用户名: 密码: 验证码:
GK大鼠糖尿病发展中的活跃调控网络
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2型糖尿病是一种复杂系统疾病,具有明显的代谢紊乱。而肝脏在糖尿病的发展过程中扮演着极其重要的角色。只从单个基因的角度来看,很难说某个基因的表达量的改变对糖尿病的产生具有多大的作用。系统生物学可以整合大量的生物数据,对生物系统各个组成部分之间相互作用进行数学上的建模。为此本文基于2型糖尿病Goto-Kakizaki (GK)大鼠和对照组Wistar-Kyoto(WKY)大鼠在糖尿病发展过程中不同时间点上测得的芯片数据,从网络系统生物学的角度,寻找在GK大鼠糖尿病发展中的活跃调控网络。
     第一个工作是关于GK大鼠糖尿病发展中面向表型差异的分子功能识别。本课题中,我们设计了一种从表型水平到分子水平做演绎证明的方法,并用其来寻找疾病的分子功能。使用我们的方法得到的结果,对之前的研究所找到的分子功能具有很好的覆盖性。而且,我们还获得了可能帮助解释疾病的分子机制的一些信息。我们的面向表型差异的分子功能识别的方法提供了糖尿病的分子标签与表型数据之间的联系的信息。
     第二个工作是利用网络过滤的方法寻找GK大鼠糖尿病发展中的活跃调控网络。首先,通过将已知的转录因子与他们所调控的基因之间二元调控关系和已有的生物分子分类体系相结合,得到调控网络的集合。然后,计算每个调控网络与GK大鼠中测得的芯片数据的一致性,以找出相应条件下的活跃调控网络。最后得到的结果表明在2型糖尿病中:(1)在糖尿病发展的中间阶段,活跃的调控网络个数最多。(2)炎症,组织缺氧,细胞凋亡增多,细胞增生减少以及代谢紊乱GK大鼠糖尿病的特征,并且早在4周时就显现出来。(3)糖尿病发展中同时伴有损伤和补偿(4)核受体共同工作以维持正常的血糖鲁棒系统。这是第一次基于肝脏的高通量数据对GK大鼠2型糖尿病的活跃调控网络的进行的全面研究。一些重要的通路在糖尿病发展中具有重要作用。我们的发现也说明网络过滤能帮助我们理解糖尿病这样的复杂疾病,证明了网络系统生物学阐明核心机制的能力。而这些是传统的基于单个基因的分析所无法做到的。
     第三个工作是在第二个工作的基础上,结合路径一致算法寻找这些活跃调控网络中的主调控因子。首先,我们利用网络过滤的方法,挑选出GK大鼠糖尿病发展过程中三个时期中活跃的“转录因子一基因”对的集合,再用网络推断的方法找出另外一个“转录因子—基因”对的集合。在这一过程中,还考虑到了GK大鼠和WKY大鼠在三个时期中的基因表达特征。然后;再将转录因子在GK大鼠中出现的特异性和覆盖考虑进去,将上面得出的基因对集合进行了进一步的筛选。最终,在这些选出的“转录因子—基因”对的集合中找出了5个转录调控因子作为主调控因子,包括Etv4, Fus, Nr2f1, Sp2和Tcfap2b,以及它们所调控的54个基因。我们的方法成功的识别出了可能的主调控因子,其中包括了一些在之前与糖尿病有关的文献中曾经报道的转录调控因子。这证明我们的计算方法是识别生物现象中关键分子的有效方法。
Type2diabetes mellitus is a complex systemic disease, with significant disorders of metabolism. The liver plays a key role in the development of diabetes. It is difficult to evaluate the contributions of one altered gene expression level to diabetes. However, systems biology can combine huge amount of data, mathematically model the interactions among every component with biological system. So, from the view of network biology, we have performed comprehensive active regulatory network survey in Goto-Kakizaki (GK) rat and Wistar-Kyoto (WKY) rat liver microarray data.
     The first work is about phenotype-difference oriented identification of molecular functions for diabetes progression in GK rat. Here, we have proposed a method for detecting molecular functions of the disease by a deductive justification from phenotype level to molecular level, and used it for testing molecular functions of disease. The functions identified by the previous studies were well covered by the functions identified by our method. The result also provided some implications for molecular mechanisms. Our phenotype-difference oriented method provides some clues to bridge directly a gap between molecular signatures and phenotype data in diabetes.
     The second work is about network screening of GK rat liver microarray data during diabetic progression. First, we combine the known binary relationships between the transcriptional factors and their regulated genes and the biological classification scheme to get reference regulatory networks. Then, the consistency of each regulatory network with the microarray data measured in GK rat is estimated to detect the active networks under certain comditions. The results in the case of type2diabetes in the GK rat reveals:1. More pathways are active during inter-middle stage diabetes;2. Inflammation, hypoxia, increased apoptosis, decreased proliferation, and altered metabolism are characteristics and display as early as4weeks in GK rat;3. Diabetes progression accompanies insults and compensations;4.Nuclear receptors work in concert to maintain normal glycemic robustness system. This is the first comprehensive network screening study of non-insulin dependent diabetes in the GK rat based on high throughput data of the liver. We have found several important pathways playing critical roles in the diabetes progression. Our finding s also show that network screening is able to help us understand complex diastase such as diabetes, and justify the power of network systems biology approach to elucidate the essential mechanisms which could not be solved by conventional single gene-based analysis.
     The third work is based on the second work, which is combined by path consistency algorithm for finding master regulators in theses active regulatory networks. First, active TF-gene pairs for three periods in GK rat were extracted from the networks by the network screening. And another set of active TF-gene pairs were selected by the network inference, in consideration of the gene expression signatures for three periods between GK and WKY rats. Then, the TF-gene pairs extracted by the two methods were further curated, from viewpoints of the emergence specificity of TF in GK rat and the regulated-gene coverage of TF in the expression signature. zuinally, in the set of TF-gene pairs we identify only5TFs, including Etv4, Fus, Nr2f1, Sp2, and Tcfap2b with54regulated genes as the candidates of MRs.
引文
1. Smyth, S. and A. Heron, Diabetes and obesity:the twin epidemics. Nat Med,2006. 12(1):p.75-80.
    2. Sladek, R., et al., A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature,2007.445(7130):p.881-5.
    3. Hetherington, M.M. and J.E. Cecil, Gene-environment interactions in obesity. Forum Nutr,2010.63:p.195-203.
    4. Rother, K.I., Diabetes treatment-bridging the divide. N Engl J Med,2007.356(15):p. 1499-501.
    5. Lawrence, J.M., et al., Trends in the prevalence of preexisting diabetes and gestational diabetes mellitus among a racially/ethnically diverse population of pregnant women, 1999-2005. Diabetes Care,2008.31(5):p.899-904.
    6. Ashcroft, F.M. and P. Rorsman, Diabetes Mellitus and the beta Cell:The Last Ten Years. Cell,2012.148(6):p.1160-1171.
    7. Leech, C.A., et al., Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic beta cells. Progress in Biophysics & Molecular Biology,2011.107(2):p.236-247.
    8. Zhang, C.L., et al., The cAMP Sensor Epac2 Is a Direct Target of Antidiabetic Sulfonylurea Drugs. Science,2009.325(5940):p.607-610.
    9. Eliasson, L., et al., SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. Journal of General Physiology,2003.121(3):p.181-197.
    10. Rorsman, P. and E. Renstrom, Insulin granule dynamics in pancreatic beta cells. Diabetologia,2003.46(8):p.1029-1045.
    11. Hosker, J.P., et al., Similar Reduction of Ist-Phase and 2nd-Phase B-Cell Responses at 3 Different Glucose-Levels in Type-Ii Diabetes and the Effect of Gliclazide Therapy. Metabolism-Clinical and Experimental,1989.38(8):p.767-772.
    12. Takahashi, N., et al., SNARE Conformational Changes that Prepare Vesicles for Exocytosis. Cell Metabolism,2010.12(1):p.19-29.
    13. Riserus, U., W.C. Willett, and F.B. Hu, Dietary fats and prevention of type 2 diabetes. Progress in Lipid Research,2009.48(1):p.44-51.
    14. Kumar, V. and S.L. Robbins, Robbins basic pathology.8th ed2007, Philadelphia, PA: Saunders/Elsevier. ⅹⅳ,946 p.
    15. Sarwar, N., et al., Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease:a collaborative meta-analysis of 102 prospective studies. Lancet,2010. 375(9733):p.2215-22.
    16. Boussageon, R., et al., Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ,2011.343:p. d4169.
    17. Hayden, M.R., Islet amyloid, metabolic syndrome, and the natural progressive history of type 2 diabetes mellitus. JOP,2002.3(5):p.126-38.
    18. Proietto, J., et al., Understanding the pathogenesis of type 2 diabetes:Can we get off the metabolic merry-go-rounds? Australian and New Zealand Journal of Medicine,1995. 25(6):p.870-875.
    19. GalK, J., et al., Pathophysiological and genetic characterization of the major diabetes locus in GK rats. Diabetes,1999.48(12):p.2463-2470.
    20. Gauguier, D., et al., Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat. Nature Genetics,1996.12(1):p.38-43.
    21. Murphy, R., S. Ellard, and A.T. Hattersley, Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nature Clinical Practice Endocrinology & Metabolism,2008.4(4):p.200-213.
    22. Rubio-Cabezas, O., et al., K(ATP) channel mutations in infants with permanent diabetes diagnosed after 6 months of life. Pediatr Diabetes,2011.
    23. Flanagan, S.E., et al., Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor I (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat,2009.30(2):p.170-80.
    24. Hattersley, A.T. and F.M. Ashcroft, Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes,2005.54(9): p.2503-13.
    25. Osbak, K.K., et al., Update on Mutations in Glucokinase (GCK), Which Cause Maturity-Onset Diabetes of the Young, Permanent Neonatal Diabetes, and Hyperinsulinemic Hypoglycemia. Hum Mutat,2009.30(11):p.1512-1526.
    26. Permutt, M.A., J. Wasson, and N. Cox, Genetic epidemiology of diabetes. J Clin Invest, 2005.115(6):p.1431-9.
    27. Chen, L., R.-S. Wang, and X.-S. Zhang, Biomolecular networks:methods and applications in systems biology2009, Hoboken, N.J.:Wiley, ⅹⅹⅴ,387 p.
    28. Chen, L., Modeling biomolecular networks in cells:structures and dynamics.1st ed2010, New York:Springer.
    29. Bonnefond, A., P. Froguel, and M. Vaxillaire, The emerging genetics of type 2 diabetes. Trends in Molecular Medicine,2010.16(9):p.407-416.
    30. Shu, L., et al., Transcription factor 7-like 2 regulates beta-cell survival and Junction in human pancreatic islets. Diabetes,2008.57(3):p.645-653.
    31. Kitano, H., Systems biology:a brief overview. Science,2002.295(5560):p.1662-4.
    32. Davidson, E.H., et al., A genomic regulatory network for development. Science,2002. 295(5560):p.1669-78.
    33. Allen, GJ., et al., Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science,2000.289(5488):p.2338-42.
    34. Eisen, M.B., et al., Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A,1998.95(25):p.14863-8.
    35. Yoo, C., V. Thorsson, and G.F. Cooper, Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational DNA microarray data. Pac Symp Biocomput,2002:p.498-509.
    36. Imoto, S., T. Goto, and S. Miyano, Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. Pac Symp Biocomput,2002:p.175-86.
    37. Zhu, X., M. Gerstein, and M. Snyder, Getting connected:analysis and principles of biological networks. Genes Dev,2007.21(9):p.1010-24.
    38. Bruggeman, F.J. and H.V. Westerhoff, The nature of systems biology. Trends in Microbiology,2007.15(1):p.45-50.
    39. Joung, J.K., E.I. Ramm, and C.O. Pabo, A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proceedings of the National Academy of Sciences of the United States of America,2000.97(13):p.7382-7387.
    40. Edwards, J.S. and B.O. Palsson, The Escherichia coli MG1655 in silico metabolic genotype:Its definition, characteristics, and capabilities. Proceedings of the National Academy of Sciences of the United States of America,2000.97(10):p.5528-5533.
    41. Feist, A.M. and B.O. Palsson, The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nature Biotechnology,2008.26(6):p. 659-667.
    42. Friedman, N., Inferring cellular networks using probabilistic graphical models. Science, 2004.303(5659):p.799-805.
    43. Zhu, J., et al., Integrating large-scale functional genomic data to dissect the complexify of yeast regulatory networks. Nature Genetics,2008.40(7):p.854-861.
    44. Kim, T.Y., H.U. Kim, and S.Y. Lee, Data integration and analysis of biological networks. Current Opinion in Biotechnology,2010.21(1); p.78-84.
    45. Gardner, T.S., et al., Inferring genetic networks and identifying compound mode of action via expression profiling. Science,2003.301(5629):p.102-105.
    46. Thiele, I., et al., Genome-scale reconstruction of Escherichia coli's transcriptional and trdnslational machinery:a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput Biol,2009.5(3):p. e1000312.
    47. Uetz, P., et al., A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature,2000.403(6770):p.623-627.
    48. Lamesch, P., et al., C-elegans ORFeome version 3.1:Increasing the coverage of 2064 OBFeome resources with improved gene predictions. Genome Research,2004.14(10B): p.2064-2069.
    49. Stelzl, U., et al., A human protein-protein interaction network:A resource for annotating the proteome. Cell,2005.122(6):p.957-968.
    50. Giot, L., et al., A protein interaction map of Drosophila melanogaster. Science,2003. 302(5651):p.1727-1736.
    51. Rain, J.C., et al., The protein-protein interaction map of Helicobacter pylori (vol 409, pg 211,2001). Nature,2001.409(6821):p.743-+.
    52. Rual, J.F., et al., Towards a proteome-scale map of the human protein-protein interaction network. Nature,2005.437(7062):p.1173-1178.
    53. Butland, G., et al., Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature,2005.433(7025):p.531-537.
    54. Gavin, A.C., et al., Proteome survey reveals modularity of the yeast cell machinery. Nature,2006.440(7084):p.631-636.
    55. Krogan, N.J., et al., Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature,2006.440(7084):p.637-643.
    56. Arifuzzaman, M., et al., Large-scale identification of protein-protein interaction of Escherichia coliK-12. Genome Research,2006.16(5):p.686-691.
    57. Tarassov, K., et al., An in vivo map of the yeast protein interactome. Science,2008. 320(5882):p.1465-1470.
    58. Xenarios, I., et al., DIP, the Database of Interacting Proteins:a research tool for studying cellular networks of protein interactions. Nucleic Acids Research,2002.30(1): p.303-305.
    59. Morrison, J.L., et al., A lock-and-key model for protein-protein interactions. Bioinformatics,2006.22(16):p.2012-2019.
    60. Przulj, N., Biological network comparison using graphlet degree distribution. Bioinformatics,2007.23(2):p. E177-E183.
    61. Przulj, N., D.G Cornell, and I. Jurisica, Modeling interactome:scale-free or geometric? Bioinformatics,2004.20(18):p.3508-3515.
    62. Higham, D.J., M. Rasajski, and N. Przulji, Fitting a geometric graph to a protein-protein interaction network. Bioinformatics,2008.24(8):p.1093-1099.
    63. Feist, A.M., et al., Reconstruction of biochemical networks in microorganisms. Nature Reviews Microbiology,2009.7(2):p.129-143.
    64. Reed, J.L., et al., Towards multidimensional genome annotation. Nature Reviews Genetics,2006.7(2):p.130-141.
    65. Durot, M., et al., Iterative reconstruction of a global metabolic model of Acinetobacter baylyi ADP1 using high-throughput growth phenotype and gene essentiality data. Bmc Systems Biology,2008.2.
    66. Kim, T.Y., et al., Genome-scale analysis of Mannheimia succiniciproducens metabolism. Biotechnology and Bioengineering,2007.97(4):p.657-671.
    67. Feist, A.M., et al., A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Molecular Systems Biology,2007.3.
    68. Duarte, N.C., et al., Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proceedings of the National Academy of Sciences of the United States of America,2007.104(6):p.1777-1782.
    69. Ma, H.W., et al., The Edinburgh human metabolic network reconstruction and its functional analysis. Molecular Systems Biology,2007.3.
    70. Herrgard, M.J., et al., A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nature Biotechnology,2008.26(10):p. 1155-1160.
    71. Cohen, P., The regulation of protein function by multisite phosphorylation-a 25 year update. Trends in Biochemical Sciences,2000.25(12):p.596-601.
    72. Manning, G., et al., The protein kinase complement of the human genome. Science,2002. 298(5600):p.1912-+.
    73. Ficarro, S.B., et al., Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature Biotechnology,2002.20(3):p.301-305.
    74. Zhu, H., et al., Analysis of yeast protein kinases using protein chips. Nature Genetics, 2000.26(3):p.283-289.
    75. Gruhler, A., et al., Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Molecular & Cellular Proteomics,2005.4(3):p.310-327.
    76. Ptacek, J. and M. Snyder, Charging it up:global analysis of protein phosphorylation. Trends in Genetics,2006.22(10):p.545-554.
    77. Dephoure, N., et al., Combining chemical genetics and proteomics to identify protein kinase substrates. Proceedings of the National Academy of Sciences of the United States of America,2005.102(50):p.17940-17945.
    78. Loog, M. and D.O. Morgan, Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature,2005.434(7029):p.104-108.
    79. Ptacek, J., et al., Global analysis of protein phosphorylation in yeast. Nature,2005. 438(7068):p.679-684.
    80. Bender, A. and J.R. Pringle, Use of a Screen for Synthetic Lethal and Multicopy Suppressee Mutants to Identify 2 New Genes Involved in Morphogenesis in Saccharomyces-Cerevisiae. Molecular and Cellular Biology,1991.11(3):p.1295-1305.
    81. Costigan, C., S. Gehrung, and M. Snyder, A Synthetic Lethal Screen Identifies Slk1, a Novel Protein-Kinase Homolog Implicated in Yeast-Cell Morphogenesis and Cell-Growth. Molecular and Cellular Biology,1992.12(3):p.1162-1178.
    82. Winzeler, E.A., et al., Functional characterization of the S-cerevisiae genome by gene deletion and parallel analysis. Science,1999.285(5429):p.901-906.
    83. Giaever, G, et al., Functional profiling of the Saccharomyces cerevisiae genome. Nature, 2002,418(6896):p.387-391.
    84. Tong, A.H.Y., et al., Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science,2001.294(5550):p.2364-2368.
    85. Tong, A.H.Y., et al., Global mapping of the yeast genetic interaction network Science, 2004.303(5659):p.808-813.
    86. Pan, X.W., et al., A robust toolkit for functional profiling of the yeast genome. Molecular Cell,2004.16(3):p.487-496.
    87. Reguly, T., et al., Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. J Biol,2006.5(4):p.11.
    88. Cline, M.S., et al., Integration of biological networks and gene expression data using Cytoscape. Nature Protocols,2007.2(10):p.2366-2382.
    89. Shmueli, O., et al., GeneNote:whole genome expression profiles in normal human tissues. Comptes Rendus Biologies,2003.326(10-11):p.1067-1072.
    90. Mishra, GR., et al., Human protein reference database-2006 update. Nucleic Acids Research,2006.34:p. D411-D414.
    91. Shlomi, T., et al., Network-based prediction of human tissue-specific metabolism. Nature Biotechnology,2008.26(9):p.1003-1010.
    92. Zhang, Y., et al., Three-Dimensional Structural View of the Central Metabolic Network of Thermotoga maritima. Science,2009.325(5947):p.1544-1549.
    93. Brynildsen, M.P. and J.C. Liao, An integrated network approach identifies the isobutanol response network of Escherichia coli. Molecular Systems Biology,2009.5.
    94. Stolyar, S., et al., Metabolic modeling of a mutualistic microbial community. Molecular Systems Biology,2007.3.
    95. Lee, D.S., et al., The implications of human metabolic network topology for disease comorbidity. Proceedings of the National Academy of Sciences of the United States of America,2008.105(29):p.9880-9885.
    96. Yildirim, M.A., et al., Drug-target network. Nature Biotechnology,2007.25(10):p. 1119-1126.
    97. Milgram, S., Small-World Problem. Psychology Today,1967.1(1):p.61-67.
    98. Watts, D.J. and S.H. Strogatz, Collective dynamics of 'small-world' networks. Nature, 1998.393(6684):p.440-442.
    99. Wagner, A., The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Molecular Biology and Evolution,2001.18(7):p. 1283-1292.
    100. Barabasi, A.L. and Z.N. Oltvai, Network biology:understanding the cell's functional organization. Nature Reviews Genetics,2004.5(2):p.101-13.
    101. Barabasi, A.L. and R. Albert, Emergence of scaling in random networks. Science,1999. 286(5439):p.509-512.
    102. Jeong, H., et al., The large-scale organization of metabolic networks. Nature,2000. 407(6804):p.651-654.
    103. Jeong, H., et al., Lethality and centrality in protein networks. Nature,2001.411(6833):p. 41-42.
    104. Guelzim, N., et al., Topological and causal structure of the yeast transcriptional regulatory network. Nature Genetics,2002.31(1):p.60-63.
    105. Girvan, M. and M.E.J. Newman, Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America,2002. 99(12):p.7821-7826.
    106. Rives, A.W. and T. Galitski, Modular organization of cellular networks. Proceedings of the National Academy of Sciences of the United States of America,2003.100(3):p. 1128-1133.
    107. Newman, M.E.J., Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America,2006.103(23):p. 8577-8582.
    108. Tsankov, A.M., et al., Communication between levels of transcriptional control improves robustness and adaptivity. Molecular Systems Biology,2006.2.
    109. Luscombe, N.M., et al., Genomic analysis of regulatory network dynamics reveals large topologicalchanges. Nature,2004.431(7006):p.308-312.
    110. Eisenberg, E. and E.Y. Levanon, Preferential attachment in the protein network evolution. Phys Rev Lett,2003.91(13).
    111. Wagner, A., How the global structure of protein interaction networks evolves. Proceedings of the Royal Society of London Series B-Biological Sciences,2003. 270(1514):p.457-466.
    112. Cliften, P., et al., Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science,2003.301(5629):p.71-76.
    113. Kellis, M., et al., Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature,2003.423(6937):p.241-254.
    114. Almon, R.R., et al., Gene expression analysis of hepatic roles in cause and development of diabetes in Goto-Kakizaki rats. Journal of Endocrinology,2009.200(3):p.331-346.
    115. Hundal, R.S., et al., Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes,2000.49(12):p.2063-9.
    116. Ashburner, M., et al., Gene ontology:tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics,2000.25(1):p.25-9.
    117. Subramanian, A., et al., Gene set enrichment analysis:A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America,2005.102(43):p.15545-15550.
    118. Nishimura, D., BioCarta. Biotech Software & Internet Report,2001.2(3):p.117-120.
    119. Fisher, R.A., Statistical methods for research workers.4th ed1932, Edinburgh etc.: Oliver and Boyd. xiii p.,11.
    120. Liu ZP, W.Y., Zhang XS, Chen L, Identifying dysfunctional crosstalk of pathways in various regions of Alzheimer's disease brains. BMC Syst. Biol.,2010.4(Suppl 2):p. S11.
    121. Weyer, C., et al., The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. Journal of Clinical Investigation,1999.104(6):p.787-794.
    122. Um, S.H., et al., Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity. Nature,2004.431(7005):p.200-205.
    123. Wijesekara, N., et al., Muscle-specific Pten deletion protects against insulin resistance and diabetes. Molecular and Cellular Biology,2005.25(3):p.1135-1145.
    124. Frauwirth, K.A., et al., The CD28 signaling pathway regulates glucose metabolism. Immunity,2002.16(6):p.769-777.
    125. Feng, Z.H., p53 Regulation of the IGF-1/AKT/mTOR Pathways and the Endosomal Compartment. Cold Spring Harbor Perspectives in Biology,2010.2(2).
    126. Ueki, K., et al., Increased insulin sensitivity in mice lacking p85beta subunit of phosphoinositide3-kinase. Proc Natl Acad Sci U S A,2002.99(1):p.419-24.
    127. Hermeking, H., The 14-3-3 cancer connection. Nature Reviews Cancer,2003.3(12):p. 931-943.
    128. Holowachuk, E.W., M.K. Greer, and D.R. Martin, The Complete Sequence of the Mhc Class-Ii Chain Rtld-Alpha-U of the Diabetic Bb Rat-Messenger-Rna Levels of Rtl.D-Alpha in Lymphocytes. Nucleic Acids Research,1987.15(24):p.10551-10567.
    129. Furman, B., W.K. Ong, and N.J. Pyne, Cyclic AMP Signaling in Pancreatic Islets. Islets of Langerhans,2010.654:p.281-304.
    130. Pers, T.H., et al., Meta-Analysis of Heterogeneous Data Sources for Genome-Scale Identification of Risk Genes in Complex Phenotypes. Genetic Epidemiology,2011.35(5): p.318-332.
    131. delPeso, L., et al., Interleukin-3-induced phosphorylation of BAD through the protein kinaseAkt. Science,1997.278(5338):p.687-689.
    132. Mason, E.F. and J.C. Rathmell, Cell metabolism:An essential link between cell growth and apoptosis. Biochimica Et Biophysica Acta-Molecular Cell Research,2011.1813(4): p.645-654.
    133. Wingender, E., The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Briefings in Bioinformatics,2008.9(4):p. 326-332.
    134. Saito, S., S. Aburatani, and K. Horimoto, Network evaluation from the consistency of the graph structure with the measured data. Bmc Systems Biology,2008.2.
    135. Pearl, J., Probabilistic reasoning in intelligent systems:networks of plausible inference. The Morgan Kaufinann series in representation and reasoning1988, San Mateo, Calif.: Morgan Kaufinann Publishers, ⅹⅸ,552 p.
    136. Whittaker, J., Graphical models in applied multivariate statistics. Wiley series in probability and mathematical statistics Probability and mathematical statistics 1990, Chichester England; New York:Wiley,ⅹⅳ,448 p.
    137. Coles, S., An introduction to statistical modeling of extreme values. Springer series in statistics2001, London; New York:Springer, ⅹⅳ,208 p.
    138. Lee, N.K., et al., Endocrine regulation of energy metabolism by the skeleton. Cell,2007. 130(3):p.456-469.
    139. Beijers, H.J.B.H., et al., Hepatocyte nuclear factor (HNF)IA and HNF4A substitution occurring simultaneously in a family with maturity-onset diabetes of the young. Diabetic Medicine,2009.26(11):p.1172-1174.
    140. Nikkila, E.A., J.K. Huttunen, and C. Ehnholm, Postheparin Plasma Lipoprotein-Lipase and Hepatic Lipase in Diabetes-Mellitus-Relationship to Plasma Triglyceride-Metabolism. Diabetes,1977.26(1):p.11-21.
    141. Greenhalgh, C.J., et al., SOCS2 negatively regulates growth hormone action in vitro and in vivo. Journal of Clinical Investigation,2005.115(2):p.397-406.
    142. Turnley, A.M., et al., Suppressor of cytokine signaling 2 regulates neuronal differentiation by inhibiting growth hormone signaling. Nature Neuroscience,2002. 5(11):p.1155-1162.
    143. Haluzik, M., et al., Insulin resistance in the liver-specific IGF-1 gene-deleted mouse is abrogated by deletion of the acid-labile subunit of the IGF-binding protein-3 complex-Relative roles of growth hormone and IGF-1 in insulin resistance. Diabetes,2003. 52(10):p.2483-2489.
    144. Rui, L.Y., et al., SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. Journal of Biological Chemistry,2002.277(44):p. 42394-42398.
    145. Bolscher, B.GJ.M., et al., Point Mutations in the Beta-Subunit of Cytochrome-B558 Leading to X-Linked Chronic Granulomatous-Disease. Blood,1991.77(11):p. 2482-2487.
    146. Fan, F.Y., et al., ATF3 induction following DNA damage is regulated by distinct signaling pathways and over-expression of ATF3 protein suppresses cells growth. Oncogene,2002.21(49):p.7488-7496.
    147. Kannanayakal, T.J., J.R. Mendell, and J. Kuret, Casein kinase 1 alpha associates with the tau-bearing lesions of inclusion body myositis. Neuroscience Letters,2008.431(2):p. 141-145.
    148. Matsuura, E., et al., The immunology of atherothrombosis in the antiphospholipid syndrome:Antigen presentation and lipid intracellular accumulation. Autoimmunity Reviews,2009.8(6):p.500-505.
    149. Auwerx, J., et al., Tissue-Type Plasminogen-Activator Antigen and Plasminogen-Activator Inhibitor in Diabetes-Mellitus. Arteriosclerosis,1988.8(1):p. 68-72.
    150. Briggs, S.D., et al., The Ras Gtpase-Activating Protein (Gap) Is an Sh3 Domain-Binding Protein and Substrate for the Src-Related Tyrosine Kinase, Hck Journal of Biological Chemistry,1995.270(24):p.14718-14724.
    151. Claus, V., et al., Lysosomal enzyme trafficking between phagosomes, endosomes, and lysosomes in J774 macrophages-Enrichment of cathepsin H in early endosomes. Journal of Biological Chemistry,1998.273(16):p.9842-9851.
    152. Rosters, A., M. Jirsa, and A.K. Groen, Genetic background of cholesterol gallstone disease. Biochimica Et Biophysica Acta-Molecular Basis of Disease,2003.1637(1):p. 1-19.
    153. Nadler, S.T., et al., The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proceedings of the National Academy of Sciences of the United States of America,2000.97(21):p.11371-11376.
    154. Geisler, J.G., et al., Estrogen can prevent or reverse obesity and diabetes in mice expressing human islet amyloidpolypeptide. Diabetes,2002.51(7):p.2158-2169.
    155. Kalyani, R.R. and A.S. Dobs, Androgen deficiency, diabetes, and the metabolic syndrome in men. Curr Opin Endocrinol Diabetes Obes,2007.14(3):p.226-34.
    156. Lefebvre, B., et al., Proteasomal degradation of retinoid X receptor alpha reprograms transcriptional activity of PPAR gamma in obese mice and humans. Journal of Clinical Investigation,2010.120(5):p.1454-1468.
    157. Chin, J.E., F. Liu, and R.A. Roth, Activation of Protein-Kinase C-Alpha Inhibits Insulin-Stimulated Tyrosine Phosphorylation of Insulin-Receptor Substrate-1. Molecular Endocrinology,1994.8(1):p.51-58.
    158. Chuang, H.Y., et al., Network-based classification of breast cancer metastasis. Molecular Systems Biology,2007.3.
    159. Lei HB, Z.J., Chen L, Multi-equilibrium property of metabolic networks:SSI module. BMC Sys Biol,2010.5(Suppl 1):p. S15.
    160. Margolin, A.A., et al., Reverse engineering cellular networks. Nature Protocols,2006. 1(2):p.663-672.
    161. Mani, K.M., et al., A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Molecular Systems Biology,2008. 4.
    162. Carro, M.S., et al., The transcriptional network for mesenchymal transformation of brain tumours. Nature,2010.463(7279):p.318-U68.
    163. Zhou, H.R., et al., Network screening of Goto-Kakizaki rat liver microarray data during diabetic progression. Bmc Systems Biology,2011.5.
    164. Saito, S., et al., Possible linkages between the inner and outer cellular states of human induced pluripotent stem cells. Bmc Systems Biology,2011.5.
    165. S. Saito, e.a., Identification of Master Regulator Candidates in Conjunction with Network Screening and Inference. International Journal of Data Mining and Bioinformatics, in press.
    166. Spirtes, P., C.N. Glymour, and R. Schemes, Causation, prediction, and search.2nd ed. Adaptive computation and machine learning2000, Cambridge, Mass.:MIT Press, xxi, 543p.
    167. Saito, S. and K. Horimoto, Co-Expressed Gene Assessment Based on the Path Consistency Algorithm:Operon Detention in Escherichia coli.2009 Ieee International Conference on Systems, Man and Cybernetics (Smc 2009), Vols 1-9,2009:p. 4280-4286.
    168. Saito, S., T. Hirokawa, and K. Horimoto, Discovery of Chemical Compound Groups with Common Structures by a Network Analysis Approach (Affinity Prediction Method). Journal of Chemical Information and Modeling,2011.51(1):p.61-68.
    169. Benjamini, Y. and D. Yekutieli, The control of the false discovery rate in multiple testing under dependency. Annals of Statistics,2001.29(4):p.1165-1188.
    170. Grubbs, F.E., Sample Criteria for Testing Outlying Observations. Annals of Mathematical Statistics,1950.21(1):p.27-58.
    171. Jothi, R., et al., Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Molecular Systems Biology,2009.5.
    172. Kwiatkowski, T.J., et al., Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis. Science,2009.323(5918):p.1205-1208.
    173. Yu, H.Y. and M. Gerstein, Genomic analysis of the hierarchical structure of regulatory networks. Proceedings of the National Academy of Sciences of the United States of America,2006.103(40):p.14724-14731.
    174. Park, K.W., et al., The small molecule phenamil is a modulator of adipocyte differentiation and PPAR gamma expression. Journal of Lipid Research,2010.51(9):p. 2775-2784.
    175. Tao, Y., et al., The transcription factor AP-2 beta causes cell enlargement and insulin resistance in 3T3-L1 adipocytes. Endocrinology,2006.147(4):p.1685-1696.
    176. Brown, K.K., et al., NR2F1 Deletion in a Patient With a de novo Paracentric Inversion, inv(5)(q15q33.2), and Syndromic Deafness. American Journal of Medical Genetics Part A,2009.149A(5):p.931-938.
    177. Letourneur, M., et al., Sp2 regulates interferon-gamma-mediated socsl gene expression. Molecular Immunology,2009.46(11-12):p.2151-2160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700