用户名: 密码: 验证码:
B样条函数在模糊系统中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模糊系统的设计可以看成是一类函数逼近问题,从而可以利用数值逼近方法来设计模糊系统.本文将把B样条函数引入到模糊系统设计中,给出两类B样条模糊系统,并证明它们均能逼近函数及其导函数.将上述两类B样条模糊系统看成是计算几何中的曲线曲面,当构造模糊系统的数据不准确时,我们推广了计算几何中的能量法,并利用推广的能量法和小波方法设计了光顺的B样条模糊系统.仿真结果表明,光顺的B样条模糊系统能够改善B样条模糊系统的性能,尤其是构造模糊系统的数据不准确的时候.最后,我们将B样条模糊系统和光顺的B样条模糊系统应用到三维吊车的变论域自适应模糊控制器中,通过实物实验进一步检验了它们的性能.具体工作及结果总结如下:
     1.构造了两类单输入单输出的B样条模糊系统.首先利用外推的数据构造了单输入单输出的第一类B样条模糊系统(1-B-FS),接着直接利用原始数据构造了第二类B样条模糊系统(2-B-FS).我们证明了这两类B样条模糊系统均能逼近函数及其导函数.最后,将它们分别应用到模糊推理建模和变论域自适应模糊控制器中,仿真实验表明这两类B样条模糊系统在实际应用中的可行性.
     2.构造了两类多输入单输出的B样条模糊系统.对于多输入单输出的情形,为了得到类似单输入单输出情形的第一类B样条模糊系统,必须保证构造模糊系统的数据集是插值适定结点组.因此,我们首先给出一种线性外推的方式对数据进行了预处理.由于利用线性外推方法得到的数据集是插值适定结点组,进而我们得到了多输入单输出的第一类B样条模糊系统,它与单输入单输出的情形一样,依然具有插值性质.同样,利用原来的数据构造了多输入单输出的第二类B样条模糊系统.接着分别利用混合函数技巧(the blend function techniques)和Taylor公式,我们证明了这两类B样条模糊系统均能逼近函数及其导函数.最后,将sine模糊系统及两类B样条模糊系统应用到模糊推理建模和变论域自适应模糊控制器中,仿真结果表明,大多数情形下,第一类B样条模糊系统的性能优于其他模糊系统.
     3.设计了能量法光顺的B样条模糊系统.为了减少不准确数据对模糊系统的影响,我们将计算几何中的能量法引入到模糊系统的设计中,构造了光顺的多输入单输出B样条模糊系统.首先,我们将仅适用于单输入单输出和双输入单输出B样条模糊系统的能量法推广到高维情形.由推广的能量法,我们将构造光顺B样条模糊系统的问题转化为求解一个严格凸二次函数的优化问题.将优化问题的最优解作为B样条模糊系统的线性组合系数就得到了光顺的B样条模糊系统.最后,将光顺的B样条模糊系统应用到二级倒立摆的变论域自适应模糊控制器中,仿真结果表明,利用光顺B样条模糊系统的控制器的控制效果优于利用B样条模糊系统的控制器,尤其在数据不准确的情形.
     4.设计了小波方法光顺的B样条模糊系统.由于利用能量法光顺的B样条模糊系统,光顺前后模糊系统的规则个数相同,且随着规则和输入变量个数的增加,处理的时间将迅速增加.而在计算几何的众多光顺方法中,小波方法在光顺曲线(面)的同时具有减少控制顶点的作用,且其运行时间对控制顶点个数不敏感.由此我们设计了小波方法光顺的B样条模糊系统.首先将B样条模糊系统的多分辨率表示转化为准均匀B样条函数的多分辨率表示,接着利用准均匀B样条小波分解方法对相应的准均匀B样条函数进行分解就得到了一系列光顺性逐渐增强、规则个数逐渐减少的模糊系统,即基于小波方法光顺的B样条模糊系统.最后,仿真结果表明,小波方法光顺的B样条模糊系统在改善原来B样条模糊系统性能的同时,大大提高了运行效率.
     5.利用三维吊车的仿真和实物实验进一步验证了B样条模糊系统和光顺B样条模糊系统的性能并指出:小波方法光顺的B样条模糊系统更有利于实物实现.
The problem to design a fuzzy system can be considered as a function approximation prob-lem. So it is reasonable to design fuzzy system by the numerical approximation method. In this paper, the B-spline function method is introduced to design fuzzy system, and two classes of B-spline fuzzy systems (B-FSs) are proposed, both of which can approximate functions and their derivatives simultaneously. In fact, we can regard the B-FSs as the curves (surfaces) in computational geometry. When the data to construct fuzzy system is inexact, we generalize the energy method of computational geometry. And then we design the faired B-FSs by the general-ized energy method and the wavelet fairing method. The simulation results show that the faired B-FSs can improve the B-FSs, especially when the data for fuzzy systems is inexact. Finally, the B-FSs and faired B-FSs are used in the variable universe adaptive fuzzy controllers of3D crane, so the performance of the above fuzzy systems is verified further. The details are as follows.
     1. Two classes of SISO B-FSs are constructed. Firstly, the first and second class of B-FSs (1-B-FSs and2-B-FSs) are designed by the extrapolated data and the original one, respectively. The two classes of SISO B-FSs are proved to approximate functions and their derivatives simul-taneously. At last, we use them in fuzzy system modelling and variable universe adaptive fuzzy controllers. The simulation results show that the two classes of SISO B-FSs are feasible.
     2. Two classes of MISO B-FSs are constructed. For the MISO case, if we want to obtain a B-FS like the SISO1-B-FS, the data for fuzzy system must be well-posed. So, we preprocess the original data by a linearly extrapolated method. Since this method ensures that the extrapolated data is a properly posed set of nodes, we can design the MISO1-B-FS by the extrapolated data and the MISO1-B-FS is an interpolation system like the SISO one. Likewise, the MISO2-B-FS is available by the original data. By the blend function techniques and Taylor formula, we prove that the two classes of MISO B-FSs can approximate functions and their derivatives simultaneously. At last, the sinc-FSs and the two classes of MISO B-FSs are used in fuzzy system modelling and variable universe adaptive fuzzy controllers. It is shown that the1-B-FS is better than other fuzzy systems in most cases.
     3. Two classes of faired MISO B-FSs are designed using the energy method in computa-tional geometry for reducing adverse effects of the inexact data. Towards this goal, we generalize the energy method to high-dimension cases so that the energy method which is only suitable for SISO and DISO B-FSs is extended to fair the MISO ones. Then the problem to construct a faired MISO B-FS is transformed into solving an optimization problem with a strictly convex quadratic objective function. And a faired MISO B-FS is obtained by solving the optimization problem. Furthermore, the faired B-FSs are used in variable universe adaptive fuzzy controllers of the double inverted pendulum. The simulation results show that the controllers by faired B-FSs perform better than those by B-FSs, especially when the data for fuzzy systems are inexact.
     4. Two classes of faired MISO B-FSs are designed using a quasi-uniform B-spline wavelet decomposition method in computational geometry. We note that, the energy faired B-FSs have the same number of rules before and after fairing, and the processing time will increase rapid-ly with the increasing of rules and input variables. In fact, among a lot of of fairing methods in computational geometry, the wavelet method can fair the curves (surfaces) and reduce the control points at the same time and it is not sensitive to the number of control points. So we design the wavelet faired B-FSs. First, the multi-resolution of B-FSs is transformed into the multi-resolution of quasi-uniform B-splines. Then the corresponding quasi-uniform B-splines are decomposed by the quasi-uniform B-spline wavelet method, and a series of fuzzy systems with gradually increasing fairness and gradually reducing rules are available. Those fuzzy sys-tems are all called faired B-FSs by wavelet method. At last, the simulation results show that the faired B-FSs by wavelet method can improve the original B-FSs and considerably reduce their running time simultaneously.
     5. The simulation and physical experiments of3D crane are used to verify the performance of B-FSs and faired B-FSs further. And the simulation and physical experiments results show that the faired B-FSs by wavelet method are more favorable for physical realization.
引文
[1]L. A. Zadeh. Fuzzy sets [J]. Information and Control,1965,8(3):338-353.
    [2]L. A. Zadeh. Fuzzy algorithm [J]. Information and Control,1968,12(2):94-102.
    [3]L. A. Zadeh. Similarity relations and fuzzy orderings [J]. Information Sciences,1971,3(2):177-200.
    [4]L. A. Zadeh. Outline of a new approach to the analysis of complex systems and decision processes [J]. IEEE Transactions on Systems, Man and Cybernetics,1973, SMC-3(1):28-44.
    [5]L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning-Ⅰ[J]. Information Sciences,1975,8(3):199-249.
    [6]L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning-Ⅱ [J]. Information Sciences,1975,8(3):301-357.
    [7]L. A. Zadeh. The concept of a linguistic variableand its application to approximate reasoning-Ⅲ [J]. Information Sciences,1975,8(3):43-80.
    [8]R. E. Bellman, L. A. Zadeh. Decision making in a fuzzy environment [J]. Management science,1970, 17(4):141-164.
    [9]S. Dutta. Fuzzy logic applications:Technological and strategic issues [J]. IEEE Transactions on Engi-neering Management,1993,40(3):237-254.
    [10]C. C. Lee. Fuzzy logic in control systems:Fuzzy logic controller-Part Ⅰ [J]. IEEE Transactions on Systems, Man and Cybernetics,1990,20(2):404-418.
    [11]C. C. Lee. Fuzzy logic in control systems:Fuzzy logic controller-Part Ⅱ [J]. IEEE Transactions on Systems, Man and Cybernetics,1990,20(2):419-435.
    [12]J. M. Mendel. Fuzzy logic systems for engineering:A tutorial [C]. Proceedings of the IEEE,1995, 83(3):345-377.
    [13]W. Pedrycs. Fuzzy Control and Fuzzy Systems [M]. Somerset:Research Studies Press,1993.
    [14]H. Seker, M. O. Odetayo, D. Petrovic, R. N. G. Naguib. A fuzzy logic based-method for prognostic decision making in breast and prostate cancers [J].IEEE Transactions on Information Technology in Biomedicine,2003,7(2):114-122.
    [15]M. Sugeno. Industrial Applications of Fuzzy Control [M]. New York:Elsevier,1985.
    [16]M. Sugeno, T. Yasukawa. A fuzzy-logic-based approach to qualitative modeling [J]. IEEE Transactions on fuzzy systems,1993,1(1):7-31.
    [17]H. N. Teodorescu, A. Kandel, L. C. Jain. Fuzzy and Neuro-Fuzzy Systems in Medicine [M]. Boca Raton, FL:CRC,1998.
    [18]M. Uragami, M. Mizumoto, K. Tanaka. Fuzzy robot controls[J]. Cybernetics and System,1976,6(1-2): 39-64.
    [19]Yu Lixin, Zhang Yanqing. Evolutionary fuzzy neural networks for hybrid financial prediction [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2005,35(2):244-249.
    [20]H. J. Zimmermann. Fuzzy Set Theory and Its Application[M]. Springer,2001.
    [21]Batanovic V, Petrovic D, Petrovic R. Fuzzy logic based algorithms for maximum covering location problems [J]. Information Sciences,2009,179(1):120-129.
    [22]Hung J C. A Fuzzy Asymmetric GARCH model applied to stock markets [J]. Information Sciences, 2009,179(22):3930-3943.
    [23]I. Ozkana, L. Erdena, I.B. Turksen. A fuzzy analysis of country-size argument for the FeldsteinHorioka puzzle [J]. Information Sciences,2009,179(16):2754-2761.
    [24]Nazary Moghadam, S., B. Asgarian, K. Nazokkar. Simulation of overall and local buckling behavior of cylindrical tubular members using fuzzy inference system[J]. Advances in Engineering Software, 2012,45(1):349-359.
    [25]Arianna Mencattini, Marcello Salmeri, Adelio Salsano. Sufficient conditions to impose derivative con-straints on MISO Takagi-Sugeno fuzzy logic systems[J]. IEEE Transactions on Fuzzy Systems,2005, 13(4):454-467.
    [26]Li Hongxing. Interpolation mechanism of fuzzy control[J]. Science in China (Series E),1998,41(3): 313-320.
    [27]Wang Degang, Song Wenyan, Li Hongxing. Analysis and design of time-variant fuzzy systems based on dynamic fuzzy inference[J]. Computers & Mathematics with Applications,2010,60(3):464-489.
    [28]Zuqiang Long, Ximing Liang, Lirong Yang. Some approximation properties of adaptive fuzzy systems with variable universe of discourse[J]. Information Sciences,2010,180(16):2991-3005.
    [29]Qiang Luo, Wenqiang Yang, Dongyun Yi. Kernel shapes of fuzzy sets in fuzzy systems for function approximation[J]. Information Sciences,2008,178(3):836-857.
    [30]Li Hongxing, Yuan Xuehai, Wang Jiayin, Li yucheng. The normal numbers of the fuzzy systems and their classes[J]. Science in China (Information Sciences),2010,53:2215-2229.
    [31]王立新,王迎军.模糊系统与模糊控制教程[M].2003,清华大学出版社.
    [32]王国俊.模糊推理的全蕴涵三Ⅰ算法[J].中国科学(E辑),1999,29(1):43-53.
    [33]Mamdani, E.H. Application of fuzzy algorithms for simple dynamic plant [C]. Proceedings of the Institution of Electrical Engineers,1974,121(12):1585-1588.
    [34]Mizumoto M. The improvement of fuzzy control algorithm, part 4:(+,·)-centroid algorithm [C]. Proceedings of Fuzzy Systems Theory,1990,6:9-13. (in Japanese)
    [35]Mizumoto M. Original fuzzy control method [J]. Science of Mathematical Physics,1991,333:27-35. (in Japanese)
    [36]Terano T., Asai, K., Sugeno M. Fuzzy systems theory and its applications [M]. Tokyo:Academic Press, INC,1992.
    [37]Sugeno M. Fuzzy Control [M]. Tokyo:Japanese Industry News Press,1988. (in Japanese)
    [38]Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control [J]. IEEE Transaction on Systems, Man and Cybernetics,1985, SMC,15(1):116-132.
    [39]汪德刚.基于Fuzzy推理的时变系统建模方法研究[D].北京:北京师范大学,2008.
    [40]刘福才,陈超,邵慧,裴润.模糊系统万能逼近理论研究综述[J].智能系统学报,2007,3(1):25-34.
    [41]Buckley J J. Universal fuzzy controllers [J]. Automatica,1992,28(6):1245-1248.
    [42]J.L. Castro. Fuzzy logic controllers are universal approximators[J]. IEEE Transactions on Systems, Man and Cybernetics,1995,25 (4):629-635.
    [43]De-chao Li, Zhong-ke Shi, Yong-ming Li. Sufficient and necessary conditions for Boolean fuzzy sys-tems as universal approximators[J]. Information Sciences,2008,178 (2):414-424.
    [44]Liu Puyin, Li Hongxing. Hierarchical TS fuzzy system and its universal approximation[J]. Information Sciences,2005,169(3):279-303.
    [45]Yong-Ming Li, Zhong-Ke Shi, Zhi-Hui Li. Approximation theory of fuzzy systems based upon genuine many-valued implications-MIMO cases [J]. Fuzzy Sets and Systems,2002,130 (2):159-174.
    [46]L.X. Wang. Fuzzy systems are universal approximators[C]. New York:IEEE Proceedings of the IEEE International Conference on Fuzzy Systems,1992,1163-1170.
    [47]J.J. Buckley. Sugeno type controllers are universal controllers [J]. Fuzzy Sets and Systems,1993,53 (3):299-303.
    [48]Hao Ying, Yongsheng Ding, Shaokuan Li, Shihuang Shao. Comparison of necessary conditions for typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximators [J]. IEEE Transactions on Systems, Man and Cybernetics Part A,1999,29 (5):508-514.
    [49]X.J. Zeng, M.G. Signh. Approximation theory of fuzzy systems-SISO case[J]. IEEE Transaction on Fuzzy Systems,1994,2 (2):162-176.
    [50]XJ.. Zeng, M.G. Singh. Approximation theory of fuzzy systems-MIMO Case[J]. IEEE Transaction on Fuzzy Systems,1995,3 (2):219-235.
    [51]R.Hassine, F.Karray, A.M.Alimi, M.Selmim. Approximation properties of fuzzy systems for smooth functions and their first-order derivative[J]. IEEE Transactions Systems, Man, and Cybernetics-Part A: Systems and Humans,2003,33(2):160-168.
    [52]Yongsheng Ding, Hao Ying, Shihuang Shao. Necessary conditions on minimal system configuration for general MISO Mamdani fuzzy systems as universal approximators [J]. IEEE Transactions on Systems, Man and Cybernetics Part B,2000,30 (6):857-864.
    [53]K. Zeng, N.Y. Zhang, W.L. Xu. A comparative study on sufficient conditions for Takagi-Sugeno fuzzy systems as universal approximators [J]. IEEE Transaction on Fuzzy Systems,2000,8 (6):773-780.
    [54]H. Ying. Sufficient conditions on uniform approximation of multivariate functions by general Takagi-Sugeno fuzzy systems with linear rule consequent[J]. IEEE Transaction on Systems, Man and Cyber-netics (Part A),1998,28 (4):515-520.
    [55]Ying Hao. Sufficient conditions on general fuzzy systems as function approximator [J]. Automatica, 1994,30(3):521-525.
    [56]Zeng Xiaojun, J.A. Keane. Approximation capabilities of hierarchical fuzzy systems[J]. IEEE Trans-actions on Fuzzy Systems,2005,13 (5):659-672.
    [57]Zeng Xiaojun, John Yannis Goulermas, Panos Liatsis, Di Wang, John A. Keane. Hierarchical fuzzy systems for function approximation on discrete input spaces with application [J]. IEEE Transactions on Fuzzy Systems,2008,16(5):1197-1215.
    [58]李洪兴.从模糊控制的数学本质看模糊逻辑的成功—关于“关于模糊逻辑似是而非的争论”的似是而非的介入[J].模糊系统与数学,1995,9(4):1-14.
    [59]Li Hongxing, Miao Zhihong, Lee E S. Variable universe stable adaptive fuzzy control of a nonlinear system[J]. Computers & Mathematics with Applications,2002,44(5):799-815.
    [60]Li Hongxing. Adptive fuzzy controllers based on variable universe[J]. Science China(Series E),1999. 42(1):10-20.
    [61]Li Hongxing, Miao Zhihong, Wang Jiayin. Variable universe adaptive fuzzy control on the quadruple inverted pendulum[J]. Science in China(Series E),2002,45(2):213-224.
    [62]Li Hongxing, Probability representations of fuzzy systems[J]. Science in China(Information Sciences), 2006,49(3):339-363.
    [63]李洪兴.不确定性系统的统一性[J].工程数学学报,2007,1:1-20.
    [64]孟艳平,谭彦华,李洪兴.自适应Fuzzy系统及其逼近性能分析[J].数学进展,2012,41(4):423-435.
    [65]袁学海.基于Zadeh蕴涵的重心法模糊系统[J].辽宁师范大学学报(自然科学版),2012,35(4):433-440.
    [66]Xue-hai Yuan, Zeng-liang Liu, E. Stanley Lee. Center-of-gravity fuzzy systems based on normal fuzzy implications [J]. Computers & Mathematics with Applications,2011,61(9):2879-2898.
    [67]Larry L.Schumaker. Spline functions:basic theroy[M]. Cambridge:Cambridge University Press,2007.
    [68]S. Mitaim, B. Kosko. The shape of fuzzy sets in adaptive function approximation[J]. IEEE Transactions on Fuzzy Systems,2001,9(4):637-656.
    [69]S. Mitaim, B. Kosko. What is the best shape for a fuzzy set in function approximation[C]. Proceedings of IEEE International Conference on Fuzzy Systems, New Orleans, Louisiana:IEEE,1996,2:1237-1243.
    [70]Hassine, Radhia Karray, Fakhreddine Alimi, Adel M. Selmi, Mohamed, Approximation properties of piece-wise parabolic functions fuzzy logic systems. Fuzzy Sets and Systems,2006,157(4):501-515.
    [71]I. Elbadawi, A. R. Gallant, G. Souza. An elasticity can be estimated consistently without a priory knowledge of functional form[J]. Econometrica,1983,51(6):1731-1751.
    [72]D. K. Andrews. Asymptotic normality of series estimators for nonparametric and semiparametric re-gression models[J]. Econometrica,1991,59(2):307-345.
    [73]M. Jordan. Generic constraints on underspecified target trajectories[C]. International Joint Conference on Neural Networks. New York:IEEE 1989,1:217-225.
    [74]J. P. Eckmann, S. Oliffson Kamphorst, D. Ruelle, S. Ciliberto. Lyapunov exponents from time series[J]. Physical Review A,1986,34:4971-4979.
    [75]V. Kreinovich, H. T. Nguyen, Y. Yam. Fuzzy systems are universal approximators for a smooth function and its derivatives[J]. International Journal of Intelligent Systems,2000,15:565-574.
    [76]Manuel Landajo, Maria J. Rio, Rigoberto Perez. A note on smooth approximation capabilities of fuzzy systems[J]. IEEE Transactions on Fuzzy Systems,2001,9(2):229-237.
    [77]I. J.Schonberg. Contributions to the problem of approximation of equidistant data by analytic function-s[J]. Quarterly of Applied Mathematics,1946,4:45-99,112-141.
    [78]I. Daubechies. Ten Lectures in Wavelets[M]. Society for Industrial and Applied Math., Philadelphia, 1992:129-167
    [79]樊启斌.小波分析[M].武汉:武汉大学出版社,2008.
    [80]Li-Xin Wang, Chen Wei. Approximation accuracy of some neuro-fuzzy approaches[J]. IEEE Transac-tions on Fuzzy Systems,2000,8(4):470-478.
    [81]M.Brown and C.J.Harris. A nonlinear adaptive controller:A comparison between fuzzy logic control and neural control[J]. IMA Journal Mathematical Control Information,1991,8(3):239-265.
    [82]杨文光,赵海良,基于样条插值的模糊控制算法[J].模糊系统与数学,2009,23(3):152-157.
    [83]X.J. Zeng, M.G. Signh. Approximation accuracy analysis of fuzzy systems as function approxima-tors[J]. IEEE Transaction on Fuzzy Systems,1996,4 (1):44-63.
    [84]李岳生,齐东旭.样条函数方法[M].北京:科学出版社,1979.
    [85]Jianwei Zhang, Alois Knoll. Constructing fuzzy contrllers with B-splines models-principles and appli-cations[J]. International Joural of Intelligent Systems,1998,13(2-3):257-285.
    [86]Jianwei Zhang, Khac Van Le, Alois Knoll. Unsupervised learning of control surface based on B-splines models[C]. Proceedings of the Sixth IEEE International Conference on Fuzzy Systems. Barcelona, Spain:IEEE,1997,3:1725-1730.
    [87]李静.基于B样条隶属函数的模糊推理算法研究[D].合肥:合肥工业大学,2011.
    [88]G. Farin. Curves and surfaces for CAGD:a practical guide[M]. USA, Academic Press,2001.
    [89]Les Piegl, Wayne Tiller. The NURBS book[M]. New York:Springer-Verlag,1997.
    [90]苏步青,刘鼎元.计算几何[M].上海:上海科学技术出版社,1980.
    [91]王仁宏,李崇君,朱春钢.计算几何教程[M].北京:科学出版社,2008.
    [92]李洪兴. Fuzzy控制的本质与一类高精度Fuzzy控制器的设计[J].控制理论与应用,1997,14(6):868-872.
    [93]修智宏,任光.典型模糊控制器的插值形式[J].模糊系统与数学,2004,18(1):67-75.
    [94]Li Hongxing, Miao Zhihong, Wang Jiayin. Modelling on fuzzy control systems[J]. Science in Chi-na(Series A),2002,45(12):1506-1517.
    [95]李洪兴,王加银,苗志宏.模糊控制系统建模中的边缘线性化方法[J].自然科学进展,2003,13(5):466-472.
    [96]李洪兴,宋雯彦,袁学海,李宇成.基于Fuzzy推理的时变系统建模[J].系统科学与数学,2009,29(8):1109-1128.
    [97]Wang Degang, Song Wenyan, Peng Shi, Hamid Reza Karimi. Approximate Analytic and Numerical Solutions to Lane-Emden Equation via Fuzzy Modeling Method[J].Mathematical Problems in Engi-neering,2012,2012.
    [98]Wang Degang, Song Wenyan, Peng Shi, Li Hongxing. Approximation to a class of non-autonomous systems by dynamic fuzzy inference marginal linearization method, Information Sciences (2013), doi: http://dx.doi.org/10.1016/j.ins.2013.05.011.
    [99]E. H. Mamdani, S. Assilian. An experiment in linguistic synthesis with a fuzzy logic controller[J]. International Journal of man-machine studies,1975,7(1):1-13.
    [100]Mohammad Biglarbegian, William Melek, Jerry Mendel. On the robustness of Type-1 and interval Type-2 fuzzy logic systems in modeling[J]. Information Sciences,2011,181(7):1325-1347.
    [101]Wenyan Song,Degang Wang,Weiguo Wang. Analysis for perturbation of fuzzy systems modeling[J]. ICIC Express Letters,2009,3 (3):573-578.
    [102]Yongming Li, Dechao Li, Witold Pedrycz, Jingjie Wu. An approach to measure the robustness of fuzzy reasoning[J]. International Journal of Intelligent Systems,2005,20 (4):393-413.
    [103]Yongming Li. Approximation and robustness of fuzzy finite automata[J]. International Journal of Ap-proximate Reasoning,2008,47 (2):247-257.
    [104]Lei Zhang, KaiYuan Cai. Optimal fuzzy reasoning and its robustness analysis[J]. International Journal of Intelligent Systems,2004,19 (11):1033-1049.
    [105]Zheng Zheng, Wei Liu, KaiYuan Cai. Robustness of fuzzy operators in environments with random perturbations[J]. Soft Computing,2010,14(12):1339-1348.
    [106]H.T. Nguyen, V. Kreinovich, D. Tolbert. On robustness of fuzzy logics[C]. Second IEEE International Conference on Fuzzy Systems, IEEE,1993:543-547.
    [107]M.S. Ying, Perturbation of fuzzy reasoning[J]. IEEE Transactions on Fuzzy Systems,1999,7(5):625-629.
    [108]Lei Zhang, Kai-Yuan Cai. Optimal fuzzy reasoning and its robustness analysis[J]. International Journal of Intelligent Systems,2004,19(11):1033-1049.
    [109]Kai-Yuan Cai. Robustness of fuzzy reasoning and d-equalities of fuzzy sets[J]. IEEE Transactions on Fuzzy Systems,2001,9 (5):738-750.
    [110]Yongming Li, Dechao Li, Witold Pedrycz, Jingjie Wu. An approach to measure the robustness of fuzzy reasoning[J]. International Journal of Intelligent Systems,2005,20(4):393-413.
    [111]Yongming Li. Approximation and robustness of fuzzy finite automata[J]. International Journal of Ap-proximate Reasoning,2008,47(2):247-257.
    [112]Zheng Zheng,Wei Liu, Kai-Yuan Cai. Robustness of fuzzy operators in environments with random perturbations[J]. Soft Computing,2010,14(12):1339-1348.
    [113]YingfangLi, KeyunQin, XingxingHe. Robustness of fuzzy connectives and fuzzy reasoning[J]. Fuzzy Sets and Systems 225(0):93-105.
    [114]C.A.Hall. Natural cubic and bicubic spline interpolation[J]. SIAM Journal on Numerical Analysis, 1973,10(6):1055-1060.
    [115]Su Buqing, Liu Dingyuan. Computational geometry:curve and surface modeling[M]. New York:Aca-demic Press,1989.
    [116]Hall. C.A. and W.W. Meyer. Optimal error bounds for cubic spline interpolation[J]. Journal of Approx-imation Theory,1976,16(2):105-122.
    [117]M. G. Cox. The numerical evaluation of B-splines[J]. IMA Journal of Applied Mathematics,1972,10 (2):134-149.
    [118]C. de Boor. On calculating with B-splines[J]. Journal of Approximation Theory,1972,6(1):50-62.
    [119]朱心雄等.自由曲线曲面造型技术[M].北京:科学出版社,2000
    [120]Adam Finkelstein, David H. Salesin. Multiresolution curves[C]. Computer Graphics Proceedings, An-nual Conference Series. Orlando:SIGGRAPH'94,1994:261-268.
    [121]徐树方.矩阵计算的理论与方法[M].北京:北京大学出版社,2005.
    [122]吴望名.模糊推理的原理和方法[M].贵阳:贵州科技出版社,1994.
    [123]张乃尧.典型模糊控制器的结构分析[J].模糊系统与数学,1997,11(2):10-21.
    [124]韩曾晋.自适应控制[M].清华大学出版社,1995.
    [125]李洪兴.模糊逻辑系统与前向式神经网络等价[J].中国科学(E辑),2000,30(2):150-163.
    [126]Wang Li xin. Stable Adaptive Fuzzy Control of Nonlinear Systems[J]. IEEE Transactions on Fuzzy Systems,1993,1 (2):146-155.
    [127]Li HongXing, ZhiHong Miao, E.S. Lee. Variable universe stable adaptive fuzzy control of a nonlinear system[J]. Computers Mathematics with Applications,2002,44(5-6):799-815.
    [128]Li Hongxing, Yuan Xuehai, Wang Jiayin, Li Yucheng. The normal numbers of the fuzzy systems and their classes[J]. Science China (Information Science),2010,53(11):2215-2229.
    [129]WILLIAM J.Gordon. Spline-blended surface interpolation through curve networks[J]. Journal of Math-ematics and Mechanics,1969,18(10):931-952.
    [130]WILLIAM J.Gordon. Blending-function methods of bivariate and multivariate interpolation and ap- proximation[J]. SIAM Journal on Numerical Analysis,1971,8(1):158-177.
    [131]梁学章,李强等.多元逼近[M].北京:国防工业出版社,2005.
    [132]Shaocheng Tong, Yongming Li. Observer-based fuzzy adaptive control for strict-feedback nonlinear systems, Fuzzy Sets and Systems[J],2009,160(12):1749-1764.
    [133]Tao Wang, Shaocheng Tong, Yongming Li. Robust adaptive fuzzy control for nonlinear system with dynamic uncertainties based on backstepping[J]. International Journal of Innovative Computing, Infor-mation and Control,2009,5(9):2675-2688.
    [134]Shaocheng Tong, Changliang Liu, Yongming Li. Fuzzy-adaptive decentralized output-feedback con-trol for large-scale nonlinear systems with dynamical uncertainties[J]. IEEE Transactions on Fuzzy Systems,2010,18(5):845-861.
    [135]Shaocheng Tong, Yongming Li, Gang Feng, Tieshan Li. Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B,2011,41(4):1121-1135.
    [136]韩波,李莉.非线性不适定问题的求解方法及其应用[M].北京:科学出版社,2011.
    [137]文再文.最小二乘法及其应用[D].北京:中国科学院数学与系统科学研究院,2004.
    [138]孙延奎,朱心雄.曲线分层表示的小波方法[J].工程图学学报,1999,1:40-44.
    [139]焦晨辉.基于模糊滑模控制的三维桥式吊车系统[D].大连:大连理工大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700