用户名: 密码: 验证码:
扎龙湿地藻类植物群落结构特征及环境相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扎龙湿地保护区位于黑龙江省西部,齐齐哈尔东南部,嫩江支流乌裕尔河、双阳河河流至下游,失去明显河道,河水漫溢形成大面积永久性和季节性淡水沼泽地。1987年被批准为国家级自然保护区,1992年被列入国际重要湿地名录,它是我国北方同纬度地区保留最完善、最原始、最开阔的湿地生态系统,这里完整保留下许多古老物种,是重要的天然基因库之一,也是东北亚候鸟迁徙地和珍稀水禽理想的栖息繁殖中心之一。根据扎龙湿地土地利用类型及生态环境的特点,本论文全面、系统地调查了扎龙湿地藻类植物群落结构的空间分布特征。运用了传统的藻类植物分析方法与多元统计方法相结合,分析理化指标对藻类植物属种分布的影响,以及藻类植物属种对理化因子的响应。并且应用地统计学方法与Monte-Carlo方法对扎龙湿地表层水体重金属含量的空间分布进行估测及健康风险的预测。运用藻类植物与理化指标相结合的方法评价了扎龙湿地水体营养状态,旨在为扎龙湿地水生生态系统研究提供藻类生物资料和参考依据,为深入研究湿地生物资源的持续性、保护和制定管理措施提供科学依据,对预警扎龙湿地水环境富营养化的发生具有重大意义。
     通过对扎龙湿地藻类植物群落结构调查发现,扎龙湿地藻类植物种类繁多,群落组成较为复杂。本论文共鉴定藻类植物354个分类单位,隶属6门8纲21目33科80属,其中绿藻门11科36属148种,硅藻门10科24属119种,蓝藻门6科11属45种,裸藻门2科5属38种,甲藻门3科3属3种,金藻门1科1属1种。定量分析结果显示,藻类植物平均细胞密度为12.71×106个·L-1,硅藻门细胞密度最大,占藻类植物细胞密度的49.6%,其次为绿藻门和蓝藻门,分别占藻类植物细胞密度的26.2%和15.0%,且空间变化明显,排污区(17.51×106个·L-1)>实验区(12.66×106个·L-1)>缓冲区(11.92×106个·L-1)>核心区(11.14×106个·L-1);藻类植物优势种包括梅尼小环藻(Cyclotella meneghiniana),普通小球藻(Chlorellavulgaris),旋转囊裸藻(Trachelomonas volvocina),菱形藻(Nitzschia)等。
     基于主成分分析方法对扎龙湿地理化因子进行了分析。理化因子对环境变量的关系,前二个排序轴对环境变量的解释量达73.2%。运用典范对应分析对藻类植物属种与理化变量进行分析,得出前两轴总氮、总磷、高锰酸钾指数、电导率、酸碱度、浊度和叶绿素a这7个理化变量对物种数据解释率为50.2%,特征值分别为0.464和0.343。总磷、电导率、酸碱度对藻类植物属种分布影响较大,梅尼小环藻(Cyclotella meneghiniana),箱形桥弯藻(Cymbella cistula),华丽星杆藻(Asterionella formosa),普通小球藻(Chlorella vulgaris),旋转囊裸藻(Trachelomonasvolvocina)等对环境变量的响应较为明显。
     应用地统计学方法分析扎龙湿地表层水体重金属含量的空间分布,并对重金属元素之间的相关性进行分析,判定了重金属元素的来源。扎龙湿地表层水的重金属元素来源包括一下3种途径:第一,工业污染和生活污染,如农副食品加工,造纸业、生活废水、生活废弃物排放(粪便、电池等);第二,有机肥料污染,(农药、化肥等);第三,交通污染,(汽车尾气排放等)。基于Monte-Carlo方法分析表层水体重金属的敏感度,得出要降低人的致癌性风险水平,需要控制Cr的含量。通过对数据的分析,我们对扎龙湿地健康风险进行了预测,得出扎龙湿地致癌风险低于国际辐射防护委员会(ICRP)推荐的最大可接受年风险水平(5.0×10-5)和终生可接受风险水平为(3.5×10-3)。
     首次将藻类植物细胞密度、多样性指数、指示生物法、藻类优势种、污染指示种类、综合营养状态指数法相结合对扎龙湿地水体状态进行了综合评价。藻类植物细胞密度在7×106~27.9×106之间,贫营养型占11.1%,中营养型占88.9%,表明扎龙湿地水体处于中营养型;从藻类植物多样性来看,Shannon-Weaver多样性指数在1.26~2.96之间,Margalef丰富度指数在0.79~3.47之间,其中清洁类型占2%,轻度污染类型占32%,中度污染类型占56%,重度污染类型占10%。说明扎龙湿地水体大部分为中度污染类型;扎龙湿地藻类植物以α-中污带和β-中污带的指示种类数量居多;从综合营养状态指数法来看,扎龙湿地中营养占53.9%,富营养为47.1%,综合营养指数总体以中营养状态为主,水体处于中度污染状态。
Zhalong Wetland is located in the west of Heilongjiang province, the southeast ofQiqihar city, moving downstream from the branches of Nenjiang River, Wuyuer Riverand Shuangyang River. Without clear riverway, it features permanent and seasonallimnetic swampland due to the river overflowing. It was authorized as national naturalconservation area in1987, ranked as international significant wetland directory in1992.As well reserved wetland ecological system in the north of China of the same latitude, itis the most complete, original and open, where a lot of ancient species are preservedperfectly in the natural gene pool and it is one of the ideal perching and growing placefor migratory birds and precious waterfowl. According to the type of land utilizationand the feature of ecological environment in Zhalong wetland, a comprehensive andsystematic investigation has been made for spatial distribution of phytoplanktoncommunity structure of Zhalong Wetland, using the traditional analysis method onphytoplankton and multivariate statistics to analyze the impact on phytoplanktondistribution with physicochemical index and the response to environmental factors.Meanwhile, geostatistics and Monte-Carlo methods have been used to estimate spatialdistribution and forecast health risk of the heavy metal content in the surface water ofZhalong Wetland. Aiming to offer phytoplankton information and reference for theresearch on Zhalong Wetland aquatic ecosystem, a method of combining phytoplanktonand physiochemical index has been applied to assess water nutrition status in ZhalongWetland provides scientific reference for a further study on the sustainability, protectionand establishment of management measures of wetland living resources and which, isvery valuable to early warning of the aquatic eutrophication in Zhalong Wetland.
     After the investigation of phytoplankton community structure in Zhalong Wetland,it is found that there are a wide range of phytoplankton and complicated communitycomposition in this area. In the paper, there are354phytoplankton taxa being identifiedwith6divisions,8classes,21orders,33families80genera wherein Chlorophyta11families,36genera,148species, Bacillariophyta10families,24genera,119species,Cyanophyta6families11genera45species, Euglenophyta2families,5genera,38 species, Pyrroptata3families,3genera,3species, Chrysophyta1family,1genus,1species. It reveals in the quantitative analysis result that the average cell density ofphytoplankton is12.71x106L-1, wherein Bacillariophyta takes up49.6%as the largestcell density, Chlorophyta and Cyanophyta taking the second and the third placerespectively26.2%and15.0%with obvious spatial change. Discharge area(17.51×106L-1)>experimental area(12.66×106L-1)>buffer zone(11.92×106L-1)>corearea(11.14×106L-1). The dominant species include Cyclotell meneghiniana, Chlorellavulgaris, Trachelomonas volvocina and Nitzschia.
     The environmental factors in Zhalong Wetland have been analyzed based on themethod of principal component analysis. The first two ordination axes explain73.2%according to the physicochemical factors to the environmental variation. By theexample correspondence analysis, the7environmental variations, namely, total nitrogen,total phosphorus, potassium permanganate index, conductivity rate, pH value, turbidityand chlorophyll a, explain50.2%to species data, and characteristic value is0.464and0.343respectively. Total phosphorus, conductivity rate and pH value have a big impacton species distribution of phytoplankton, whereas some respond distinctively toenvironmental variation, namely, Cyclotella meneghiniana, Cymbella cistula,Asterionella formosa, Chlorella vulgaris and Trachelomonas volvocina.
     The analysis on spatial distribution of heavy metal concentration of the surfacewater in Zhalong Wetland by means of geography statistics method and on thecorrelation among heavy metals determines the source of heavy metal, including3origins: first, industrial and living pollution, such as farm products processing,paper-making industry, domestic wastewater and domestic waste discharge, such asfeces and cells; second, organic fertilizer pollution, such as pesticide and chemicalfertilizer; third, traffic pollution, such as traffic emission. Based on Monte-Carloanalysis on the sensitivity of heavy metals in the surface water, it is concluded that Crconcentration should be controlled to lower the carcinogenic risk to human being. It canalso be concluded through data analysis and health risk forecast that the carncinogenicrisk in Zhalong Wetland is lower than the maximum acceptable annual risk level,5.0×10-5, and lifetime acceptable risk level,3.5×10-3, recommended by ICRP.
     The water status in Zhalong Wetland has been comprehensively assessed by meansof phytoplankton cell density, diversity index, biological indicator and comprehensive nutrition status index. The data of phytoplankton, in which cell density is7×106~27.9×106, oligotrophic status11.1%, mesotrophic status88.9%, manifests that the waterin Zhalong Wetland belongs to mesotrophic status. In light of the diversity ofphytoplankton, Shannon-Weaver diversity index lies between1.26and2.96, Margalefdiversity index between0.79and3.47, in which the oligotrophic status takes up2%,slight contamination type32%, moderate contamination type56%, heavy contamination10%. The data shows that most of the Zhalong water belongs to moderatecontamination type. Indicated species of α-moderate contamination area and β-moderatecontamination area take majority amount in phytoplankton of Zhalong Wetland. In linewith comprehensive nutrition status index, in Zhalong Wetland mesotrophic takes up53.9%, eutrophy47.1%. The mesotrophic status takes a majority part in thecomprehensive nutrition index and the water stays in a moderate contamination status.
引文
1秦喜文,张树清,李晓峰,那晓东,潘欣.扎龙国家级自然保护区丹顶鹤巢址的空间分布格局分析.湿地科学,2009,7(2):106~111
    2周林飞,许士国,孙万光.基于灰色聚类法的扎龙湿地水环境质量综合评价.大连理工大学学报,2007,47(2):240~245
    3王茵,谢永刚,姜睿.扎龙湿地缺水情况调查及对策探讨.水利水电科技进展,2005,25(5):27~30
    4吴长申.扎龙国家级自然保护区自然资源研究与管理.东北林业大学出版社,1999
    5邹红菲,吴庆明,马建章.扎龙保护区火烧及湿地注水后丹顶鹤(Grus japonensis)巢址选择.东北师大学报(自然科学版),2003,35(1):54~59
    6W. J. Mitsch, J. G. Gosselink. Wetlands.New York:Van Nostrand Reinhold,1993.
    7郭跃东,邓伟,潘继花.扎龙河滨湿地水体营养化污染特征及水环境恢复对策.生态环境,2003,12(4):393~397
    8R. H. Kadlee, R. L. Knight. Treatment Wetlands. Boea Raton New York: Lewis Publishers,1996:5~134
    9许林书,姜明.扎龙保护区湿地扰动因子及其影响研究.地理科学,2003,23(6):692~697.
    10王宪礼,李秀珍.湿地的国内外研究进展.生态学杂志.1997,16(1):58~62
    11封晓艳.《湿地公约》与我国的湿地保护.中国海洋大学硕士学位论文.2008
    12余国营.湿地研究的若干基本问题初论.地理科学.2001,20(2):561~572
    13孙广友.中国湿地科学的进展与展望.地球科学进展.2000,15(6):666~672
    14田博.湿地——连接陆地和水的纽带.环境保护科学.2004,123(30):28~30
    15殷康前,倪晋仁.湿地研究综述.生态学报.1998,18(5):539~546
    16赵魁义,刘兴土.湿地研究的现状与展望.中国湿地研究.吉林科学技术出版社,1995:1~9
    17杨永兴.国际湿地科学研究的主要特点、进展与展望.地球科学进展.2002,21(2):111~120
    18陆健健.湿地与湿地生态系统的管理对策.农村生态环境.1989,(2):39~42
    19徐琪.湿地农田生态系统的特点及其调节.生态学杂志.1989,8(3):8~13
    20柴岫.泥炭地学.地质出版社,1990
    21A.Bottari,C.Bottari,P.Carveni,et al.Genesis and geomorphologic and ecological evolution of theGanzirri salt marsh(Messina,Italy).Quaternary International.2005,(140~141):150~158
    22汲玉河,吕宪国,杨青,董厚德.三江平原湿地植物物种空间分异规律的探讨.生态环境.2006,15(4):781~786
    23G. P. Wang, J. S. Liu, J. Tang. The long-term nutrient accumulation with respect toanthropogenic impacts in the sediments from two freshwater marshes (Xianghai wetlands,Northeast China). Water Research.2004,38:4462~4474
    24L. Zeng, Y. H. Wu, P. Ji, et al. Effect of wind on contaminant dispersion in a wetland flowdominated by free-surface effect. Ecological Modelling.2012,237~238.101~108
    25傅国斌,李克让.全球变暖与湿地生态系统的研究进展.地理研究.2001,20(1):120~128
    26R. Nicolas, L. R. Robert. The marsh cone:a test or a rheological apparatus. Cement and ConcreteResearch.2005,5(35):823~830
    27R. S. Barbero, A. D. Albani, M. Bonardi. Ancient and modern salt marshes in the Lagoon ofVenice. Palaeogeography, Palaeoclimatology, Palaeoecology.2004,202:229~244
    28A. Watanabe, Kunio Moroi, Hiromu Sato, et al. Contributions of humic substances to thedissolved organic carbon pool in wetlands from different climates. Chemosphere.2012,88:1265~1268
    29A. Bottari, C. Bottari, P. Carveni, et al. Genesis and geomorphologic and ecological evolution ofthe Ganzirri salt marsh(Messina, Italy). Quaternary International.2005,(140~141):150~158
    30李静.陕西三河湿地生态评价与保护研究.陕西师范大学硕士论文.2004
    31R. F. Wilson, W/J. Mitsch. Functional assessment of five wetlands constructed to mitigatewetland loss in Ohio, USA. Wetlands.1996,16(4):436~451
    32L. Bernard, W. Philippe. Hydrochemical assessment of the Rochefort marsh:Role of surface andgroundwater in the hydrological functioning of the wetland. Journal of Hydrology.2005,314:22~42
    33Larson Joseph S. Rapid assessment of Wetlands:history and applieation to management. GlobalWetlands: Old world and new.1994
    34M. Getachew, Argaw Ambelu, Seid Tiku. Ecological assessment of Cheffa Wetland in theBorkena Valley, northeast Ethiopia:Macroinvertebrate and bird communities. EcologicalIndicators.2012,15:63~71
    35D. J. Charman. Ramon aravena etal.Carbon dynamics in a forest peatland in north-easternOntario, Canada.Journal of Ecology.1994,(84):55~63
    36汪爱华,张树清,张柏.三江平原沼泽地湿地景观空间格局分析.生态学报.2003,23(2):237~243
    37杨开良.扎龙自然保护区湿地生物多样性现状及保护对策.中南林业调查规划,2005,24(2):27~30
    38王加连,刘忠.盐城滩涂生物多样性保护及其可持续利用.生态学杂志.2005,24(9):1090~1094
    39L. Jean-Claude, L. Pascal, F. Eric. Biodiversity in salt marshes:from patrimonial value toecosystem functioning, The case study of the Mont-Saint-Michel bay. C. R. Biologies.2003,326:125~131
    40L. F. Patricia. Vegetation change in the coastal-lowland rainforest at Avai’o’vuna Swamp,Vava’u, Kingdom of Tonga. Quaternary Research.2005,64:451~459
    41V. Ivan, R. Deborah, F. Sophia. Salt marshes:biological controls of food webs in adiminishingenvironment. Journal of Experimental Marine Biology and Ecology.2004,300:131~159
    42J. L. O. Connell, L. A. Johnson, L. M. Smith, et al. Influence of land-use and conservationprograms on wetland plant communities of the semiarid United States Great Plains. BiologicalConservation.2012,146:108~115
    43G. W. Redfield. Ecological research for quatic science and environmental restoration in SouthFlorida. Ecological Applications.2000,10(4):900~1005
    44C. P. Henry, C. Amoros. Restoraton ecology of riverine wetlands:A scientific base.Environmental Management.1995,19(6):891~902
    45A. M. Franco, S. S. Tammo, J. Parlange. The hydrology of Piermont Marsh, a reference for tidalmarsh restoration in the Hudson river estuary, New York. Journal of Hydrology.2006,316:108~128
    46H. B. John, V. H. Maureen, J. M. Hugh. Delaware Bay salt marsh restoration:Mitigation for apower plant cooling water system in New Jersey, USA. Ecological Engineering.2005,25:204~213
    47M. T. John, W. Lee. Ecological engineering, adaptive management, and restoration managementin Delaware Bay salt marsh restoration. Ecological Engineering.2005,25:304~314
    48许木启,黄玉瑶.受损水域生态系统恢复与重建研究.生态学报.1998,18(5):547~557
    49赵晓英,孙成权.恢复生态学及其发展.地球科学进展.1998,13(5):474~479
    50S. A. Sader. Accuracy of landsat-TM and GIS rule-based methods for forest wetlandsclassification in Maine. Remote Sensing Environment.1995,(3):133~144
    51M. Smith., S. Thomas, L. Annel. et al. Assessing seasonal vegetation change in eoastal Wetlandswith airborne remote sensing: an outline mehtodology. Mangorves and Salt Marshes,1998,2:15~23.
    52Moreaus, Toan, L.Biomass quantifieation of Andean wetland forages ERS satellite SAR Data foroptimizing livestock management. Remote Sensing of Environment.2003,84:477~492
    53刘振乾,吕宪国,刘红玉.黄河三角洲和辽阳三角洲湿地资源比较研究.资源科学.2002,(3):60~65
    54刘晓曼,蒋卫国,王文杰等.东北地区湿地资源动态分析.资源科学.2004,26(5):105~109
    55J. Czerepko. A long-term study of successional dynamics in the forest wetlands. Forest Ecologyand Management.2008,255:630~642
    56Chang-HuanCho, Sunghii Huh. Community structure and distribution of Phytoplankotn in theNakiong rivere strary (in Korean). Ocean Reseacrh.1988,10(l):39~45
    57K. Muylaert, K. Sabbe. Spring PhytoPlankton assemblages in and around the maximum Turbidityzone of the estuaries of the Elbe(Gemrany), the Sehelde(Beigium/The Netherlands)and theGironde(Franee). J Mar Syst,1999,22(2~3):133~149
    58M. Devercellia, I. O’Farrell. Factors affecting the structure and maintenance of phytoplanktonfunctional groups in a nutrient rich lowland river. Limnologica.2012:1~12
    59R. B. Domingues, A. B. Barbosa, U. Sommer, et al. Phytoplankton composition, growth andproduction in the Guadiana estuary (SW Iberia):Unraveling changes induced after damconstruction. Science of the Total Environment.2012,416:300~313
    60王建辉.黄河首曲湿地藻类多样性研究.三江源区生态保护与可持续发展高级学术研讨会论文摘要汇编.2005
    61李秋华,韩博平.基于CCA的典型调水水库浮游植物群落动态特征分析.生态学报.2007,27(6):2355~2364
    62S. J. Cardosoa, F. Rolanda, S. M. Loverde-Oliveirab, et al. Phytoplankton abundance, biomassand diversity within and between Pantanal wetland habitats. Limnologica.2012,42:235~241
    63J. N. Boye., R. Christian., P. W. Stanley. Patterns of Phytoplankton primary productivity in theNeuse River estuary, North Carolina, USA. MAR Ser,1993,97(3):287~297
    64K. R. Arrigon, K. E. Lowry, G. L. van Dijken. Annual changes in sea ice and phytoplankton inpolyny as of the Amundsen Sea, Antarctica. Deep-Sea Research II.2012,71~76:5~15
    65高彩凤,李学军,毛战坡.北运河浮游植物调查及水质评价.水生态学杂志.2012,33(2):85~90
    66张茹春,牛玉璐,赵建成等.北京怀沙河、怀九河自然保护区藻类组成及时空分布动态研究.西北植物学报.2006,26(8):1663~1670
    67V. Fleming-Lehtinen, M. Laamanen. Long-term changes in Secchi depth and the role ofphytoplankton in explaining light attenuation in the Baltic Sea. Estuarine, Coastal and ShelfScience.2012,102~103:1~10
    68W. Harding, W. Meeson, R. Fisher. Phytoplnakton Porduetion in two east coast estuaries:Photosynthesis-light functions and Pattenrs of carbon assimilation in ChesaPeake and Delawarebays. East Coastal Shelf Scienee.1986,(23):773~806
    69吴琼.九段沙湿地自然保护区及其附近水体浮游植物的研究.上海师范大学硕士论文.2007
    70J. Murkin, R. Murkin., D. Titman. Nectonieinvertebrate abundance and distribution at theemergent vegetation open water interface in the Dleta Marsh, Manitoba Canada. Wetlands,1992,(12):45~52
    71E. Nogueira, G. González-Nuevo, L. Valdés. The influence of phytoplankton productivity,temperature and environmental stability on the control of copepod diversity in the North EastAtlantic. Progress in Oceanography.2012,97~100:92~107
    72P. C. Abreu, C. Odebrecht, A. A. Gonzalez. Particulate and dissolved phytoplankton productionof the Patos Lagoon estuary, Southern Brazil: Comparison of methods and influencing factors.Plankton Res,1994,16(7):737~753
    73M. E. Lundya, D. F. Spencera, C. V. Kessela, et al. Managing phosphorus fertilizer to reducealgae, maintain water quality, and sustain yields in water-seeded rice. Field CropsResearch.2012,131:81~87
    74沈志良.长江口海区理化环境对初级生产力的影响.海洋湖沼通报.1993,(1):47~51
    75J. Franz, G. Krahmann, G. Lavik, et al. Dynamics and stoichiometry of nutrients andphytoplankton in waters influenced by the oxygen minimum zone in the eastern tropical Pacific.Deep-Sea Research I.2012,62:20~31
    76M. T. Sebastia, M. Rodilla, J. A. Sanchis, et al. Influence of nutrient inputs from a wetlanddominated by agriculture on the phytoplankton community in a shallow harbour at the SpanishMediterranean coast. Agriculture, Ecosystems and Environment.2012,152:10~20
    77J. K. Cronk, W. J. Mitsch. Periphyton productivity in fournewly constructed freshwater wetlandsunder different hydraulic regimes. Aquat Bot.1994,(48):325~341
    78Ana Maria Gayoso, Long-term phytoplankton studies in the Bahia Blanca estuary,Argentina.ICES Journal of Marine Science,1998,(55):655~660
    79计勇,张洁,樊后保,等.赣江中下游浮游藻类群落结构与水质评价.中国农村水利水电.2012,4:28~31
    80胡芳,刘桢.湘江长沙段浮游藻类动态监测与水质评价.环境科学与管理.2012,37(2):111~113
    81卞少伟,于洪贤,马成学,等.桃山水库浮游植物群落结构及水质营养状态评价.水生态学杂志.2012,33(1):53~57
    82殷旭旺,渠晓东,李庆南等.基于着生藻类的太子河流域水生态系统健康评价.生态学报.2012,32(6):1677~1691
    83A. Rigosia, F. J. Ruedaa. Hydraulic control of short-term successional changes in thephytoplankton assemblage in stratified reservoirs. Ecological Engineering.2012,44:216~226
    84C. Amengual-Morro, G. M. Niell, A. Martínez-Taberner. Phytoplankton as bioindicator for wastestabilization ponds. Journal of Environmental Management.2012,95:S71~S76
    85Q. F. Zhou, J. B. Zhang, J. J. Fu, et al. Biomonitoring: An appealing tool for assessment of metalpollution in the aquatic ecosystem. Analytica Chimica Acta.2008,606:135~150
    86S. Leska. Fore, Cygrafe. Using diatoms to assess the biological condition of large rivers in Idaho(U.S.A.). Freshwater Biology.2002,47(5):2015~2037
    87M. T. P. Coutinho, A. C. Brito, P. Pereira, et al. A phytoplankton tool for water qualityassessment in semi-enclosed coastal lagoons: Open vs closed regimes. Estuarine, Coastal andShelf Science.2012:1~13
    88Mihaela Enache, T. P. Yves. WA-PLS diatom-based pH, TP and COD inference models from42lakes in the Abitibiclay belt area (Quebec, Canada). Journal of Paleolimnology.2002,(27):151~171
    89J. L. Pappas. Phytoplankton assemblages, environmental influences and trophic status usingcanonical correspondence analysis, fuzzy relations, and linguistic translation. EcologicalInformatics.2010,5:79~88
    90F. Rimet. Benthic diatom assemblages and their correspondence with ecoregional classifications:case study of rivers in north-eastern France. Hydrobiologia.2009,636(1):137~151
    91沈韫芬,张宗涉,龚循钜等.微型生物监测新技术.中国建筑工业出版社,1990
    92栾青杉,孙军,宋书群等.长江口夏季浮游植物群落与环境因子的典范对应分析.植物生态学报.2007,31(3):445~450
    93高亚辉,虞秋波,齐雨藻等.长江口附近海域春季浮游硅藻的种类组成和生态分布.应用生态学报.2003,14(7):1044~1048
    94王瑜,刘录三,舒俭民等.白洋淀浮游植物群落结构与水质评价.湖泊科学.2011,23(4):575~580
    95董旭辉,羊向东,王荣,潘红玺.长江中下游地区湖泊硅藻一总磷转换函数.湖泊科学.2006,18(1):1~12
    96沈会涛,刘存歧.白洋淀浮游植物群落及其与环境因子的典范对应分析.湖泊科学.2008,20(1):773~779
    97况琪军,胡征宇,周广杰等.香溪河流域浮游植物调查与水质评价.武汉植物学研究.2004,22(6):507~513
    98郭劲松,谢丹,李哲等.三峡水库开县消落区水域冬季蓄水期间藻类群落结构与水质评价.环境科学.2012,33(4):1129~1135
    99孙砳石.气候变化对扎龙湿地生态环境的影响.黑龙江气象.2001,(1):32~34
    100王永洁,邓伟.扎龙湿地水环境可持续性度量研究.地理科学.2006,26(6):722~727.
    101李波,苏岐芳,周晏敏等.扎龙湿地的生态环境评价及防治对策.中国环境监测.2002,3(6):33~36
    102周林飞,许士国,孙勇.扎龙湿地生态系统服务功能及恢复的研究.水土保持研究.2005,12(4):167~171
    103戴向前,刘昌明,陈敏建.扎龙湿地生态需水研究.南水北调与水利科技.2007,5(5):41~47
    104彭璇,安清平,赵丹.扎龙湿地生态修复与保护的思考.黑龙江水利科学.2007,35(3):98~99
    105张囡囡,臧淑英.扎龙湿地克钦湖富营养化状态的高光谱遥感评价.地理科学.2012,32(2):232~237
    106赵旭,裕振,刘丽萍.湿地保护区水环境评价方法及其应用.勘探科学技术,2008,1:30‐32
    107周晏敏,朱桂香等.应用浮游植物对扎龙自然保护区水质的初步评价.干旱环境监测.1993,17(2):80~83
    108王泽斌,马云,李晶.扎龙湿地浮游植物群落结构及多样性研究.环境科学与管理.2011,36(5):1~4
    109李晶,齐佩时.等扎龙湿地夏秋季浮游植物群落结构,东北林业大学学报,2012,40(5):86~90
    110衣伟宏,杨柳,张正祥.基于ETM+影响的扎龙湿地遥感分类研究.湿地科学.2004,2(3):208~212
    111赵旭.扎龙湿地水环境与可持续发展.湿地科学.2005,3(4):286~291
    112逢世良.扎龙自然保护区丹顶鹤的航空调查报告.高师理科学刊.2000,20(2):59~60
    113郭春景,倪宏伟,周志强,刘彤,周瑞昌.扎龙国家级自然保护区的种子植物区系研究.国土与自然资源研.1998
    114张海鹰.扎龙湿地生态资源保护与开发对策研究.环境保护.2004
    115盖赫莉,王淑梅,王欣.对扎龙湿地生态环境的分析.黑龙江环境通报.2002
    116于保群,朱世龙,王天才.扎龙湖的水生维管束植物.黑龙江水产.1998
    117舒展.扎龙湿地生态环境评价.东北林业大学硕士学位论文,2006
    118王钰祺.扎龙自然保护区湿地资源评价与水环境质量分析.东北林业大学硕士学位论文,
    2009
    119胡鸿钧,魏印心.中国淡水藻类.科学出版社,2006.
    120黎尚豪,毕列爵.中国淡水藻志第五卷绿藻门.科学出版社,1998
    121F. Hustedt. Bacillariophyta (Diatomeae) In Pascher A. ed. Die Susswasser Flora Mitteleuropas.Germany: Verlag von Gustav Fischer.1930:211~340
    122F. Hustedt. The innate Diatoms (in English). USA: Koeltz scientieic Books Koenigstein.1985
    123R. Patrick, C. W. Reimer. The diatoms of the United States.1966
    124K.Krammer. Diatoms of the European Inland Waters and Comparable Habitats:Vol.1.K nigstein/Germany: Ruggell: A. R. G. Gantner Verlag K. G.,2000
    125H. Langela-Bertalot. Diatoms of the European Inland Waters and Comparable Habitats: Vol.2.K nigstein/Germany: Ruggell: A. R. G. Gantner Verlag K. G.,2001
    126K. Krammer, H. Lange-Bertalot. Bacillariophyceae2. Teil:BacillariophyceaeEpithemiaceae,Surirellaceae. Berlin: Spektrum Akademischer Verlag Heidelberg,1997
    127K. Krammer, H. Lange-Bertalot. Bacillariophyceae3. Teil: Centrales, Fragilariaceae,Eunotiaceae. Berlin: SpektrumAkademischerVerlagHeidelberg,1997
    128F. Gasse.East. African Diatoms,Taxonomy, Ecological Distribution. Berlin Stuttgart.1986
    129全国主要湖泊、水库富营养化调查研究课题组.湖泊富营养化调查规范(第二版).中国环境科学出版社,1990
    130袁洪福,褚小立,王艳斌等.水分析手册.中国石化出版社,2004.
    131国家环境保护总局.水和废水监测分析方法.中国环境科学出版社,2002.
    132许夏玲.滴水湖浮游植物群落结构及其与环境因子关系的研究.上海师范大学硕士学位论文.2008
    133蔡燕红.杭州湾浮游植物生物多样性研究.中国海洋大学硕士学位论文.2006
    134吴波.上海苏州河、黄浦江浮游植物群落结构及其对环境指示作用的研究.上海师范大学硕士学位论文.2006
    135R. E. Carlson. Atrophic State Index for Lake. Limnol.Oceanogr.1977,2(2):361~369
    136王明翠,刘雪芹,张明辉.湖泊富营养化评价方法及分级标准.中国环境监测.2002,18(5):47~49
    137金相灿等.中国湖泊环境.海洋出版社,1955.
    138王铁军,查学芳,熊威娜.贵州遵义高坪水源地岩溶地下水重金属污染健康风险初步评价.环境科学研究.2008,21(1):47~48
    139陈鸿汉,谌宏伟,何江涛等.污染场地健康风险评价的理论和方法.地理前沿.2006,13(1):216~223
    140USEPA. Superfund public health evaluation manual.Washington DC:Office of Reserch andDevelopment USEPA, EPAP540P1286P060,1986
    141USEPA. Available information on assessment exposure from pesticides in food. WashingtonDC:Office of Pesticide Programs USEPA,2000
    142胡二邦.环境风险评价实用技术和方法.中国环境科学出版社,2000
    143J. Valentin. Basic anatomical and physiological data for use in radiological protection: referencevalues.Annals of the ICRP.2002,32(3~4):1~277
    144USEPA(1986). Guidelines for carcinogen risk assessment. Fde.Regist51:33992~34003
    145USEPA (1988). Proposed guidelines for assessing female reproductive riskFde.Regist53:24834~24847
    146U. S. Environmental ProtectionAgency (EPA), Guideline for ExposureAssessment. n. p.,1992
    147李剑,马建华,宋博等.路旁土壤-小麦系统重金属积累及其健康风险评价.植物生态学报.2009,33(3):624~628
    148J. G. Fied, K. R. Clarke, R. M. Warwick. A practical strategy for analysis multispeciesdistribution patterns. Marine ecology progress series,1982,8(1):37~52
    149S. Souissi, F. Ibanez Ben, R. Hamadou, et al. A new multivariate mapping method forstudyingspecies assemblages and their habitats:example using bottom trawl surveys in the Bay of Biscay(France). Sarsia.2001,86:527~542
    150K. R. Clarke, R. M. Warwick. Change in marine communities:An approach to statistical analysisand interpretation (2nd edition). Plymouth:Primer-E.2001
    151K. R. Clarke, R. H. Green. Statistical design and analysis for a ‘biological effect’ study. Marineecology progress series,1988,46:213~226
    152C. J. F. Ter Braak. Canonical correspondence analysis: a new eigenvector technique formultivariate direct gradient analysis. Ecology.1986,67(5):1167~1179
    153张金屯.数量生态学.科学出版社,2004:171~178
    154C. J. F. ter Braak, P. milauer. CANOCO Reference Manual and CanoDraw forWindows User's Guide:Software for Canonical Community Ordination (version4.5).Microcomputer Power. Ithaca, NY, usa.(2002)
    155J. Chattopadhyay, R. R. Sarkar, S. Pal. Dynamics od nutrient phytoplankton interaction in thepresence of viral infection. BioSystems.2003,68:5~17
    156B. J. Cardinale, M. A. Palmer, S. L. Collins. Species diversity enhances ecosystem functioningthrough interspecific facilitation. Nature.2002,415:426~429
    157贺筱蓉,李共国.杭州西溪湿地首期工程区浮游植物群落结构及水之关系.湖泊科学.2009,21(6):795~800
    158S. Suikkanen, Laamanen, M. Huttunen. Long-term changes in summer phytoplanktoncommunities of the open northern Baltic Sea.Estuarine. Coastal and Shelf Science.2007,71:580~592
    159M. Licursi, M. V Sierra, N. Gómez. Diatom assemblages from a turbid coastal plainestuary:Ríodela Plata (South America). J. Mar.Syst.2006,62:35~45
    160C. Nalewajko, T. P. Murphy. Effects of temperature and availability of nitrogen and phosphoruson the abundance of anabaena and microcystis in lake Biwa, Japan: an experimental approach.Limnology.2001,2:45~48
    161肖利娟.海南省7座大型水库浮游植物群落特征和富营养化分析.暨南大学硕士学位论文.
    2008
    162K. Krammer, H. Lange-Bertalot. Bacillariophyceae1.Teil: Naviculaceae.Berlin:SpektrumAkademischer Verlag Heidelberg,1997
    163A. L. Negro, C. D. Hoyos, J. C. Vega. Phytoplankton structure and dynamics in Lake Sanabriaand Valparaiso reservoir (NW Spain). Hydrobiologia,2000,424:25~37
    164F. Gasse. East African diatoms, taxonomy, ecological distribution.Bibliotheca diatomologica,band11, Berlin Stuuttgart,1986. ISBN3-443-57003-8Hutchinson T.C.
    165Krammer, H. Lange-Bertalot. Bacillariophyceae.1. Teil:Naviculaceae, Sü wasserflora vonMitteleuropa. Gustav. Fischer Verlag, Stuttgart, Band2-1.1986:876
    166H. Langela-Bertalot. Diatoms of the European inland waters and comparable habitats. vol.3A.R.G. Gantner Verlag K.G.2001.ISBN3-904144-84-7
    167M. T. Philipose. Contributions to our knowledge of Indian algae-3.Euglenineae Part3. Thegenera Trachelomonas Ehrenberg and Strombomonas Deflandre. Proceedings of the IndianAcademy of Science.1988,98(5):317~394
    168O. J. R. Necchi, L. H. Z. Branco, C. C. Z. Branco. Ecological distribution stream macroalgaecommunities from a drainage basin in the Serra da Canastra National Park, mMinas gerais,southeastern Brazil. Braz JBiol.2003,63:635~646
    169L Manel. Diatom responses to Holocene environmental changes in a small lake in northwestSpain.Quaternary International.2005,140~141:90~102
    170马徐发,熊邦喜,王银东.道观河水库浮游植物的群落结构和现存量.淡水渔业.2004,34(4):11~14
    171刘冬燕,赵建夫,张亚雷等.富营养水体生物修复中浮游植物的群落特征.水生生物学报.2005,29(2):177~183
    172B. George. Arhonditsis, Monika Wind.er, Michael T. Brett, Daniel E. Schind.ler.Patterns andmechanisms of phytoplankton variability in Lake Washington(USA). Water Research.2004,38:4013~4027
    173Eun Hye Na, Seok Soon Park. A hydrodynamic and water quality modeling study of spatial andtemporal patterns of phytoplankton growth in a strati.ed lake with buoyant incoming flow.Ecological modeling.2006,199:298~314
    174崔毅,陈碧娟,马绍赛.乳山湾浮游植物与环境因子的相关关系研究.应用生态学报.2000,11(6):935~938
    175R. Arfi. The effects of climate and hydrology on the trophic status of Sélingué Reservoir, Mali,West Africa. Lake&Resevoir: Research and management,2003,8:247~257
    176H. Horn, The relative importance of climate and nutrients in controlling phytoplankton growthin Saidenbach Teservoir. Hydrobiologia,2003,504:159~166
    177刘东艳,孙军,钱树本.胶州湾浮游植物研究Ⅱ环境因子对浮游植物群落结构变化的影响.青岛海洋大学学报.2002,32(3):415~421
    178文贵,李纯厚,林钦等. GIS支持下考洲洋养殖水域浮游植物数量的时空分布及其营养盐的相关性研究.生态学杂志.2005,24(5):513~517
    179H. Gurbuz, E. Kivrak. Use of epilithic diatoms to evaluate water quality in the Karasu River ofTurkey. Environmental Biology,2002,23(3):239~246
    180K. Kiplagatat, K. Lothar, M. M. Francis. Temprol changes in phytoplankton structure andcomposition and the Turkwel Corge Reservoir. Hydrobiologia,1998,368:41~59
    181K. W. Thomnton, B. L. Kimmel, F. E. Payne. Reservoir limnology: ecological perspectives.New York: Wiley interscience publication.1990
    182庞清江,李白英.东平湖水体富营养化评价.水资源保护.2003,19(5):42~44
    183李利强,张建波.洞庭湖浮游植物调查与水质评价.江苏环境科技.1999,12(4):14~16
    184曹文钟,余政哲,张宏波等.红旗水库的浮游植物及水质评价.东北林业大学学报.2004,32(4):36~37
    185Margarete Kalin, Yong Can, Martin Smityh etc. Development of the phytoplankton communityin a Pit-Lake in relation to water quality changes. Water Restoration,2001,35(13):3215~3225
    186C. S. Reynolds. What factors in fluence the species composition of phytoplankton in lakes ofdifferent trophic status? Hydrobiologia,1998,369/370:11~26
    187R. Mac ARHUR. Fluctuations of animal populations, and measure of community stability.Ecology,1995,36:533~536
    188S. J. MCNAGHTON. Diversity and stability. Nature,1988,333:204~205
    189E. A. LOBO, D. BES, L. TUDESQUE, L. ECTOR. Water quality assessment of t he Pardinhoriver, RS, Brazil, using epilit hic diatom assemblages and faecal coliforms as biologicalindicators. V ie Mi lieu,2004,54:2~3
    190K. MILOSLAV, P. ALOSIE. Littoral diatoms as indicators for t he eut rophication of shallowlakes. Hy drobiologia,2003,506~509:519~524
    191Q. J. KUANG, HU ZH Y, G. J. ZHOU, L. YE, Q. H. CAI. Investigation on phytoplankton inXiangxi River watershed and t he evaluation of it s water quality. J ournal of Wuhan BotanicalResearch,2004,22(6):507~513
    192X. H. WANG, J I B CH, M. D. LI, Y. LUO, ZHANG SH L, WANG SH M, Y. ZHANG.Phytoplankton and bio2assessment of water quality in upper waters of Yinluan Project.Research of Envi ronmental Science,2004,17(4):18~24
    193Y. Q. XIN, Q. SHI, XIE SH L, Y. F. CAI. The algae of spring in Ji’nan and t he water qualityevaluate. B ul let in of Botanical Research,2004,24(4):509~512
    194F. O. HbCTOR, P. ALBA, R. L. CAROLINA, et al. An integration of water phusicochemistry,algal bioassays,phytoplankton,and zooplankton for ecotoxicological assessment in a highlypolluted lowland river. Water, Air,&Soil Pollution.2004,155(1~4):355~381
    195X. F. ZHAO, J. YU, J. H. GE, G. X. LIU, HU ZH Y. Study on t he phytoplankton and waterquality of Jihongtan reservoir in Qingdao. Acta Hudrobiologia S inica.2005,29(6):639~644
    196M. Proula, Pick F&A Mazumder. Experimental evidence for interactive impacts of humanactivities on lake algal species richness. Oikos.1996,76:191~195
    197S. Watson, E. Mc Cauley, J. Downing. Pattern in phytoplankton taxonomic comparison acrosstemperate lakes of different nutrient status. Limnol Oceanogr.1997,(42):487~495
    198F. S. Chapin, E. S. Zavaleta, VT Eviner. Consequences of changing biodiversity. Nature.2000,(405):234~242
    199S. Naeem, S. Li. Biodiversity enhances ecosystem reliability.Nature.1997,(390):507~509
    200D. Tilman, P. B. Reich, J. Knops. Diversity and produetivity in a long-term grasslandexperiment. Science.2001,294:843~845
    201覃雪波,马成学,黄璞袆.安邦河湿地浮游植物及营养现状评价.农业环境科学学报.2007,26(增刊):288~296
    202C. M. Palmer. A composite rating of algae tolerating organic pollution. J. phycol.1969,5:78-82
    203P. Marvan. Algal assays and monitoring eutrophication. E.Schweizerbart scheVerlagsbuchhandlung, Stuttgart.1979
    204林碧琴,谢淑琦.水生藻类与水体污染监测.辽宁大学出版社,1988.
    205C. M. Palmer. A composite rating of algae tolerating organic pollution. Phycol.1969,5:78~82
    206由文辉.我国利用水生生物评价水质的研究进展.环境科学动态.1994,1:6~9
    207林秋奇,胡韧,段舜山等.广东省大中型供水水库浮游生物对水库营养状态的指示.生态学报.2003,2(6):1101~1108
    208雷安平,施之新,魏印心.武汉东湖浮游藻类物种多样性的研究.水生生物学报.2003,27(2):179~184
    209Hustedt, Bacillariophyta (diatomeae), A. Pascher.“Diesusswasser-FloraMitteleuropas”.1930:211~340
    210N. Foged. Diatoms in New Zwaland, the North Island.Bibliotheca Phycol.1979,47:1~225
    211姚志刚,鲍征宇,高璞.洞庭湖沉积物重金属环境地球化学.地球化.2006,35(6):629~638
    212J. G. Arnason, B. A. Fletcher. A40+year record of Cd, Hg, Pb, and U deposit in sediments ofPatroon Reservoir, Albany County, New York, USA. Environ Pollut,2003,123:383~391
    213M. Ma, W. Zhu, Z. Wang, et al. Accumulation, assimilation and growth inhibition of copper onfreshwater alga (Scenedesmus subspicatus86.81SAG)in presence of EDTA and fulvic acid.Aquat Toxicol,2003,63:221~228
    214H. Yang, N. L. Rose, R. W. Battarbee. Distribution of some trace metals in Lochnagar, aScottish mountain lake ecosystem and its catchment. Sci Total Environ,2002,285:197~208
    215M. M. Lasat. Phyto-extraction of toxic metals: A review of biological mechanisms. J EnvironQuality,2002,31:109~120
    216H. Yang, N. L. Rose. Trace element pollution records in some UK lake sediments, their history,influence factors and regional differences. Environ Internat,2005,31:63~75
    217李鸣.鄱阳湖重金属污染特征研究及环境容量估算.南昌大学博士研究学位论文,2010
    218李鸣.鄱阳湖重金属污染特征研究及环境通量估算.南昌大学博士研究生学位论文,2010
    219杨元根,刘丛强,张国平等.铅锌矿山开发导致的重金属在环境介质中的积累.矿物岩石地球化学通报2003,22(4):305~309
    220甘华阳,卓慕宁,李定强等.广州城市道路雨水径流的水质特征.生态环境,2006,15(5):969~973
    221M. Chatterjee, E. V. Silva Filho, S. K. Sarkar, et al. Distribution and possible source of trace theelements in sediment cores of a tropical macrotidal estuary and their ecotocicologicalsignificance. Environ Int,2007,33:346~356
    222余建英,何旭宏.数据统计分析与SPSS应用.人民邮电出版社,2003:291~310
    223盛周军,孙世群,王京城等.基于主成分分析的河流水环境质量评价研究.环境科学与管理.2007,32(12):172~175
    224Krzysztof Loska, Danuta Wiechula. Application of principal component analysis for theestimation of source of heavy metal contamination in surface sediments from the RybnikReservoir. Chemosphere,2003,51:723~733
    225T. DelValls, J. M. Forja, Gonza, E. Elez-Mazo, et al. Determining contamination sources inmarine sediments using multivariate analysis. Trends in analytical chemistry,1998,17:181~192
    226鲁斐,李磊.主成分分析在辽河水质评价中的应用.水利科技与经济.2006,12(10):660~662
    227李玉,俞志明,宋秀贤.运用主成分分析(PCA)评价海洋沉积物中重金属污染来源.环境科学.2006,27(1):137~141
    228王晓鹏.河流水质综合评价之主成分分析方法.数理统计与管理.2001,20(4):49~52
    229郭跃东,邓伟,潘继花.扎龙河滨湿地水体营养化污染特征及水环境恢复对策.生态环境.2003,12(4):393~397
    230Klemov, M. Kenneth. Wetland mapping. In: Majumdar S. K., Miller E. W., et al. Ecology ofwetlands and associated systems. The Pennsylvania Academy of Science,1998
    231吕宪国.湿地科学研究进展及研究方向.中国科学院院刊,2002,(3):170~172
    232赵旭.扎龙湿地水环境与可持续发展.湿地科学,2005,3(4):286-291

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700