growth assay for the analysis of site-specific proteases[J].Nucleic Acids Research,2003,31(4):e6.
    [114] Sellamuthu S, Shin BH, Lee ES, et al. Engineering of protease variants exhibitingaltered substrate specificity[J]. Biochemical and Biophysical Research Communications,2008,371(1):122-126.
    [115]刘新旗,涂丛慧,张连慧,等.大豆蛋白的营养保健功能研究现状[J].北京工商大学学报(自然科学版),2012,30(2):1-6.
    [116]陈琛.大豆多肽的生物功能研究进展[J].饲料研究,2010,5:28-31.
    [117]钱方,邓岩,王凤翼等.碱性内切蛋白酶水解大豆蛋白的研究[J].大连轻工业学院学报,2000,19(1):40-44.
    [118]杜翠荣,马荣山.酶解高水解度大豆蛋白肽的研究[J].粮油加工与食品机械,2005,(6)57-59.
    [119] Agrawal D, Patidar P, Banerjee T. Alkaline protease production by a soil isolate ofBeauveria feline under SSF condition: parameter optimization and application to soy proteinhydrolysis [J]. Process Biochemistry,2005,40:1131-1136.
    [120]萧浪涛主编.生物信息学[M].北京:中国农业出版社,2006:1-10.
    [121]牛天贵.食品微生物学实验技术[M].北京:中国农业大学出版社,2002:170-180.
    [122]朱玉贤,李毅.现代分子生物学(第二版)[M].北京:高等教育出版社,2003:243.
    [123]本杰明,卢因编著,余龙,江松敏,赵寿元,主译.基因Ⅷ[M],北京:科学出版社,2005,187-214.
    [124]张成岗,贺福初.生物信息学方法与实践[M].北京:科学出版社,2002,120-150.
    [125]沈萍,陈向东.微生物学(第2版)[M].北京:高等教育出版社,2006.
    [126] Arnorsdottir J, Kristjansson MM, Ficner R. Crystal structure of a subtilisin-like serineproteinase from a psychrotrophic Vibrio species reveals structural aspects of coldadaptation[J]. FEBS Journal,2005,272:832-845.
    [127]陈兵,文建凡.内含子在生物信息学研究和基因工程中的应用[J].生命的化学,2010,30(1):59-63.
    [128]彭佳师,龚继明.信号肽与蛋白质的分选转运[J].植物生理学报,2011,47(1):9-17.
    [129] Fontecilla-Camps JC, Amara P, Cavazza C, et al. Structure function relationships ofanaerobic gas-processing metalloenzymes[J]. Nature,2009(7257),460:814-822.
    [130] Betzel C, Gourinath S, Kumar P, et al. Structure of a serine protease proteinase K fromTritirachium album limber at0.98resolution[J]. Biochemistry,2001,40(10):3080-3088.
    [131] Deng AH, Wu J, Zhang GQ, et al. Molecular and structural characterization of asurfactant-stable high-alkaline protease AprB with a novel structural feature unique tosubtilisin family[J]. Biochimie.2011,93(4):783-791.
    [132] Wells JA, Powers DB, Bott RR, et al. Designing substrate specificity by proteinengineering of electrostatic interactions[J]. Proceedings of the National Academy of Sciencesof the United States of America,1987,84(5):1219-1223.
    [133] Pasternak A, Ringe D, Hedstrom L. Comparison of anionic and cationic trypsinogens:the anionic activation domain is more flexible in solution and differs in its mode of BPTIbinding in the crystal structure[J]. Protein Science,1999,8(1):253-258.
    [134] Cho SW, Kim NJ, Choi MU, et al. Structure of aspergillopepsin I from Aspergillusphoenicis: variations of the S10-S2subsite in aspartic proteinases[J]. Acta CrystallgraphicaSection-biolgical Crystallography,2001,57:948-956.
    [135] Barrett AJ, Rawlings ND, Woessner JF. Handbook of proteolytic enzymes[M]. SanDiego: Academic Press,1998:801-805.
    [136] Shintani T, Kobayashi M, Ichishima E. Characterization of the S1subsite specificity ofaspergillopepsin I by site-directed mutagenesis[J]. Journal of Biochemistry,1996,120(5):974-981.
    [137] Rashbehari T, Binita S, Rintu B. Purification and characterization of a protease fromsolid state cultures of Aspergillus parasiticus[J]. Process Biochemistry,2003,38(11):1553-1558.
    [138] Yoon J, Maruyama J, Kitamoto K. Disruption of ten protease genes in the filamentousfungus Aspergillus oryzae highly improves production of heterologous proteins[J]. AppliedMicrobiology and Biotechnology,2011,89(3):747-759.
    [139] Nakadai T, Nasuno S, Iguchi N. The action of peptidases from A. oryzae in digestion ofsoybean proteins [J]. Agricultural and Biological Chemistry,1972,36(2):261-268.
    [140]葛向阳,田焕章,梁运祥.酿造学[M].北京:高等教育出版社,2005:113-153.
    [141] Li AN, Li DC. Cloning, expression and characterization of the serine protease gen fromChaetomium thermophilum [J]. Journal of Applied Microbiology.2009,106(2):369-380.
    [142]萨姆布鲁克J,拉塞尔D W.分子克隆实验指南[M].黄培堂,第三版.北京:科学出版社,2005:1217-1271,485-487.
    [143] Invitrogen Corporation. pPIC9K a Pichia vector for multicopy integration and secretedexpression (Version F)[Z].2008:1-36.
    [144] Invitrogen Corporation. Pichia Expression Kit(Version M)[Z].2002:1-84.
    [145] Holm C, Meeks-Wagner DW, Fangman WL, et al. A rapid, efficient method forisolating DNA from yeast[J]. Gene,1986,42(2):169-173.
    [146] SB/T10317-1999,中华人民共和国专业标准蛋白酶活力测定法[S].
    [147]郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,1999:54-157.
    [148] Till O, Banmann E, Linss W. Zymography with caseogram prints: quantification ofpepsinogen [J]. Analytical Biochemistry,2001,292(1):22-25.
    [149] Rao MB, Tanksale AM, Ghatge MS. Molecular and biotechnological aspects ofmicrobial proteases[J]. Microbiology and Molecular Biology Reviews.1998,62(3):597-635.
    [150] Hajji M, Kanoun S, Nasri M. et al. Purification and characterization of an alkalineserine-protease produced by a new isolated Aspergillus clavatus ES1[J]. Process Biochemistry2007,42(5):791-797.
    [151]潘进权.毛霉胞外蛋白酶组分的纯化、鉴定及性质研究[D].广州:华南理工大学,2008.51.
    [152] Anandan D, Marmer WN, Dudley RL. Isolation, characterization and optimization ofculture parameters for production of an alkaline protease isolated from Aspergillus tamari[J].Journal of Industrial Microbiology&Biotechnology,2007,34:339-347.
    [153] Dabonne S, Moallic C, Sine JP, et al. Cloning, expression and characterization of a46.5-kDa metallopeptidase from Bacillus halodurans H4sharing properties with the pitrilysinfamily[J]. Biochim Biophys Acta.2005,1725(1):136-143.
    [154] Zabolotskaya MV, Demidyuk IV, Akimkina TV, et al. A novel neutral protease fromThermoactinomyces species27a: sequencing of the gene, purification, and characterization ofthe enzyme[J]. Protein Journal,2004,23(7):483-492.
    [155] Larsen KS, Auld DS. Characterization of an inhibitory metal binding site incarboxypeptidase A. Biochemistry.1991,30(10):2613-2618.
    [156]王谨,李天增,才学鹏.甲醇酵母表达外源基因的研究近况[J].中国兽医科技,2003,33(7):34~38
    [157] Siegei RS, Brierley RA. Methylotroyphic yeast Pichia pastour produced in high-cell-density fermentationwith high cellyields as vehicle for recombinant protein production [J].Biotechnology and Bioengineering,1989,34:403-404.
    [158]张伍魁,范清林,宋礼华.毕赤酵母表达系统在外源基因表达中的研究进展及应用[J].中国生物工程杂志,2006,26(1):87-91.
    [159] Vogt G, Woell S, Argos P. Protein thermal stability, hydrogen bonds, and ion pairs[J].Journal of Molecular Biology,1997,269(4):631-643.
    [160] Han ZL, Han SY, Zheng SP. Enhancing thermostability of a Rhizomucor miehei lipaseby engineering a disulfide bond and displaying on the yeast cell surface[J]. AppliedMicrobiology Biotechnology,2009,85(1):117-126.
    [161] Betzel C, Teplyakov A, Harutyunyan E, et al. Thermitase and proteinase K: acomparison of the refned three-dimensional structures of the native enzymes[J]. ProteinEngineering,1990,3(3):161-172.
    [162] Darby NJ, Creighton TE. Dissecting the disulphide-coupled folding pathway of bovinepancreatic trypsin inhibitor, Forming the first disulphide bonds in analogues of the reducedprotein [J]. Journal of molecular biology,1993,232(3):873-896.
    [163]张渝英,杨开宇.蛋白质的氧化重折叠[J].生物工程学报,2003,19(1):1-8.
    [164] Gomis-Rüth FX, Botelho TO, Wolfram B. A standard orientation for metallopeptidases[J]. Biochimica et Biophysica Acta-Proteins and Proteomics,2012,1824(1):157-163.
    [165] Cynthia T, Aniebrys M, Xavier GRF. Matrix metalloproteinases: Fold and function oftheir catalytic domains[J]. Biochimica et Biophysica Acta-Molecular Cell research,2010,1803(1):20-28.
    [166] Vallee L, Auld DS. Active-site zinc ligands and activated H2O of zinc enzymes[J].Proceedings of the National Academy of Sciences of the United States of America,1990,87(1):220-224.
    [167]李新华,董海洲.粮油加工学[M].北京:中国农业大学出版社,2009.
    [168]赵新淮,冯志彪.大豆蛋白水解物水解度测定的研究[J].东北农业大学学报,1995,26(2):178-181.
    [169] Jens AN. Enzymic Hydrolysis of food proteins[M]. LondonElsevier,1985.132-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700