用户名: 密码: 验证码:
几类轴对称超弹性橡胶结构的有限变形分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶材料组成的轴对称结构(如橡胶圈、橡胶管、橡胶垫等)在社会生产和生活中的应用非常广泛,由于上述结构都是在一定环境和载荷下使用的,因此都会遇到变形、失稳、破坏以及使用寿命有限等问题,相关材料和结构有限变形的稳定性问题一直是国内外专家和学者关注的焦点。本文利用非线性弹性理论以及分岔理论等理论的基本观点和结论,研究了基于超弹性本构关系的橡胶材料组成的几类轴对称结构在轴向或径向加载下的静、动力学变形问题,得到了一些新的结论。具体内容如下:
     1.研究了几类不可压缩超弹性材料组成的矩形橡胶圈在端部轴向压缩载荷作用下的有限变形问题。对于各向同性neo-Hookean材料、关于径向横观各向同性的neo-Hookean材料和各向同性Mooney-Rivlin材料,利用材料的不可压缩约束及边界条件分别求得了问题的隐式解析解。结合数值算例讨论了轴向压缩载荷、橡胶圈的径向厚度以及轴向高度对橡胶圈有限变形的影响。从理论上验证了:轴向压缩载荷越大、橡胶圈径向相对越薄、轴向相对越高,橡胶圈外表面沿径向的膨胀越大,其两端沿轴向的收缩也越大。对于关于径向横观各向同性的neo-Hookean材料,材料的各向异性参数越大,橡胶圈的变形相对越大;对于各向同性Mooney-Rivlin材料,材料的剪切模量之比越小,结构的变形相对越大。三种材料模型下,轴向压缩率均在中截面处最小而在橡胶圈两端处最大,轴向压缩率和轴向位移同样受轴向载荷和结构参数的影响。
     2.分别研究了不可压缩超弹性材料组成的层合橡胶圆管的轴向压缩问题以及径向膨胀问题。
     对于由两类不可压缩neo-Hookean材料组成的有限长的层合橡胶圆管,当其两端受轴向载荷压缩作用时,利用材料的不可压缩约束、应力和应变的连续性条件、边界条件求得了问题的隐式解析解。结合数值算例验证了:随着轴向载荷的增大或外层材料与内层材料的剪切模量之比的减小,圆管的外表面和材料的层合面沿径向的膨胀均越来越大,沿轴向的收缩也越来越大;橡胶圆管外表面和层合面在圆管中间大部分区域的变形都趋于一致,而在结构的两端附近,二者的变形较为明显。橡胶圆管中间部分的轴向压缩率基本保持不变而在两端附近变化较快,两端的轴向压缩率最大;轴向位移的绝对值从橡胶圆管的中截面开始逐渐增大,在两端处轴向位移的绝对值达到最大。
     对于由两类关于径向横观各向同性的不可压缩幂率型材料组成的无限长的层合橡胶圆管,当其内表面受径向均布压力作用时,通过对描述结构径向膨胀的方程的定性分析分别得到了圆管静态膨胀和动态膨胀的机理。证明了:若圆管内、外层材料的应变能函数中幂率参数均未超过1,则存在一个临界压力,当径向压力小于临界压力时,圆管的径向膨胀随时间的演化做非线性周期振动;当径向压力大于临界压力时,圆管将无限膨胀。若两层材料的应变能函数中幂率参数至少有一个超过1,则对任意给定的径向压力,橡胶圆管的径向膨胀随时间演化都是非线性周期振动;对于某些特殊的材料参数,层合橡胶圆管振动的振幅会出现跳跃性的增长。
     3.分别研究了不可压缩超弹性材料组成的两类轴对称结构的空穴问题。将两类问题的数学模型分别简化为关于描述结构径向运动的二阶非线性常微分方程,通过对两组方程的定性分析证明了:
     对于由各向同性不可压缩Ogden材料组成的中心含有微孔的无限长圆柱体,当其外表面受突加径向拉伸载荷作用时,随着径向拉伸载荷的增加,微孔半径的增长开始比较缓慢,存在临界载荷,当拉伸载荷达到临界载荷时,微孔半径会突然快速增长。当材料参数满足一定条件时,对于任意给定的拉伸载荷,微孔的运动始终是非线性周期振动;存在特殊的材料参数,使得运动方程的相图中存在同宿轨道,结构振动的振幅同样会出现跳跃性的增长,此类情形对于各向同性不可压缩超弹性材料并不多见。
     对于由一类各向同性不可压缩超弹性材料组成的在径向预拉伸状态下的圆板,当其外表面受突加径向拉伸载荷作用时,只有材料的幂率参数满足一定条件时,圆板轴向中心处才会出现空穴;径向预拉伸的值越大,结构中的空穴出现的越早,材料的幂率参数越大,空穴出现越晚。当圆板中心处出现空穴以后,空穴将随时间的演化做经典的非线性周期振动,且振动的振幅随着外表面拉伸载荷或径向预拉伸的增加而增大。
Axisymmetric structures composed of rubber materials (such as rubber rings, rubber tubes, rubber blankets. etc.) are widely used in social production and life under certain circumstance and load, and so they often encounter the problems of deformation, instability, destroy and limited service life, and so on. The stability problems of finite deformation of relative materials and structures are always the focuses of experts and scholars at home and abroad. In this dissertation. the static and dynamical problems are examined for several axisymmetric structures composed of rubber materials based on the hyperelastic constitutive relations via using the basic viewpoints and conclusions of the nonlinear elasticity and the bifurcation theory, and so forth. Some new conclusions are obtained, as follows,
     1. The problems of finite deformation of several rectangular rubber rings composed of incompressible hyperelastic materials are studied, where both ends of the rings are subjected to axial compressive loads. Systems of implicit analytical solutions are derived respectively by using the incompressible constraint and the boundary conditions for the isotropic neo-Hookean material, the transversely isotropic neo-Hookean material and the isotropic Mooney-Rivlin material. Combining with numerical examples,the influences of axial compressive loads, radial thickness and axial height of the rubber rings on finite deformation of the rings are discussed in detail. It is proved theoretically that with the increasing axial compressive loads, the decreasing radial thickness and the increasing axial height, the lateral surfaces of these rings along the radial direction inflate and both ends along the axial direction shrink more and more. For the transversely isotropic neo-Hookean material, the larger the value of the anisotropy parameter is, the bigger the deformation of the ring is. For the isotropic Mooney-Rivlin material, the smaller the ratio of the shear moduli is, the bigger the deformation of the ring is. For the three kinds of material models, the ratios of axial compression are all the smallest at the central cross-sections of these rings and are the biggest at the ends. The ratios of axial compression and the axial displacements are also influenced by axial loads and structure parameters.
     2. The problems of axial compression and radial inflation are examined respectively for the composite rubber tubes composed of incompressible hyperelastic materials.
     For a finitely long composite rubber tube subjected to static axial compressive loads at its both ends, where the tube is composed of two classes of incompressible neo-Hookean materials, a system of implicit analytical solutions is derived by using the incompressible constraint, the continuous conditions of stress and strain, the boundary conditions. It is proved with numerical examples that the lateral surface and the interface of the tube along the radial direction inflate and both ends along the axial direction shrink more and more as the axial loads increase or as the ratio of the shear moduli of the outer and the inner materials decreases. Moreover, the deformation models of both the lateral surface and the interface of the composite rubber tube are nearly uniform at most of the middle portion of the tube, whereas, are obvious near the two ends. In the middle part, the ratio of axial compression maintains almost the same, while it changes very fast near the two ends and achieves the maximum at the ends. The absolute value of axial displacement increases gradually from the central cross-section and reaches the maximum at the two ends of the tube.
     For an infinitely long composite rubber tube subjected to a suddenly applied radial pressure at its inner surface, where it is composed of two classes of transversely isotropic incompressible power-law materials, the mechanisms of static inflation and dynamic inflation are given by qualitatively analyzing the equation describing the radial inflation of the tube. It is proved that if the power-law parameters of the strain energy functions associated with the two materials do not exceed1, then there exists a critical pressure such that the radial inflation mode of the tube with time is a nonlinearly periodic oscillation as the radial pressure does not exceed the critical pressure, otherwise, the tube will inflate infinitely. If at least one of the power-law parameters of the strain energy functions is larger than1, then for any given pressure, the radial inflation mode of the tube with time is always a nonlinearly periodic oscillation. Moreover, for some special material parameters, the oscillation amplitude will increase discontinuously.
     3. The bifurcation problems are studied for two classes of axisymmetric structures composed of isotropic incompressible hyperelastic materials. The mathematical models are reduced to two classes of second order nonlinear ordinary differential equations which are used to describe the radial motions of the structures with time, respectively. Through qualitatively analyzing the two equations, it yields the following conclusions:
     For an infinitely long cylinder composed of the isotropic incompressible Ogden material with a microvoid at its center, when it is subjected to a suddenly applied tensile load at the outer surface, the radius of the microvoid grows very slowly at the beginning with the increasing tensile load. However, there exists a critical load, when the tensile load exceeds the critical load the radius of the microvoid grows rapidly. Moreover, for the material parameters satisfying certain conditions, the motion of the microvoid is always a nonlinear periodic oscillation for any given load. As the material parameters take certain special values, the phase diagrams of the motion equation have homoclinic orbits, which means that the oscillation amplitude increases discontinuously with the increasing tensile load, such case is very rare for isotropic incompressible hyperelastic materials.
     For a pre-strained circular sheet composed of a class of isotropic incompressible hyperelastic materials, when it is subjected to a suddenly applied tensile load at the radial surface, it is shown that cavitation depends exactly on the power-law parameter. The larger the pre-strained value is prescribed, the earlier cavitation occurs; the larger the power-law parameter is, the later cavitation occurs. Dynamically, once a cavity forms at the axial line of the circular sheet, the motion of the formed cavity with time is a classical nonlinear periodic oscillation. Moreover, the oscillation amplitude increases with the increasing tensile load or with the increasing pre-strained value.
引文
[1]刘世平.国外车用橡胶制品:向大规模专业化高性能发展[N].中国化工报,2006,11,9(15).
    [2]邓雅俐.橡胶行业2011年生产经营情况及2012年分析预测[J].中国橡胶,2012,7:4-8.
    [3]Arruda E, Boyce M C.A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials [J]. Journal of the mechanics and physics of solids,1993,41(2):389-412.
    [4]Gent A N橡胶工业.张立群等译.北京:化学工业出版社,2002.
    [5]Elias Z A. A non-Gaussian network model for rubber elasticity [J]. Polymer, 2006,47:907-914.
    [6]Sommer J C.橡胶的物理性能及其意义[J].橡胶参考资料,1991,27:6-11.
    [7]爱林根著,程昌钧,俞焕然译.连续统力学[M].北京,科学出版社,1990.
    [8]德冈辰雄著,赵镇,苗天德,程昌钧译.理性连续介质力学入门[M].北京:科学出舨社,1982.
    [9]高玉臣.固体力学基础[M].中国铁道出版社,1999.
    [10]郭仲衡.非线性弹性力学[M].北京:科学出版社,1980.
    [11]Fu Y B, Ogden R W. Nonlinear Elasticity [M]. Cambridge University Press,2001.
    [12]杨桂通,樊学军.生物组织力学的一些发展[C].现在力学与科技进步学术大会.北京:清华大学出版社,1997.
    [13]曾衍钧,许传青.软组织的生物力学特性[J].中国科学G,2003,3:1-5.
    [14]Pereira J M, Mansour J M. Davis B R. Dynamic measurement of the viscoelastic properties of skin [J]. J. Biomechanics,1991,24:157-162.
    [15]Jeffery E B, Allen M A. Finite element simulations of orthotropic hyperelasticity [J]. Finite Elements in Analysis and Design.2002,38:983-998.
    [16]Buchler P, Ramaniaka N A. A finite element model of the shoulder:application to the comparison of normal and osteoarthritic joints [J]. Clinical Biomechanics, 2002,82:229-241.
    [17]Vito R P, Dixon S A. Blood vessel constitutive models-1995-2002 [J]. Annual Review of Biomedical Engineering.2003,5(4):413-439.
    [18]Watton P N, Hill N A, Heil M. A mathematical model for the growth of the abdominal aortic aneurysm [J]. Biomechanics and Modeling in Mechanobiology. 2004,3(2):98-113.
    [19]郭仲衡等译.应用力学的最新进展[M].北京:科学出版社,1987.
    [20]Ogden R W. Nonlinear Elastic Deformations[M]. New York:Dover Publications,1997.
    [21]Beatty M F. Seven lectures on finite elasticity [J]. Hayes M, Saccomandi G. Topics in Finite Elasticity [M]. Springer Wien New York.2002.
    [22]Rivlin R S. Large elastic deformations of isotropic materials. II. Some uniqueness theorem theorems for pure homogeneous deformations [J]. Proc. R. Soc. Lond. A, 1948,240:419-508.
    [23]Rivlin R S. Large elastic deformations of isotropic materials. IV. Further developments of the general theory [J]. Proc. R. Soc. Lond. A,1948,241:379-397.
    [24]Rivlin R S. Large elastic deformations of isotropic materials. V. The problem of flexure [J]. Proc. R. Soc. Lond. A,1949,195:463-473.
    [25]Rivlin R S. Large elastic deformations of isotropic materials. VI. Further results in the theory of torsion, shear and fiexure [J]. Proc. R. Soc. Lond. A, 1949,242:173-185.
    [26]Rivlin R S, Saunders D W. Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber [J]. Proc. R. Soc. Lond. A, 1951,243:251-258.
    [27]Ericksen J L. Deformations possible in every compressible, isotropic, perfectly elastic material [J]. J. of Math. Phys.,1955,34:126-128.
    [28]Carroll M M. Finite strain solutions in compressible isotropic elasticity [J]. J. Elasticity,1988,20:65-92.
    [29]Carroll M M. Finite strain solutions for a compressible elastic solids [J]. Q. of Applied Mathematics,1990,58:767-780.
    [30]Hill J M, Arrigo D J. Transformations and equation reductions in finite elasticity I:plane strain defornmtions [J]. Mathematics and Mechanics of Solids, 1996,1:155-175.
    [31]Hill J M. Finite deformation of thick walled inner tubes and tyres under inflation and rotation [J]. J. Engin. Math.,1995,29:211-235.
    [32]Hill J M. Closed form solution for small deformations super-imposed upon the simultaneous inflation and extension of a cylindrical tube [J]. J. Elasticity, 1976,6:113-123.
    [33]Zidi M. Large shearing of a prestressed tube [J]. J. of Applied Mechanics, 2000,67:209-211.
    [34]Zidi M, Cheref M. Finite deformation of a hyperelastic, compressible and fiber reinforced tube [J]. European J. Mechanics A/Solids,2002,21:971-980.
    [35]黄筑平.连续介质力学基础[M].北京:高等教育出版社,2002.
    [36]白以龙.材料的不稳定性[J].黄克智,徐秉业编.固体力学发展趋势[M].北京:北京理工大学出版社,1995,95-107.
    [37]Gent A N, Lindley P B. Internal rupture of bonded rubber cylinders in tension [J]. Proc. R. Soc. Lond. A,1958,249:195-205.
    [38]Williams M L, Schapery R A. Spherical flaw instability in hydrostatic tension [J]. Int. J. Fracture,1965,1 (1):64-71.
    [39]Beahan P, Thomas A, Bevis M. Some observations on the micro-morphology of deformed ABS and HIPS rubber-modified materials [J]. Journal of Materials Science, 1976,11:1207-1214.
    [40]Lazzeri A, Bucknall C B. Dilatational bands in rubber-toughened polymers [J]. Journal of Materials Science,1993,28:6799-6808.
    [41]Gent A N. Cavitation in rubber:a cautionary tale [J]. Rubber Chem. Thech., 1990,63:G49-G53.
    [42]Ball J M. Discontinuous equilibrium solutions and cavitations in nonlinear elasticity [J]. Philos. Trans. Roy. Soc. Lond. Set A,1982,306:557-610.
    [43]Horgan C 0, Abeyaratne R. A bifurcation problem for a compressible nonlinear elastic medium:growth of a micro-void [J]. J. Elasticity,1986,16:189-200.
    [44]Chung D T, Horgan C 0, Abeyaratne R. A note Oil a bifurcation problem in finite plasticity related to void nucleation [J]. Int. J. Solids and Structures,1987,23: 983-988.
    [45]Chou-Wang M S, Horgan C 0. Void nucleation and growth for a class of incompressible nonlinearly elastic materials [J]. Int.J. Solids and Structures, 1989,25:1239-1254.
    [46]Sivaloganathan J. Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity [J]. Arch. Rail. Mech. Anal., 1986,96:97-136.
    [47]Horgan C 0, Polignone D A. Cavitation in nonlinearly elastic solids:A review [J]. Applied Mechanics Review,1995,48-:471-485.
    [48]尚新春.类橡胶材料和结构的不稳定性理论及分岔问题[D].兰州:兰州大学,1994。
    [49]Yuan X G, Zhu Z Y. Qualitative study of cavitated bifurcation for a class of incompressible generalized neo-Hookean spheres [J]. Appl. Math. Mech.-(English Edition),2005,26(2):185-194.
    [50]Sivalogananthan J. Cavitation, the incompressible limit, and material inhomogeneity [J]. Quart. Appl. Math.,1991,49:521-524.
    [51]Antman S S, Negron-Marrero P V. The remarkable nature of radially symmetric equilibrium states of anisotropic nonlinearly elastic bodies [J]. J. Elasticity, 1987,18:131-164.
    [52]Polignone D A,Horgan C O.Cavitation for incompressible anisotropic nonlinearlyelastic spheres [J]. J. Elasticity,1993,33:27-65.
    [53]Polignone D A, Horgan C 0. Effects of material anisotropy and inhomogeneity on cavitation for composite incompressible nonlinearly elastic spheres [J]. Int.J. Solids and Structures,1993,30:3381-3416.
    [54]Ren J S, Cheng C J. Bifurcation of cavitation solutions for incompressible transversely isotropic hyper-elastic materials [J]. Journal of Engineering Mathematics,2002,44:245-257.
    [55]Horgan C 0, Pence T J. Cavity formation at the center of a composite incompressible non-linearly elastic sphere [J]. J. Appl. Mech.,1989,56:302-308.
    [56]Horgan C 0, Pence T J. Void nucleation in tensile dead-loading of a composite incompressible nonlinearly elastic sphere [J]. J. Elasticity,1989,21:61-82.
    [57]任九生,程昌钧.组合超弹性材料中的空穴生成和增长[J].力学季刊,2004,25(2):175-182.
    [58]Valanis K C, Landel R F. The strain energy function of a hyperelastic material in terms of the extension ratios [J]. J. Applied Physics,1967,28:2997-3002.
    [59]王勇,唐立强,杨勇.不可压缩橡胶圆柱的空穴和分叉[J].哈尔滨工程大学学报,2007,28(9):980-984.
    [60]GAO Y C, GAO T J. Mechanical behavior of two kinds of rubber materials [J]. Int. J. Solids and Structures,1999,36(36):5545-5558.
    [61]Cheng C J, Mei B. Dynamical formation of cavity for composed thermal hyperelastic spheres in nonuniform temperature fields [J]. Appl. Math. Mech.-(English Edition), 2006,27(4):443-452.
    [62]Ren JS, Cheng C J. Static and dynamical cavitation for incompressible hyperelastie-plastic material [J]. Journal of shanghai University, 2006,10(4):283-287.
    [63]程昌钧,聂波.幂强化材料和超弹性材料组合球体中孔穴的动态生成[J].固体力学学报,2005,26(3):273-279.
    [64]任九生,程昌钧.超弹性-塑性材料中空穴的动生成[J].太原理工大学学报,2005,36(6):679-681.
    [65]任九生,程昌钧.超弹性材料中空穴的动态生成[J].固体力学学报,2004,25(1):42-46.
    [66]Ogden R W. Large deformation isotropic elasticity:on the correlation of theory and experiment of compressible rubberlike solids [J]. Proc. R. Soc. London, 1972, A328:567-583.
    [67]Beatty M F. Topics in finite elasticity:Hyperelasticity of rubber, elastomers, and biological tissues—with examples [J], Appl. Mech. Rev.,1987,40:1699-1734.
    [68]Attard M M. Finite strain-isotropic hyperelasticity [J]. Int.J. Solids and Structures,2003,40(17):4353-4378.
    [69]Anand L. Moderate deformations in extension-torsion of incompressible isotropic elastic materials [J]. J. Mech. Phys. Solids,1986,34(3):293-304.
    [70]Henky H. The elastic behavior of vulcanized rubber [J]. Rubber Chemistry and Technology,1933,6(2):217-224.
    [71]Rivlin R S, Saunders D W. Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber [J]. Philosophical Trans. R. Soc. London, 1951,243:251-288.
    [72]Ren J S, Cheng C J. Finite elastic torsional instability of incompressible thermo-hyperelastic cylinder [J]. Acta Mechanica Sinica,2006,22(2):156-161.
    [73]Kanner L M, Horgan C 0. On extension and torsion of strain-stiffening rubber-like elastic circular cylinders [J]. J. Elasticity,2008,93:39-61.
    [74]Horgan C 0, Murphy J G. Extension and torsion of incompressible non-linearly elastic solid circular cylinders [J]. Mathematics and Mechanics of Solids, 2011,16(5):482-491.
    [75]Horgan C 0, Murphy J G. Finite extension and torsion of fiber-reinforced non-linearly elastic circular cylinders [J]. Int. J. Non-linear Mechanics, 2012,47:97-104.
    [76]Horgan C 0, Murphy J G. On the modeling of extension-torsion experimental data for transversely isotropic biological soft tissues [J]. J. Elasticity, 2012,108:179-191.
    [77]Criscione J C, Lorenzen-Schmidt I, Humphrey J D, Hunter W C. Mechanical contribution of endocardium during finite extension and torsion experiments on papillary muscle [J]. Ann. Biomed. Eng.,1999,27:123-130.
    [78]Klingbeil W W, Shield R T. Large deformation analysis of bonded elastic mounts [J]. Zeit. Angew. Math. Phys.,1966,17:281-305.
    [79]Hill J M, Lee A I. Combined compression and torsion of circular cylindrical pads of rubber [J]. J. Mech. Phys. Solids,1996,37:175-190.
    [80]Dai H H, Bi Q S. Exact solutions for the large axially symmtric deformations of a neo-Hookean rod subjected to static loads [J]. Quarterly Journal of Mechanics and Appllied Mathematics,2000,54(1):39-56.
    [8l]Dai H H, Hao Y H, Chen Z. On constructing the analytical solutions for localizations in a slender cylinder composed of an incompressible hyperelastic material [J]. Int.J. Solids and Structures,2008,45(9):2613-2628.
    [82]Cohen T, Durban D. Cavitation in elastic and hyperelastic sheets [J]. International Journal of Engineering Science,2010,48:52-66.
    [83]尚新春,程昌钧.弹性固体材料中的空穴萌生与增长[J].北京科技大学学报,2002,24(3):380-382.
    [84]Varga OH. Stress-strain behaviour of elastic materials [M]. NewYork:Interscience, 1966.
    [85]Chadwick P, Haddon E W. Inflation-extension and eversion of a tube of incompressible isotropic elastic material [J]. J. Inst.Math. Applic., 1972,10:258-278.
    [86]Chadwick P. The existence and uniqueness of solutions of two problems in the Mooney-Rivlin theory for rubber [J]. J. Elastieity,1972,2:123-128.
    [87]Adeleke S A. On the problem of eversion for incompressible elastic materials [J], J. Elasticity,1983,13:63-69.
    [88]Truesdell C, Noll W. The non-linear field theories of mechanies [M]. Berlin: Springer,1965.
    [89]Haughton D M, Orr A. On the eversion of incompressible elastic cylinders [J]. Int. J. Non-linear Mechanics,1995,30:81-95.
    [90]Haughton D M, Ogden R W. Bifurcation of inflated circular cylinders of elastic material under axial loading. I. Membrane theory for thin-walled tubes [J]. J. Mech. Phys. Solids,1979,27:179-212.
    [91]赵巍,袁学刚,张洪武,任九生.翻转后的不可压缩neo-Hookean圆柱管的有限变形[J].固体力学学报,2012,33(4):404-407.
    [92]徐志洪.承受内压的可压缩弹性薄壁管的有限变形分析[J].力学与实践,1999,21:36-38.
    [93]史守峡,杨嘉陵.平面应变不可压缩橡胶圆柱的大变形[J].固体力学学报,1999,20:290-296.
    [94]史守峡,杨嘉陵,刘建荣.混合法分析平面应变橡胶的大变形[J].应用力学学报.2000,17(1):141-145.
    [95]Green E A. Large elastic deformation and non-linear continuum mechanies [M]. Oxford: OxfordPress,1960.
    [96]Wang Y, Tang L Q, Yang Y. The analysis of fraeture and damag emechanics on the wellbore stability [J]. Proeeedings of the international conference on fracture and damage mechanies V, Harbin,2006. Switzerland:Trans Teeh Publieations Ltd, 2006:25-28.
    [97]Knowles J K. Large amplitude oscillations of a tube of incompressible elastic material [J]. Q. Appl.Math.,1960,18(1):71-77.
    [98]Huilgol R R. Finite amplitude oscillations in curvilinearly aeolotropic elastic cylinders [J], Q. Appl. Math.,1967,25:293-298.
    [99]Shahinpoor M, Nowinski J L. Exact solutions to the problem of forced large amplitude oscillations of a thin hyperelastic tube [J]. Int.J. Non-Linear Mechanics, 1971, (6):193-207.
    [100]Rogers C, Baker J A. The finite elastodynamics of hyperelastic thin tubes [J]. Int.J. Non-Linear Mechanics,1980, (15):225-233.
    [101]Burt P B, Reid J L. Exact solutions to a non-linear Klein-Gordon equation [J]. J. Math. Anal. Appl.,1976, (55):43-55.
    [102]Rogers C, Ames W F. Non-Linear Boundary Value Problems in Science and Engineering [M]. New York:Academic Press,1989.
    [103]Roussos N, Mason D P. Non-linear radial oscillations of a thin-walled double-layer hyperelastic cylindrical tube [J]. Int. J. Non-Linear Mechanics, 1998,33(3):507-530.
    [104]Mason D P, Maluleke G H. Non-linear radial oscillations of a transversely isotropic hyperelastic incompressible tube [J]. J. Math. Anal. Appl., 2007,333:365-380.
    [105]Beatty M F. On the radial oscillations of incompressible, isotropic, elastic and limited elastic thick-walled tubes [J]. Int. J. of Non-Linear Mechanics, 2007,42:283-297.
    [106]Gent A N. A new constitutive relation for rubber [J]. Rubber Chemistry and Technology,1996,69:59-61.
    [107]任九生.热超弹性圆柱壳的振动与破坏[J].振动与冲击,2008,27(12):36-39.
    [108]Ren J S. Dynamical response of hyper-elastic cylindrical shells under periodic load [J]. Appl.Math. Mech.-(English Edition),2009,29(10):1319-1327.
    [109]Yuan X G, Zhang H W. Controllability conditions of finite oscillations of hyper-elastic cylindrical tubes composed of a class of Ogden material models [J]. Computers, Materials & Continua,2008,7(3):155-165.
    [110]Yuan X G, Zhang H W. Dynamic bifurcation in composite incompressible hyperelastic cylindrical tubes [J]. The 2nd International ISCM Symposium and The 12th International EPMESC Conference,2009,1233:1166-1171.
    [111]Wilkes E W. On the stability of a circular tube under end thrust [J]. Quarterly Journal of Mechanics and Applied Mathematics,1955,8:89-100.
    [112]Beatty M F. Remarks on the instability of an incompressible and isotropic hyperelastic, thick-walled cylindrical tube [J]. J. Elasticity, 1997,48:217-239.
    [113]Tuzela V H, Erbayb H A. The dynamic response of an incompressible non-linearly elastic membrane tube subjected to a dynamic extension [J].Int. J. Non-linear Mechanics,2004,39 (4):515-537.
    [114]Pamplona D C, Goncalves P B, Lopes S R X. Finite deformations of an initially stressed cylindrical shell under internal pressure [J]. International Journal of Mechanical Sciences,2008,50(1):92-103.
    [115]Gent A N. Elastic instabilities in rubber [J]. Int. J. Non-Linear Mechanics, 2005,40(2-3):165-175.
    [116]Horgan C O, Saccomandi G. Pure axial shear of isotropic incompressible nonlinearly elastic materials with limiting chain extensibility [J]. J. Elasticity, 1999,57:307-319.
    [117]Horgan C 0, Saccomandi G. Pure azimuthal shear of isotropic, incompressible hyperelastic materials with limiting chain extensibility [J]. Int. J. Non-linear Mechanics,2001,36 (3):465-475.
    [118]Ren J S, Zhou J W, Yuan X G. Instability analysis in pressurized three-layered fiber-reinforced anisotropic rubber tubes in torsion [J]. International Journal of Engineering Science,2011,49:342-353.
    [119]Ren J S. Mechanics of formation and rupture of human aneurysm [J]. Appl. Math. Mech.-(English Edition),2010,31(5):593-604.
    [120]Ren J S. Effects of dispersion of fiber orientation on the mechanical property of the arterial wall [J]. Journal of Theoretical Biology,2012,301:153-160.
    [121]赵敏,边骥.基于超弹性模型的动脉血管数值计算[J].中国医学物理学杂志,2012,29(6):3813-3817.
    [122]液压挖掘机的工作装置[C/OL].[2001,07,04].http://www.cmyeya.com/yan-jiu-dong-tai/%E6%B6%B2%E5%8E%8B%E6%8C%96%E6%8E%98% E6%9C%BA%E7%9A%84%E5%B7%A5%E4%BD%9C%E8%A3%85%E7%BD%AE.html
    [123]Dragoni E, Strozzi A. Theoretical analysis of an unpressurized elastomeric 0-ring seal inserted into a rectangular groove [J]. Wear,1989,130(1):41-51.
    [124]Dragoni E, Strozzi A. Analysis of an unpressurized, laterally restrained, elastomeric 0-ring seal [J]. ASME, Transactions, Journal of Tribology,1988.
    [125]George A F, Strozzi A, Rich J I. Stress fields in a compressed unconstrained elastomeric 0-ring seal and a comparison of computer predictions and experimental results [J]. Tribology International,1987,20(5):237-247.
    [126]Karaszkiewicz A. Geometry and contact pressure of an 0-ring mounted in a seal groove [J]. Ind. Eng Chem. Res.,1990,29(10):2134-2137.
    [127]Green I, English C. Analysis of elastomeric O-Ring seals in compression using the finite element method [J]. Tribology Transactions,1992,35:83-88.
    [128]Green I, English C. Stresses and deformation of compressed on elastomeric 0-ring seals [J].14th International Conference on Fluid Sealing, Firenze, Italy,1994.
    [129]Yokoyama K, Okazaki M, Komito T. Effect of contact pressure and thermal degradation on the sealability of 0-ring [J]. JSAE Review,1998,19(2):123-128.
    [130]Gillena K T, Bernsteina R, Wilsonb M H. Predicting and confirming the lifetime of 0-rings [J]. Polymer Degradation and Stability,2005,87(2):257-270.
    [131]Nam J H, Hawong J S, Han S L, Park S H. Contact stress of 0-ring under uniform squeeze rate by photoelastic experimental hybrid method [J]. Journal of Mechanical Science and Technology,2008,22:2337-2349.
    [132]Hawong J S, Nam J H, Han S L, Kwon 0, Park S H. A study on the analysis of 0-ring under uniform squeeze rate and internal pressure by photoelastic experimental hybrid method [J]. Journal of Mechanical Science and Technology, 2009,23:2330-2340.
    [133]Nikas G K. Eighty years of research on hydraulic reciprocating seals:Review of tribological studies and related topics since the 1930s [J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2010,224(1):1-23.
    [134]张业凯.橡胶圈压模的结构和制造[J].模具工业,1980,1:8-12.
    [135]孙彰信.浅谈铸铁管接口“O”形橡胶圈的密封问题[J].煤气与热力,1982,2(3):34-35.
    [136]任皓.航空航天部四院42所研制成功汽车发动机减振器橡胶圈[J].汽车与配件,1988,12:41.
    [137]任全彬,陈汝训,杨卫国.橡胶O形密封圈的变形及应力分析[J].航空动力学报,1995,10(3):241-244.
    [138]Chen G D, Haise H, Haasw, et al. Analysis of Elastomeric 0-Ring Seals Using the Finite Element Method [J]. Mechanical Science and Technology,2000,9:625-626.
    [139]刘福亮,范强.橡胶圈渗水的解决[J].实用汽车技术,2006,4:34.
    [140]蒋伟华.基于O形橡胶圈密封的高压容器设计和研究[D].浙江:浙江大学.2006
    [141]王隽.船舶艉轴密封装置O形橡胶密封圈失效分析[J].润滑与密封,2007,32(4):163-166.
    [142]刘健,仇性启,薄万顺,许俊良橡胶O形密封圈最大接触压力数值分析[J].润滑与密封,2010,35(1):41-44.
    [143]王伟,赵树高.结构参数对橡胶O形密封圈性能的影响[J].润滑与密封,2010,35(1):71-74.
    [144]Nikas G K. Elastohydrodynamics and mechanics of rectangular elastomeric seals for reciprocating piston rods [J]. Journal of Tribology,2003,125(1):60-69.
    [145]Nikas G K, Sayles R S. Nonlinear elasticity of rectangular elastomeric seals and its effect on elastohydrodynamic numerical analysis [J]. Tribology International, 2004,37(8):651-660.
    [146]俞鲁五.介绍一种静密封用密封件—矩形密封圈[J].流体传动与控制,2006,3(16):44-46.
    [147]Tan J, Yang W M, Ding Y M. Finite element analysis of rectangular rubber seals [J]. Lubrication Engineering,2007, (32):36-39.
    [148]刘桂明,张伯洪.矩形橡胶密封圈结构的变异及模具设计与制造[J].世界橡胶工业,2008,35(7):30-35.
    [149]Field G J, Nau B S. A theoretical study of the elastohydrodynamic lubrication of reciprocating rubber seals [J]. ASLE Transactions,1975,18(1):48-54.
    [150]Treloar L R G. The elasticity of a network of long chain molecules [J]. Rubber Chemistry And Technology,1943,16(4):746-751.
    [151]Treloar L R G, Riding G. A non-gaussian theory for rubber in biaxial strain. Ⅰ. Mechanical properties [J]. Proc. R. Soc. Lond. Ser A,1979,369:261-280.
    [152]Arruda E, Boyce MC.A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials [J]. J. Mech. Phys. Solids, 1993,41 (2):389-412.
    [153]徐立.有限元分析中橡胶应变能函数的若干形式[J].橡胶工业,1999,46:707-710.
    [154]Chalton D T, Yaag J. A review of methods to characterize rubber elastic behavior for ilse in finite element analysis [J]. Rubber Chemistry and Technology, 1994,67:481-503.
    [155]Boyce M C, Arruda E M. Constitutive models of rubber elasticity:a review [J]. Rubber chemistry and technology,2000,73(3):504-523.
    [156]任九生.非线性材料中的空穴生成与增长问题[D].上海:上海大学,2003.
    [157]Haughton D M. An exact solution for the stretching of elastic membranes containing a hole or inclusion [J]. Mechanics researeh communcation,1991,18(1):29-39.
    [158]Hill J M, Arrigo D J. Small deformations superimposed upon the symmetrical expansion of a spherical shell [J]. Quart. J. Mech. Appl. Math,1996,49(3):337-351.
    [159]Horgan C O. Void nucleation and growth for compressible non-linearly elastic materials:an example [J], Int.J. Solids and Structures,1992,29:279-291.
    [160]Murphy J G, Biwa S. Nonmontonic cavity growth in finite, compressible elasticity [J]. Int. J. Solids and Structures,1997,34:3859-3872.
    [161]Blatz P J, KO W L. Application of finite elastic theory to the deformation of rubbery materials [J]. Transactions of the Society of Rheology,1962, Ⅵ:223-251.
    [162]Shang XC, Cheng CJ. Exact solution for cavitated bifurcation for compressible hyper-elastic materials [J]. Journal of Engineering Science,2001,39:1101-1117.
    [163]王勇.橡胶圆管与橡胶充气管的有限变形分析[D].黑龙江:哈尔滨工程大学,2006.
    [164]袁学刚.具有缺陷的超弹性材料球体中的空穴分岔[D].上海:上海大学,2003.
    [165]O型圈的基本知识[C/OL]. http://www.mlwcn.com/web/cn/newsview2.asp?newsid=408
    [166]橡胶平垫/非骨架油封/油封密封件/矩形密封垫圈[C/OL].[2009,12,07].http://www.shangqing365.com/product/detail/146353.shtml
    [167]Porubov A V, Samsonov A M. Refinement of the model for the propagation of longitudinal strain waves in a rod with nonlinear elasticity [J]. Tech. Phys. Lett., 1993,19:65-366.
    [168]Wright T W. Nonlinear waves in rods [M]. In Proceedings of the IUTAM Symposium on Finite Elasticity,1982.
    [169]Coleman B D, Newman D C. On waves in slender elastic rods [J]. Arch. Rational Mech.Anal.,1990,109:39-61.
    [170]Graff K F. Wave Motion in Elastic Solids[M]. New York:Dover,1991.
    [171]刘丽.高压氧气管乙炔管空气管高压管橡胶管等[C/OL].[2007,09,28]http://biz.co188.com/content_product_38728719.html
    [172]Marvalova B, Urban R. Identification of orthotropic hyper-elastic material properties of card-rubber cylindrical air-spring [C]. Proceedings of 39th international conference. Tabor,2001.
    [173]任九生,周琎闻,袁学刚.钢丝编织高压胶管的力学性能及破坏强度[J].上海大学学报,2009,15(6):644-648.
    [174]循环系统[C/OL]. http://8.16368.com/80008/316/327/2007/2007022047502.html
    [175]胡维诚.动脉粥样硬化和高血压[C/OL].http://netclass.csu.edu.cn/jpkc2005/bingsheng/xxfd/jxfdgp/13.htm
    [176]Holzapfel G A, Sommer G. Regitnig P. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques [J]. Journal of Biomechanical Engineering,2004,126(5):657-665.
    [177]Yuan X G, Zhu Z Y, Zhang R J. Cavity formation and singular periodic oscillations in isotropic incompressible hyperelastic materials [J]. Int.J. Non-Linear Mechanics,2006,41:294-303.
    [178]Yuan X G, Zhang H W. Nonlinear dynamical analysis of cavitation in anisotropic incompressible hyperelastic spheres under periodic step loads [J]. CMES-Computer Modeling in Engineering & Sciences,2008,32(3):175-184.
    [179]Yuan X G, Zhu Z Y, Cheng C J. Dynamical analysis of cavitation for a transversely isotropic incompressible hyper-elastic medium:Periodic motion of a pre-existing micro-void [J]. Int.J. Non-Linear Mechanics,2007,42:442-449.
    [180]Yuan X G, Zhang H W. Effects of constitutive parameters and dynamic tensile loads on radially periodic oscillation of micro-void centered at incompressible hyperelastic spheres [J]. CMES-Computer Modeling in Engineering & Sciences, 2009,40(3):201-224.
    [181]Gao Y C. Elastostatic crack tip behavior for a rubber-like material [J]. Theor. Appl. Fract. Mech.,1990,14:219-231.
    [182]Qian H S, Gao Y C. Large deformation character of two kinds of models for rubber [J]. Journal of Engineering Science,2001,39:39-51.
    [183]Li L. Large strain analysis of an incompressible rubber cone contacting with a rigid conical socket [J]. Acta Mech,2006,183:145-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700