用户名: 密码: 验证码:
光电探测系统目标定位误差分析与修正问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代高技术装备的飞速发展,光电武器装备在侦察、监视、定位、导航和通信等场合的作用越来越重要。光电探测系统是该类武器装备的重要组成部分,且目标定位精度的要求越来越高。本文围绕如何提高光电探测系统的目标定位精度这个重要问题,重点在工作机理、目标定位误差分析建模和评价、指向误差修正、稳定误差抑制等方面开展工作,形成了较为完善、实用的光电探测系统误差分析和误差修正方法。
     论文的研究工作包含以下几个部分:
     一、分析了光电探测系统的总体结构、主要功能和工作模式。针对光电探测系统的稳定跟踪原理,进行了详细的运动学和动力学分析。同时,采用多体系统建模理论和全微分法,推导了光电探测系统的通用目标定位模型和误差传递模型,给出了各项误差因素对目标定位精度的影响关系。
     二、针对光电探测系统的目标定位误差综合建模问题,对各项误差影响因素进行了详细的定量化分析,推导了目标定位误差综合模型,避免了误差的多重建模,扩展了误差建模的适用范围。同时,根据误差分析和建模的结果,采用了基于Monte Carlo的误差评价方法,得到了各项误差因素的影响规律,以及在目标定位误差中所占的比重,对光电探测系统研制过程中的误差分配和优化设计具有指导作用。
     三、针对光电探测系统的高精度指向问题,深入分析了指向误差的修正原理和修正过程中需要解决的几个关键因素,提出了具有较明确物理意义的指向误差基本参数模型。同时,针对非线性误差因素的影响,提出了基于半参数回归模型的改进算法。通过仿真分析和比较,基于半参数回归模型的改进算法继承了基本参数模型的模型参数较少、辨识数值稳定、物理意义明确等优点,同时能够抑制非线性误差干扰,有效地改善了修正效果。
     四、分析了光电探测系统伺服控制回路中,陀螺性能和摩擦特性对稳定精度的影响。针对高精度和高带宽的惯性角速度信号问题,提出了一种基于MEMS陀螺和加速度计的最优惯性角速度估计算法,实现了陀螺的带宽拓展和噪声抑制,为系统小型化、轻量化、高精度发展提供一种新的思路。同时,针对伺服控制系统稳定回路中摩擦的影响,提出了一种基于切换结构的平台角速度估计算法,实现了稳定回路的双速度环控制结构,有效地改善了摩擦对稳定精度的影响。
     五、针对研制的某型光电吊舱,进行了室内的指向误差分离和修正实验。实验结果表明,基于半参数回归模型的指向误差修正算法能够较大幅度地提高指向精度。同时,针对研制的某型光电吊舱,进行了外场的目标定位实验,通过实验进一步验证了推导的通用目标定位模型的有效性和实用性。
Developing with the modern equipments of high technology, Electro-opticalweapons play a more and more important role in reconnaissance, surveillance,orientation, navigation, communication systems. As an essential part of these weapons,the electro-optical detection system should gradually been improved, especillly in thetarget location accuracy. The paper focuses on the working principles, target locationerror analysis modeling and evaluation, pointing error correction, and stabilization errorsuppression in order to find a comparative perfect error analysis theory and a practicalerror compensation method for the system.
     The following studies are included in this paper:
     1. Explain the overall structure and main functions of the electro-optical detectionsystem; conduct kinematics and dynamics equations on the basis of the stabilization andtracking principle of two-axis platform; and deduce a general target location equationthat suits different platforms through the multi-body system modeling theory andhomogeneous coordinate transformation method.
     2. Based on the analysis of different error sources of the electro-optical detectionsystem, an error synthetic modeling theory is presented by introducing the targetlocation error, that is, an integrated technical index. By quantitatively analyzing eacherror in every subsystem, deduce the error synthetic model for target location, whichunifies all error factors into one model. Each error model can be directly extracted fromthe synthetic one to avoid multiple modeling and to extend the application of the errormodel. Subject to the quantitative indexes coming from the error analysis, the paperadopts Monte Carlo evaluation methods to find the influencing rules of each error factorand their proportion in the target location error, and to optimize the system design.
     3. According to the requirements of the electro-optical detection system on highprecision pointing, the paper explains the correction principle for pointing error,addresses the key problems to be solved during the correction, and presents a basicparameter model, which has explicit physical meaning. The paper further conducts anumerical analysis after a comparison with the traditional global function model tostudy the influences from the nonlinear error factors. An improved algorithm subject tothe semi-parametric regression model is also presented further on the basis of the basicparameter model for pointing error, and then proves it by constructing a pointing errorseparation and revision system.
     4. Based on the MEMS gyro and accelerometer after studying the influences onprecision stability from the gyro performance and frictional behavior of the servocontrol system, the present paper introduces an optimized estimated algorithm forinertia angular velocity, which extends the bandwidth, suppresses the noise of the gyro, and provides a new idea for developing a miniaturized, light weight, and highly accuratesystem. This meets the requirements for inertial angular velocity signals with highprecision and bandwidth. Subject to the switching structures, a platform angularvelocity estimated algorithm is specially presented to the nonlinear friction instabilized-loop of the servo control system, which helps realize the dual-loop structureand effectively improves the influence of the friction to stabilize accuracy.
     5. Separation and correction of pointing errors for a designed electro-opticalsystem has been down, and the indoor experiment shows that the pointing accuracy hasbeen improved greatly by the algorithm based on the semi-parametric regression model.The outdoor expriment of target location shows the validity and practicability of thegeneral target location model.
引文
[1]王建华.信息技术与现代战争[M].北京:国防工业出版社,2004.
    [2]军用光电技术与系统概论编审组.军用光电技术与系统概论[M].西安,2008.
    [3]范大鹏.《光电稳定跟踪装置控制技术》专题文章导读[J].光学精密工程,2006,14(4):673.
    [4]马佳光.捕获跟踪与瞄准系统的基本技术问题[J].光电工程,1989,3:1-42.
    [5]范大鹏.光电探测伺服系统设计与制造:挑战与对策[J].应用光学,2011,32(3).
    [6]张智永.光电稳定伺服机构的关键测控问题研究[D].国防科技大学,2006,12.
    [7] Hilkert J M. Inertially Stabilized Platform Technology [J]. IEEE Control SystemsMagazine,2008,28(1):26-46.
    [8] Michael K M. Inertially Stabilized Platforms for Optical Imaging Systems [J]. IEEEControl Systems Magazine,2008,28(1):47-64.
    [9]周瑞青.捷联式导引头稳定与跟踪技术[M].北京:国防工业出版社,2010.
    [10]熊伟,谢剑薇.光电跟踪控制系统导论[M].北京:国防工业出版社,2009.
    [11]吕俊伟,何友金.光电跟踪测量原理[M].北京:国防工业出版社,2010.
    [12]张广义,杨军.非制冷红外成像导引头[M].西安:西北工业大学出版社,2009.
    [13]Bobby L U. Overview of Acquisition and Tracking and Pointing SystemTechnologies [C]. Proc. SPIE,887:40-63.
    [14]Debruin J. Control Systems for Mobile Satcom Antennas [J]. IEEE ControlSystems Magazine,2008,28(1):87-101.
    [15]Guelman M., Kogan A., Kazarian A. Acquisition and Position Control forInter-satellite Laser Communications [J]. IEEE Trans. Aerospace ElectronicSystems,2004,40(4):1239-1249.
    [16]Ren Z., Stephens L. Laser Pointing and Tracking using A CompletelyElectromagnetically Suspended Precision Actuator [J]. AIAA Journal of Guidance,Control and Dynamics,2006,29(5):1235-1239.
    [17]Gendreau K., Leitner J. Requirements and Options for A Stable Inertial ReferenceFrame for A100-μarcsecond imaging telescope [C]. Proc. SPIE,2003,4852.
    [18]Downey G. Electro-optical Tracking Considerations II [C]. Proc. SPIE,2003,5082:139-153.
    [19]Barbour N., Schmidt G., Inertial Sensor Technology Trends [J]. IEEE SensorsJournal,2001,1(4):332-339.
    [20]李岩.光电稳定跟踪装置误差建模与评价问题研究[D].国防科技大学,2008,3.
    [21]王家骐,金光,颜昌翔.机载光电跟踪测量设备的目标定位误差分析[J].光学精密工程,2005,13(2):105-116.
    [22]http://www.lockheedmartin.com
    [23]http://www.rafael.co.il
    [24]http://www.L-3Com.com
    [25]郭富强,毛玉增.惯性导航陀螺平台[M].北京:国防工业出版社,1980.
    [26]郭富强,于波.陀螺稳定装置以及应用[M].西安:西北工业大学出版社,1995.
    [27]郭素云.陀螺仪原理及应用[M].哈尔滨:哈尔滨工业大学出版社,1985.
    [28]王承瑶.陀螺稳定系统[M].北京:国防工业出版社,1985.
    [29]毕永利.多框架光电平台控制技术研究[D].长春:中科院长春光机所,2003.
    [30]王连明.机载光电平台稳定与跟踪伺服控制[D].长春:中科院长春光机所,2002.
    [31]贾平,张葆.航空光电侦察平台关键技术及其发展[J].光学精密工程,2003,11(1):82~88.
    [32]纪明.武装直升机瞄准线粗/精组合二极稳定技术[J].航空学报,1997,18(3).
    [33]纪明.光电二级稳定系统控制通道融合技术[J].兵工学报,2000,4:318~321.
    [34]冯永利.陀螺稳定控制系统设计与仿真[J].光电工程,2003,30(1):32-34.
    [35]黄永梅,张桐,马佳光.高精度跟踪控制系统中电流环控制技术研究[J].光电工程,2005,32(1):16-19.
    [36]毕永利,刘洵,葛文奇等.机载多框架陀螺稳定平台速度稳定环设计[J].光电工程,2004,31(2):16-18.
    [37]李洁,葛文奇,关贵柱等.精稳控制系统与跟踪架运动耦合问题的分离[J].光电工程,2002,29(5):8-11.
    [38]张建民,韩根甲.下视惯性平台瞄准线稳定的数理分析[J].光学与光电技术,2004,2(6):55-57.
    [39]王楚清,杨坤涛,刘爱东.潜艇潜望镜瞄准线三轴稳定研究[J].舰船科学技术,2004,26(1):50-52.
    [40]张聘义,祁载康,崔莹莹.一种匹配滤波方法在导引头捷联稳定平台中的应用研究[J].红外技术,2005,27(1):6-11.
    [41]王敏.扫描摆镜控制的数字PID实现[J].现代电子技术,2005,4:82-83.
    [42]胡浩军.运动平台捕获、跟踪与瞄准系统光轴稳定技术研究[D].国防科技大学,2005.
    [43]庞新良.机载光电稳定平台数字控制关键技术研究[D].国防科技大学,2007.
    [44]聂旭涛.导引头伺服机构若干强度与动力学问题研究[D].国防科技大学,2007.
    [45]张文博.导引头伺服机构的关键测控问题研究[D].国防科技大学,2009.
    [46]周瑞青,吕善伟,刘新华.弹载捷联式天线平台两种稳定实现方法的比较[J].系统工程与电子技术,2005,27(5):1397-1400.
    [47]周瑞青,吕善伟,刘新华.捷联式天线平台数字稳定技术及仿真研究[J].系统仿真学报,2004,16(10):2234-2236.
    [48]王永富.高精度陀螺稳定随动系统研究[D].哈尔滨:哈尔滨工业大学,1999.
    [49]范国滨.光束稳定与振动控制的光机电一体化系统研究[D].西安:西安电子科技大学,2004.
    [50]姬伟.陀螺稳定光电跟踪平台伺服控制系统研究[D].南京:东南大学,2006.
    [51]Arthur K R. Stabilization of Precision Electrooptical Pointing and TrackingSystems [J]. IEEE Transactions on Aerospace and Electronic Systems,1969,AES-5(1):805-819.
    [52]Arthur K R. Correction to “Stabilization of Precision Electrooptical Pointing andTracking Systems”[J]. IEEE Transactions on Aerospace and Electronic Systems,1970, AES-6(1):855-857.
    [53]Arthur K R. Precision Stabilization Systems [J]. IEEE Transactions on Aerospaceand Electronic Systems.1974, AES-10(1):34-42.
    [54]Casey W L., Phinney D D. Representative Pointed Optics and Associated GimbalCharacteristics [C]. Proc. SPIE,887:116-123.
    [55]Kennedy P J., Kennedy R L. Direct Versus Indirect Line of Sighy (LOS)Stabilization [J]. IEEE Tran. Control Systems Technology,2003,11(1):3-15.
    [56]Michael K M., Henry R S. Line-of-Sight Stabilization/Tracking System: anOverview [C]. Proceedings of the American Control Conference,1987:1477-1482.
    [57]Michael K M., Hilkert J M. Electromechanical System Configuration for Pointing,Tracking and Stabilization Application [C]. Proc. SPIE,779:75-87.
    [58]Michael K M., Hilkert J M. Impact of Optics Decisions Upon Line-of-SightStabilization [C]. Proc. SPIE,389:98-106.
    [59]Stockum L A., George R C. Precision Stabilized Platform for ShipboardElectro-Optical Systems [C]. Proc. SPIE,493:414-425.
    [60]Stockum L A., James B. Electro-Mechanical Design for Precision Pointing andTracking Systems [C]. Proc. SPIE,779:66-74.
    [61]Algrain M C. A Target Location and Pointing Algrithm for A Three-Axis StabilizedLine Scanner (AMIDARS)[C] Proc. SPIE, Acquisition, Tracking, and Pointing IV,1990,1304:147-159.
    [62]Skoglar P. Modelling and Control of IR/EO-Gimbal for UAV SurveillanceApplications [D]. Swedish: Linkopings Universitey,2002.
    [63]Spong M W., Vidyasagar M. Robot Dynamics and Control [M]. John Wiley&Sons,1989.
    [64]Alasty A., Abedi H. Kinematic and Dynamic Sensitivity Analysis of a Three-AxisRotary Table [C]. IEEE Conference on Control Applications,20032:1147-1152.
    [65]Poisel R A. Electronic Warfare Target Location Methods [M]. Publishing House ofElectronics Industry,2008.
    [66]Spingarm K. Passive Position Location Estimation using the Extended KalmanFilter [J]. IEEE Transactions on Aerospace and Electronic Systems Magazine,1987,AES-23,4:558-567.
    [67]Fu S J., Vian J L., Grose D L. Determination of Ground Emitter Location [J]. IEEETransactions on Aerospace and Electronic Systems Magazine,1988:15-18.
    [68]刘晶红,张辉.航空光电成像平台的目标自主定位[J].光学精密工程,2007,15(8):1305-1310.
    [69]李晓光,王兆楠,王智,金光.一种目标位置解算方法[J].光学精密工程,2006,14(6):1076-1086.
    [70]张华海,王军,郑南山.由空间直角坐标计算大地坐标的简便公式[J].全球定位系统,2002,4:9-12.
    [71]毛昭军,汪德虎.姿态测量/激光测距的无人机目标定位模型[J].火力与指挥控制,2003,28(5):14-17.
    [72]王家骐.光学仪器总体设计[M].长春光学精密机械与物理研究所研究生部教材,1998.
    [73]金光.机载光电跟踪测量的目标定位误差分析和研究[D].长春:中科院长春光机所,2001.
    [74]王晶,高利民,姚俊峰.机载测量平台中的坐标转换误差分析[J].光学精密工程,2009,17(2):388-394.
    [75]王姝.机载光电测量系统引导及定位技术研究[D].长春:长春理工大学,2009.
    [76]韩雪冰,张景旭,赵金宇.水平式光电望远镜目标定位误差的预测[J].光学精密工程,2010,18(7):1595-1604.
    [77]赵彦,张新锋.基于四元数的射电望远镜指向误差分析方法[J].机械科学与技术,2009,28(10):1359-1369.
    [78]Jerome W. F., Arthur K. R. Confidence Limits for the Pointing Error of GimbaledSensors [J]. IEEE Transaction on Aerospace and Electronic Systems,1966,AES-2(6):648-654.
    [79]Lewis H. Pointing and Tracking Performance of the W.M. Keek Telescope [J]. Proc.SPIE, Acquisition, Traeking, and Pointng V,1994,2199:117-125.
    [80]Prestage R., Coulson I. Treatment of Pointing in the New JCMTTCS [J]. JamesClerk Maxwell Teleseope TCS Design Note5,1998.
    [81]Gawronski W. Control and Pointing Challenges of Large Antennas and Telescopes[J]. IEEE Transactions on Control Systems Technology,2007,15(2):276-288.
    [82]Poyner. A. D., Montgomery. J. W. MMT Pointing and Tracking [C]. Proc. SPIE,628:9-15.
    [83]Meeks R L. Improving Telescope Mechanical Error Estimation using Pointing Data[D]. Colorado State University,2003.
    [84]金光,倪伟.星体弧长法标定光电经纬仪指向精度[J].光学精密工程,1999,7(4):91-95.
    [85]叶晓明,凌模.全站仪原理误差[M].武汉:武汉大学出版社,2004.
    [86]Arthur K R. Calibration of Precision Gimbaled Pointing Systems [J]. IEEETransactions on Aerospace and Electronic Systems,1970, AES-6,5:697-706.
    [87]霍炬,仲小清.某姿态测量系统标定用转台指向误差补偿[J].哈尔滨工业大学学报,2010,42(1):100-105.
    [88]李岩,范大鹏.基于多体系统运动学理论的三轴转台装配误差建模分析[J].兵工学报,2007,28(8):981-987.
    [89]Donmez A. A General Methodology for Machine Tool Accuracy Enhancement byError Compensation [J]. Precision Engineering,1986,4(8):187-194.
    [90]Reshetov D N., Portman V T. Accuracy of Machine Tools [M]. ASME Press,1988.
    [91]Soons J A., Theuws F C. Modeling the Errors of Multi-Axis Machines: A GeneralMethodology [J]. Precision Engineering,1992,1(14):5-19.
    [92]Chen J S., Yuan J. Compensation of Non-Rigid Body Kinematics Effect of aMaching Center [J]. Transaction of NANRI,1992,2(20):325-329.
    [93]黄田,李亚,李思维.一种三自由度并联机构几何误差建模、灵敏度分析及装配工艺设计[J].中国科学E辑,2002,32(5):628-635.
    [94]Kiridena V., Ferreira P M. Mapping the Effects of Positioning Errors on theVolumetric Accuracy of Five-Axis CNC Machine Tools [J]. International Journalof Machine Tools&Manufacture,1993,3(33):417-437.
    [95]Srivastava K., Veldhuis S C. Modeling Geometric and Thermal Errors in aFive-Axis CNC Machine Tool [J]. International Journal of Machine Tools&Manufacture,1995,9:1321-1337.
    [96]Ziegert J C., Prashant K. Error Compensation in Machine Tools: A Neural NetworkApproach [J]. Journal of Intelligent Manufacturing,1994,5:143-151.
    [97]休斯敦,刘又午.多体系统动力学(上下册)[M].天津:天津大学出版社,1987.
    [98]刘又午,刘丽冰.数控机床误差补偿技术研究[M].中国机械工程,1998,9(12).
    [99]刘丽冰,王广彦,刘又午.复杂机械系统运动误差自动建模技术研究[J].中国机械工程,2000,6(10):642-646.
    [100]刘丽冰.加工中心在线检测及误差补偿关键技术研究[D].天津:天津大学,1998.
    [101]粟时平.多轴数控机床精度建模与误差补偿方法研究[D].国防科技大学,2002.
    [102]赵强,阎绍泽.光刻机精密运动平台的几何及运动误差建模[J].清华大学学报(自然科学版),2010,50(2):241-245.
    [103]Pierce R S., Rosen D. A Method for Integrating Form Errors into GeometricTolerance Analysis [J]. Journal of Mechanical Design,2008,130(1):011002-1-10.
    [104]Rahman M., Heikkala J., Lappalainen K. Modeling, Measurement and ErrorCompensation of Multi-Axis Machine Tools (Part I): Theory [J]. InternationalJournal of Machine Tools&Manufacture,2004,40(10):1535-1546.
    [105]Or C., Wong R L. Performance Evaluation of a Precision Pointing Payload [C].AIAA Guidance, Navigation, and Control Conference and Exhibit,2002,8:1-5.
    [106]Oliver E D., Methodologies for Performance Evaluation of MultitargetMultisensor Tracking [J]. Proc. SPIE,3809:355-369.
    [107]Liu G X., Li L G. Robot Pose Accuracy Theory Based on Entropy Uncertainty [J].Proceedings of the International Symposium on Precision Mechanical Measurement,2002,4:442-446.
    [108]Lin C-Y, Huang W-H. Study of an Assembly Tolerance Allocation Model Basedon Monte Carlo Simulation [J]. Journal of Materials Processing Technology,1997,70:9-16.
    [109]Christoper C Y. Optimum Design of Component Tolerances of Assemblies UsingConstraint Networks [J]. International Journal of Production Economics,2003,84:149-163.
    [110]Stephane C., Fouad B. Tolerance Synthesis of Mechanisms: A Robust DesignApproach [J]. Transactions of the ASME,2005,127:86-94.
    [111]Jywe W Y., Chien H. Verification and Evaluation Method for Volumetric andPosition Errors of CNC Machine Tools [J]. International Journal of Machine Tools&Manufacture,2000,40(13):1899-1911.
    [112]Demore L A., Peterson R A. Design Study for a High Accuracy Three-Axis TestTable [J]. AIAA Guidance and Control Conference,1985,1893:318-333.
    [113]Alasty A., Abedi H. Kinematic and Dynamic Sensitivity Analysis of a Three-AxisRotary Table [J]. IEEE:1147-1152.
    [114]高焕明,杨功流.基于齐次坐标变换的陀螺框架加工误差分析[J].天津大学学报,2009,42(11):1017-1021.
    [115]施浒立,赵彦.误差设计新理念与方法[M].北京:科学出版社,2007.
    [116]Ramesh R., Mannan M A., Poo A N. Error Compensation in Machine Tool―AReview Part I: Geometric, Cutting-Force Induced and Fixture-Dependent Errors [J].International Journal of Machine Tools&Manufacture,2000:1235-1256.
    [117]Ramesh R., Mannan M A., Poo A N. Error Compensation in Machine Tool―AReview Part II: Thermal Errors [J]. International Journal of Machine Tools&Manufacture,2000:1257-1284.
    [118]姜峰,白波.光电稳瞄系统装调的关键技术[J].应用光学,2007,28(2):156-158.
    [119]许照东,安世甫,刘欣.多传感器光电系统光轴一致性测试方法研究[J].光子学报,2007,36(11):2120-2123.
    [120]詹启海,常本康,富容国.多光谱光学系统光轴平行性组合测试装置[J].应用光学,2005,26(5):4-6.
    [121]董晓娜.方位垂直传递技术的研究[D].西安:中科院西安光机所,2001.
    [122]高立民.五角棱镜在方位对准中的应用[J].应用光学,2003,24(1):5-7.
    [123]沈景鹏,张旭,杨国光.空间坐标一致性光学测量方法研究[J].光学仪器,2005,27(1):8-11.
    [124]施浒立,颜毅华.工程科学中的广义延拓逼近法[M].北京:科学出版社,2005.
    [125]孔德庆,施浒立.射电望远镜指向误差的广义延拓插值修正方法[J].西安电子科技大学学报(自然科学版),2008,35(1):157-161.
    [126]赵金宇.光电望远镜误差分析及补偿技术[D].长春:中科院长春光机所,2005.
    [127]赵彦.大射电望远镜指向误差建模分析与设计研究[D].西安:西安电子科技大学,2008.
    [128]Ruppert D., Wand M P., Carroll R J. Semiparametric Regression [M]. CambridgeUniversity Press,2003.
    [129]Engle R F., Granger C W J., Rice J A. A Semiparametric Estimates of the Relationbetween Weather and Electricity Sales [J]. Journal of the American StatisticalAssociation,1986,81:310-320.
    [130]Green P J., Jennison C., Seheult A. Analysis of Field Experiments by LeastSquares Smoothing [J]. Journal of Roy. Statist. Soc.B,1985,47:299-315.
    [131]Speckman P. Kernel Smoothing in Partial Linear Models [J]. Journal of Roy.Statist. Soc.B,1988,50(3):413-436.
    [132]Eubank R L., Hart J D., Speckman P. Trigonometric Series RegressionEstimations with an Application to Partially Linear Model [J]. Journal ofMultivariate Anal.1990,32:70-83.
    [133]柴根象,洪圣岩.半参数回归模型[M].安徽:安徽教育出版社,1995.
    [134]Green P J., Silverman B W. Nonparametric Regression and Generalized LinearModels [M]. London: Chapman and Hall,1994.
    [135]王新洲.非线性模型参数估计理论与应用[M].武汉:武汉大学出版社,2003.
    [136]高集体.半参数回归模型中的大样本理论[D].合肥:中国科学技术大学,1992.
    [137]丁士俊.测量数据的建模与半参数估计[D].武汉:武汉大学,2005.
    [138]潘雄.半参数模型的估计理论及其应用[D].武汉:武汉大学,2005.
    [139]Jia M. Mitigation of Systematic Errors of GPS Positioning using VectorSemiparametric Models [C].13thINT. TECH. Meeting of the Satellite Division ofthe U.S.Inst. of Navigation,2000,9:1938-1947.
    [140]王新洲.稳健二次估计理论及其在GPS随机模型中的应用[D].武汉:武汉测绘科技大学,1995.
    [141]丁士俊,陶本藻.半参数模型及其在形变分析中的应用[J].测绘科学,2005,29(5):38-40.
    [142]陶本藻.自由网平差与变形分析[M].武汗:武汉测绘科技大学出版社,2001.
    [143]潘旺华,文援兰,廖瑛.基于半参数回归模型的批处理确定卫星轨道方法[J].宇航学报,2008,29(6):1918-1921.
    [144]Lertpiriyasuwat V. Real-Time Estimation of End-Effector Position and Orientationfor Manufacturing Robots [D]. Washington University,2000.
    [145]Lertpiriyasuwat V., Martin C B. Adaptive Real-Time Estimation of End-EffectorPosition and Orientation Using Precise Measurements of End-Effector Position [J].IEEE Transactions on Mechatronics,2006,11(3):304-319.
    [146]费业泰.动态测量误差修正原理与技术[M].北京:中国计量出版社,2001.
    [147]张秉华,张守辉.光电成像跟踪系统[M].成都:电子科技大学出版社,2003.
    [148]耿延洛,王合龙.机载光电探测跟踪系统总体精度分析方法研究[J].电光与控制,2004,11(2):18-20.
    [149]罗俊萍.机载光测设备光轴稳定精度分析[J].飞行器测控学报,2001,20(1):50-54.
    [150]张安锋.光电稳定系统的稳定精度测试研究[D].长春:长春理工大学,2003.
    [151]胡祐德,马东升.伺服系统原理与设计[M].北京:北京理工大学出版社,1999.
    [152]张卫国,曹永刚,陈涛.用数字滤波器改善光电经纬仪机械谐振频率方法[J].光学精密工程,1999,7(2):77-82.
    [153]Armstrong B., Neevel D., Kusik T. New Result in NPID Control: Tracking,Integral Control, Friction Compensation and Experimental Rusult [C]. Proc. SPIE,Robotics&Automation,1999:837-842.
    [154]Demoz G E., Hayward R C., Powell J D. Design of Multi-Sensor AttitudeDetermiantion Systems [J]. IEEE Transactions on Aerospace and ElectronicSystems,2004,40(2):627-648.
    [155]Barbour N. Inertial Components-Past, Present, and Future [C]. AIAA, Guidance,Navigation, and Control Conference, Montreal, Canada,2001.8:1-11.
    [156]Barbour N., Schmidt G. Inertial Sensor Technology Trends [J]. IEEE SensorsJournal,2001,1(4):332-339.
    [157]Titterton D H. Strapdown Inertial Navigation Technology [M]. UK:The Institutionof Electrical Engineers,2004.
    [158]文炜.基于MEMS技术的惯性测量器件及系统的发展现状和应用[J].飞航导弹,2006,9.
    [159]谷庆红.微机械陀螺仪的研制现状[J].中国惯性技术学报,2003,11(5).
    [160]秦永元.国际惯性器件发展现状和趋势[J].航空制造技术,2008,9.
    [161]Quang M L. Gyro Modeling and Estimation of Its Random Noise Sources [C].AIAA Guidance, Navigation, and Control Conference, Austin, Texas,2003:1-12.
    [162]IEEE STD952-1997. IEEE Standard Specification Format Guide and TestProcedure for Single-Axis Interferometric Fiber Optic Gyros[S].1997.
    [163]Brian E., Grantham P E. A Least-Squares Normalized Error Regression Algorithmwith Application to the Allan Variance Noise Analysis Method [J]. IEEE2006:750-756.
    [164]朱华征,周晓尧,张文博,范大鹏.光电稳定平台中陀螺随机漂移的处理方法[J].中国惯性技术学报,2009,17(2):11-16.
    [165]Dinapoli L D. The Measurement of Angular Velocities without the Use of Gyros[D]. Philadelphia: University of Pennsyvania,1965.
    [166]Algrain M C. Accelerometer-Based Platform Stabilization [J], Proc. SPIE,Acquisition Tracting and Pointing,1991.
    [167]Chen J H., Lee S C. Gyroscope Free Strap-down Inertial Measurement Unit by SixLinear Accelerometers[J],Journal of Guidance Control and Dynamics,1994,17(2):23-44.
    [168]Lee S C. An Innovative Estimation Method with Own-ship Estimator for AnAll-accelerometer-type Ineritial Navigation System[J],International Journal ofSystem Science,1999,30(12):1259-1266.
    [169]Tan C W.,Sungsu P.,Kirill M and Pravin V. Design of Gyroscope-FreeNavigation Systems[C],2001IEEE intelligent Transportation Systems ConferenceProceeding-Oakland(CA),2001,August,25-29.
    [170]Xiaoyao Zhou, Zhiyong Zhang, Dapeng Fan. Improved Angular VelocityEstimation using MEMS Sensors with Applications in Miniature InertiallyStabilized Platforms [J]. Chinese Journal of Aeronautics,2011,24(5):981-987.
    [171]刘强.高性能机械伺服系统运动控制技术综述[J].电机与控制学报,2008,12(5):603-609.
    [172]姜玉宪.伺服系统低速跳动问题[J].自动化学报,1982,8(2):136~144.
    [173]刘强,尔联洁,刘金琨.摩擦非线性环节的特性、建模与控制补偿综述[J].系统工程与电子技术.2002,24(11):45~52.
    [174]Dowson D. History of Tribology [M]. London: Longman Ltd,1966.
    [175]Herseym D. Theory and Research in Lubrification [M].New York:JohnWily,1966.
    [176]Armstrong B., Dupont P. A Survey of Models, Analysis Tools and CompensationMethods for the Control of Machines with Friction [J]. Automatica,1994,30(7):1083-1138.
    [177]Dahl P. A Solid Friction Model [J]. Aerospace Corp.,1968.
    [178]Canudas C W. A New Model for Control of Systems with Friction [J]. IEEETransactions on Automatic Control,1995,40(3):419-425.
    [179]Barabanov N., Ortega R. Necessary and Sufficient Conditions for Passivity of theLuGre Friction Model [J]. IEEE Transactions on Automatic Control,2000,45(4):830-832.
    [180]Swevers J., Bender F A. An Integrated Friction Model Structure with ImprovedPresliding Behavior for Accurate Friction Compensation [J]. IEEE Transactions onAutomatic Control,2000,45(4):675-686.
    [181]宋伟刚.机器人学―运动学、动力学与控制[M].北京:科学出版社,2007.
    [182]蔡自兴.机器人学基础[M].北京:机械工业出版社,2009.
    [183]吴晗平.光电系统设计基础[M].北京:科学出版社,2010.
    [184]孙京,马兴瑞.星载天线双轴定位机构指向精度分析[J].宇航学报,2007,28(3):545-550.
    [185]张景旭.动载体光学图像光轴稳定技术[J].光电技术应用,2007,22(1):4-7.
    [186]秦永元.卡尔曼滤波与组合导航原理[M].西北工业大学出版社,2004.
    [187]刘守文,尹小芳.基于蒙特卡罗方法的红外灯热流分布研究[J].宇航学报,2010,31(2):608-614.
    [188]王中宇,刘智敏,夏新涛,祝连庆.测量误差与不确定度评定[M].北京:科学出版社,2008.
    [189]陈杰. Matlab宝典(第二版)[M].北京:电子工业出版社,2010.
    [190]Leavitt J, Sideris A. High Bandwidth Tilt Measurement using Low-Cost Sensors[J]. IEEE Transactions Mech.,2006,11(6):320-327.
    [191]Skogestad S., Postlethwaite I. Multivariable Feedback Control Analysis andDesign [J]. John Wiley&Sons,1996.
    [192]Brown R H., Schneider S C., Mulligan M G. Analysis of Algorithms for VelocityEstimation from Discrete Position versus Time Data [J]. IEEE Transactions on Ind.Electronics,1992,39:11-19.
    [193]Zhu W H., Lamarche T. Velocity Estimation by using Position and AccelerationSensors [J]. IEEE Transactions on Ind. Electronics,2007,54:2706-2714.
    [194]Farrokh J S., Vincent H., Chung-shin J C. Discrete Time Adaptive Windowing forVelocity Estimation [J]. IEEE Transactions on Control Systems Technology,2000,8:1003-1009.
    [195]Seong-hoon P W., Melek W W., Golnanraghi F. A Kalman/Particle Filter-BasedPosition and Orientation Estimation Method on using a Position Sensor/InertialMeasurement Unit Hybrid System [J]. IEEE Transactions on Ind. Electronics,2010,57:1787-1797.
    [196]Su Y X., Zheng C H., Mueller P C., Duan B Y. A Simple Improved VelocityEstimation for Low-Speed Regions Based on Position Measurement Only [J]. IEEETransactions on Control Systems Technology,2006,14:937-942.
    [197]Lee S H., Song J B. Acceleration Estimation for Low-Velocity andLow-Acceleration Regions Based on Encoder Position Data [J]. IEEE Transactionson Mech.,2001,6:58-64.
    [198]Bascetta L., Magnani G., Velocity Estimation: Assessing the Performance ofNon-Model-Based Techniques [J]. IEEE Transactions on Control SystemsTechnology,2009,17:424-433.
    [199]Fischer B., Hegland M. Collocation Filtering and Nonparametric Regression [M].ZFVI,1999.
    [200]Craven P., Wahba G. Smoothing Noisy Data with Spline Function [J]. Numer.Math,1979,31:377-403.
    [201]董德元,杨节.试验研究的数理统计方法[M].北京:中国计量出版社,1987.
    [202]周英.车载桅杆式光电平台控制系统设计与实现[D].长沙:国防科技大学,2009.
    [203]李杰.光电侦察平台伺服控制系统软硬件的模块化设计与实现[D].长沙:国防科技大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700