用户名: 密码: 验证码:
微悬臂梁力学传感器的振动激发研究及在材料学中的应用探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传感器种类繁多、功能各异,按其工作原理通常可以分为电化学电极传感器、场效应管传感器、压电传感器、光电信号传感器、热信号传感器等。针对淹没在噪音中的微弱信号以及信号的微弱改变,如何设计灵敏度高,重复性好,准确度高的传感装置,成为科学技术发展的一个重要组成部分。
     近年来,随着半导体工艺的迅速发展以及检测技术的不断进步,使得精确制作微米乃至纳米尺度的微悬臂梁结构成为可能,并对其运动学行为实现了有效的测量。在此基础上,基于微悬臂梁的传感器引起了国际研究人员的广泛关注,并取得了一系列新颖的研究成果,已在国家安全、食品卫生、环境监测、临床医学等诸多领域都取得了广泛的应用。随着技术的不断进步,对微悬臂梁传感器的研究还在向以下领域不断深入:(1)向高阶共振模式方向发展。这方面的典型应用是原子力显微镜的TR扫描模式。(2)向纳米尺度加工。纳米尺寸悬臂梁具有更高的共振频率,从而作为探测器就有更高的分辨率。(3)对微悬臂梁的表面改性。通过表面改性,使得微悬臂梁只对特定物质产生吸附作用,从而达到针对性检测的目的。(4)计算机仿真模拟。计算机辅助设计已是当今诸多科研领域及工程应用领域不可或缺的工具。对于微悬臂梁传感器而言,由于当今的微悬臂梁正在向越来越小的尺度发展,尺寸效应越来越凸现,加上表面修饰和内部结构加工引起的微悬臂梁结构的复杂化,使得经典悬臂梁力学在大多数情况下难以求解甚至不再适用。因此,借助计算机对微悬臂梁进行建模和计算也是当今这一领域的发展趋势之一
     当前的研究成果已经证实,微悬臂梁传感器可以实现在微米及纳米尺度对微弱信号的高速度和高精度实时检测。然而,长期以来我国在高精度测量技术上落后于发达国家,导致精密检测设备长期依赖进口,阻碍了国家的现代化进程。随着我国向自主创新型国家发展的深入,对具有新科学原理的检测方法和识别技术的研究,已成为我国科技发展的重要趋势和方向。本论文的工作正是在这一大的时代背景下开展,从设备搭建、软件开发、激发方式、应用出口等方面对微悬臂梁传感器进行了系统的研究。
     本论文共分六章,依次为:第一章绪论;第二章微悬臂梁力学简介;第三章微悬臂梁振动激发和探测系统设备搭建及应用程序开发;第四章微悬臂梁共振激发研究;第五章微悬臂梁传感器应用研究;第六章总结与展望。主要研究内容包括:
     第一章:从基本构造、力学特点、探测原理、共振激发方法等方面对微悬臂梁进行了综述性介绍,同时介绍了微悬臂梁传感器的当前研究现况以及当前研究中面临的问题。最后,对微悬臂梁传感器的发展趋势进行了总结。
     第二章:首先介绍了处理微悬臂梁力学的经典理论,包括简化处理微悬臂梁振动的一维谐振子模型和严格处理微悬臂梁振动的“欧拉-伯努利(Euler-Bernoulli)梁”模型。其次介绍了计算机模拟仿真在微悬臂梁传感器研究中的应用,即基于COMSOL Multiphysics有限元模拟仿真软件对微悬臂梁相关问题进行的计算。
     第三章:详细描述了我们独立设计开发的一整套微悬臂梁传感器软硬件环境。硬件搭建方面实现了以激光测振仪、锁相放大器、信号发生器为主体的共振激发与检测设备的搭建,并可与数字示波器、数据采集卡等配套设备协同工作。软件开发方面实现了基于工业控制中最为广泛使用的开发环境LabVIEW为平台的一套用于微悬臂梁传感器共振激发及振动检测的应用软件。本应用软件完全是独立自主开发,并申请软件著作权一项。
     第四章:我们在微悬臂梁共振激发方面所做的工作,具体包括:(1)实现了利用低频脉冲信号激发微悬臂梁高频共振,并通过傅利叶谐波分析方法对激发机制进行解释。同时我们对不同脉冲宽度的脉冲信号以及不同波形的信号的激发效果进行了比较,提出了具有最佳激发效果的方案。这一成果发表在Applied Physics Letters上(Appl. Phys. Lett.101,061901(2012).).(2)通过合理的电极设计,实现了微悬臂梁二阶共振的有效激发。高阶共振因其高品质因子和高探测精度而受到关注,成为微悬臂梁传感器的重要研究方向之一。我们通过一个相对容易实现的方案,提出了一个有效激发微悬臂梁二阶共振的方法。这一成果发表在Chinese Physics Letters上(Chin. Phys. Lett.30,100701(2013).)。(3)通过对激光波形的调制实现了基于激光照射的微悬臂梁远程非接触式共振激发。远程激发使得微悬臂梁不必在捆绑到换能装置上,为传感器的小型化和集成化提供了途径。相比于基于超声波的激发,激光激发具有容易聚焦、可以在真空中传播等优点,有利于提高能量利用率以及获得更高的探测精度。
     第五章:我们在微悬臂梁传感器应用出口方面所做的工作,具体包括:(1)在GaN薄膜上实现了对极性材料表面束缚电荷的测量。测量是基于无针尖探针,利用微悬臂梁整个探针表面进行的,而传统上通过原子力显微镜进行的测量中,存在针尖处有强电场从而影响样品电荷分布的问题。(2)设计了将微悬臂梁用作浮动栅极的场效应管结构。本工作首先设计了一种可以通过有限元方法模拟出传统场效应管的Vds-Ids曲线的方法,在此基础上对我们设计的器件结构进行仿真模拟。模拟结果表明了我们设计的器件结构的可行性,通过模拟也给出了优化器件参数的方案。(3)将微悬臂梁用在辅助研究石英天平在激光照射下的热效应。微悬臂梁与石英天平是当前精度最高的质量传感器,它们有本质上相同的工作原理。基于这一点,我们利用激光照射微悬臂梁时的效应做为辅证,来支持我们研究激光照射石英天平时得到的结论。
     第六章:对本论文的工作进行了总结,并提出了可进一步研究的方向。
     本论文的创新之处包括:(1)自主开发了一套用于微悬臂梁传感器共振激发及振动检测的应用软件;(2)提出了利用低频信号激发高频共振的方案,为解决超高共振频率的微悬臂梁的共振激发问题提供了方法;(3)在高阶共振激发、远程非接触式激发等新型激发领域提出了自己的见解;(4)在材料表面束缚电荷测量实验中,提出了利用微悬臂梁进行“面检测”的概念,解决了传统的“点检测”中存在的部分问题;(5)将微悬臂梁与传统器件场效应管相结合,提出了新的器件结构。
     综上所述,本论文立足于纳米科技领域中的基础测量问题,针对微悬臂梁传感器的科学特征和技术难点,在综合考虑系统中力学,电学,化学,机械控制等要素的基础上,对相关科学和技术问题进行深入探索和分析,具有较重要的科学研究和应用价值。
For the sensors with different types and functions, according to their detection mechanisms, they can be divided into electrochemical sensors, field effect transistor (FET) sensors, piezoelectric sensors, photoelectric sensors, thermal sensors and so forth. For the weak signals immerged into noises and the weak change of detected signals, how to design a sensor system with high sensitivity to extract them is one of the most important components during technology development.
     Recently, as the rapidly development of semiconductor technique and measurement method, it becomes reality to produce microcantilevers with micron and nanometer size. Microcantilevers' motion can also be accurately measured. Under this background, microcantilever sensors attract a lot of scientists'and engineers' interesting, and great achievements have been obtained. Microcantilever sensors have been wildly used in the areas of states security, food hygiene, environmental monitor, clinical medicine and so on. With the continuous advancement of technology, researches on microcantilever sensors are still to the following areas:(1) Detection via the high order resonance mode of microcantilever. The typical application is the TR scanning mode of atomic force microscopy (AFM).(2) Processing to the nanometer scale cantilever. Nano-scale cantilever features higher resonance frequencies than micron scale cantilever. Therefore, using as detector it exhibits higher detection resolution.(3) The surface modification of microcantilever beam. Through surface modification, the microcantilever responses to the adsorption of specific substance, thus the purpose of specific substance detection can be achieved.(4) Computer simulation. Nowadays, computer aided design is the indispensable tools in many areas of scientific researches and engineering applications. For the microcantilever sensors, as their scale are smaller and smaller, surface effects are more and more obvious. Furthermore, the structure of microcantilever becomes more and more complicated due to surface modification and internal structure process. All these reasons lead to the situation that the classic mechanics in most cases is difficult to solve problems, even not applicable. Therefore, it becomes one of the development trend to use computer to model and calculate microcantilever problems
     Current researches have confirmed that, microcantilever sensors can realize the real-time detection of weak signal in high speed and high precision. However, for a long time our country's high precision measurement technique lags behind that of developed countries, leading to the long-term dependence on import for sophisticated equipments. which hinders the process of our country's modernization. As the development of our country to the independent innovation country, researches on detection and recognition techniques which possess new scientific principles have become an important trend for the development of science and technology in china. The work in this thesis is carried out under the background mentioned above. Our researches is performed from the aspects of equipment construction, software development, excitation mode and application.
     This thesis is divided into six chapters:Chapter1:Introduction. Chapter2: Microcantilever mechanics. Chapter3:Equipments building and applications development for microcantilever vibration actuation and detection system. Chapter4: Microcantilever resonant actuation. Chapter5:Microcantilever sensor application. Chapter6:Summary and outlook. The main contents include:
     Chapter1:Brief introduction on microcantilever from the aspects of basic structure, mechanical characteristics, detection principle, resonant actuation methods and so on. Besides, we introduce the status of current research and the problems faced in current research. At last, we summarize the development trends of microcantilever sensor.
     Chapter2:Firstly, we introduce the classical theory which is used to deal with microcantilever mechanics, including the simplified one dimensional harmonic oscillator model and the rigorous "Euler-Bernoulli beam" model. Secondly, we introduce the computer simulation method which is used in the study of microcantilever sensor, i.e. the calculation for microcantilever based on the finite element method (FEM) simulation software-COMSOL Multiphysics.
     Chapter3:We detailed describe the hardware building and software development used for the study of microcantilever sensor. For hardware building, we realize the resonant actuation and signal detection mainly based on laser vibrometer, lock-in amplifier, and signal generator. These equipments can also work together with digital oscilloscope, data acquisition cards, and other auxiliary equipments. For software development, we write a set of application programs to realize the equipments control and data analysis. The program is written by LabVIEW, which is the most popular development environment in industrial control. All the programs are developed by ourselves, and we have got the software copyright.
     Chapter4:our study on microcantilever resonant actuation, including:(1) realization of resonant actuation by using pulse wave signal that has a lower frequency than microcantilever resonant frequency. The actuation mechanism is explained by Fourier analysis method. At the same time, we compare the actuation effects of pulse wave signals with different pulse duration and signals with different waveform, and we propose the solution with the best actuation effect. This result was published on Applied Physics Letters (Appl. Phys. Lett.101,061901(2012).).(2) realization of the effective actuation of the2nd-order resonation. Due to the high quality factor and improved detection resolution of high-order resonation, how to effectively actuate high-order resonation becomes one of the most important research trend for microcantilever sensor. We achieve the effective actuation of the2nd-order resonation through a relatively easy solution. This result was published on Chinese Physics Letters (Chin. Phys. Lett.30,100701(2013).).(3) realization of remote and non-contact resonant actuation for microcantilever by using modulated laser signal. For non-contact actuation, the microcantilever need not be tied to energy transducer, which provides a way for the miniaturization and integration of microcantilever sensor. Comparing with ultrasonic actuation, laser actuation has the advantages of easy focus and travelling in vacuum, which is better for improving the energy utilization ratio and achieving higher detection accuracy.
     Chapter5:our study on the applications of microcantilever sensor, including:(1) realization of measurement of surface bound charge for materials with self polarization, such as GaN. The measurement is based on tipless microcantilever, using the whole microcantilever surface to measure, which avoids the influence of intense electric field on charge distribution of sample induced by microcantilever tip.(2) design of field effect transistor (FET) structure with a floating gate served by microcantilever. In this work, we firstly design a method to simulate the Vds-Ids curve for traditional FET by using finite element method (FEM). And then using this method we simulate the device structure designed by ourselves. Simulation results show the feasibility of our design and how to optimize the device parameters.(3) using the results derived on microcantilever to support the conclusions obtained for laser thermal effects on quartz crystal microbalance (QCM). Currently, microcantilever and QCM are the most accurate mass detector, and they have the same detection principle. Based on this point, we use the effects of laser irradiation on microcantilever as supplementary evidence to support our conclusions of laser irradiation on QCM.
     Chapter6:Summarization of all the works in this thesis. Put forward the questions that should be studied in the future.
     The innovation of this paper include:(1) Developing the application program for resonant actuation and vibration detection of microcantilever sensor;(2) Solution of actuating microcantilever resonation with high frequency by using low frequency signal, which could be used for actuating microcantilever with super high resonant frequency;(3) Putting forward our own opinions in the areas of new actuation method such as high-order resonant actuation, remote non-contact actuation;(4) Putting forward the concept of "surface detection" in the experiment of surface bound charge measurement, improving the traditional method of "point detection";(5) Putting forward a new device design which combine microcantilever and FET.
     In summary, this thesis is based on the basic measurement problems in the field of nanotechnology. For the scientific and technical difficulties in microcantilever sensor, we systematically consider the aspects of mechanical, electrical, chemical, and so on, explore and analyze the related scientific and technical issues. We believe that this thesis would have important research and application values.
引文
[1]Y. J. Tang, J. Fang, X. Xu, H. F. Ji, G. M. Brown, and T. Thundat, Anal. Chem.76, 2478 (2004).
    [2]S. Prescesky, M. Parameswaran, A. Rawicz, R. F. Turner, U. Reichl, Can. J. Phys. 70,1178(1992).
    [3]B. Ilic, D. Czaplewski, M. Zalalutdinov, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, J. Vac. Sci. Technol. B 19,2825 (2001).
    [4]J. E. Sader, J. Appl. Phys.84,64 (1998).
    [5]M. K. Ghatkesar, T. Braun, V. Barwich, J.-P. Ramseyer, C. Gerber, M. Hegner, and H. P. Lang, Appl. Phys. Lett.92,043106 (2008).
    [6]X. Xu and A. Raman, J. Appl. Phys.102,034303 (2007).
    [7]C. Castille, I. Dufour, and C. Lucat, Appl. Phys. Lett.96,154102 (2010).
    [8]A. C. Stephan, T. Gaulden, A.-D. Brown, M. Smith, L. F. Miller, and T. Thundat, Rev. Sci. Instrum.73,36 (2002).
    [9]M. Cao, L. Ye, L. Zhou, Z. Su, and R. Bai, Mech. Syst. Signal Process.25,630 (2011).
    [10]G. Koley, M. G. Spencer, and H. R. Bhangale. Appl. Phys. Lett.79,545 (2001).
    [11]G. Koley and M. G. Spencer, J. Appl. Phys.90,337 (2001).
    [12]R. W. Stark, T. Drobek, and W. M. Heckl, Appl. Phys. Lett.74,3296 (1999).
    [13]R. B. Karabalin, S. C. Masmanidis, and M. L. Roukes, Appl. Phys. Lett.97,183101 (2010).
    [14]M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic, D. A. Czaplewski, and H. G. Craighead, Phys. Rev. Lett.90,044102 (2003).
    [I5]D. Rugar and P. Grutter, Phys. Rev. Lett.67,699 (1991).
    [16]C. Parks Cheney, A. Wig, R. H. Farahi, A. Gehl, D. L. Hedden, T. L. Ferrell, D. Ji, R. Bell, W. J. McBride, and S. O'Connor, Appl. Phys. Lett.90,013901 (2007).
    [17]G. Keskar, B. Elliott, J. Gaillard, M. J. Skove, and A. M. Rao, Sens. Actuators A 147,203 (2008).
    [18]Z. Feng, D. Liu, Z. Zuo, Q. Yu, R. Wang, and X. Xu, Appl. Phys. Lett.101,061901 (2012).
    [19]Z. Feng, D. Liu, Chin. Phys. Lett.30,100701 (2013).
    [20]J. Gaillard, M. J. Skove, R. Ciocan, and A. M. Rao, Rev. Sci. Instrum.77,073907 (2006).
    [21]A. N. Cleland and M. L. Roukes, Appl. Phys. Lett.69,2653 (1996).
    [22]A. N. Cleland and M. L. Roukes, Sens. Actuators A 72,256 (1999).
    [23]X. M. H. Huang, C. A. Zorman, M. Mehregany, and M. L. Roukes, Nature (London) 421,496 (2003).
    [24]T. M. Huber, B. C. Abell, D. C. Mellema, M. Spletzer, and A. Raman, Appl. Phys. Lett.97,214101 (2010).
    [25]M. Fatemi and J. F. Greenleaf, Science 280,82 (1998).
    [26]T. M. Huber, D. Calhoun, M. Fatemi, R. R. Kinnick, and J. F. Greenleaf, J. Acoust. Soc.Am.118,1928(2005).
    [27]T. M. Huber, M. Fatemi, R. Kinnick, and J. Greenleaf, J. Acoust. Soc. Am.119, 2476 (2006).
    [28]F. L. Degertekin, B. Hadimioglu, T. Sulchek, and C. F. Quate, Appl. Phys. Lett.78, 1628(2001).
    [29]A. G. Onaran and F. L. Degertekin, Rev. Sci. Instrum.76,103703 (2005).
    [30]王矜奉,苏文斌,王春明,压电振动理论与应用(科学出版社,北京,2011)
    [31]王春雷,李吉超,赵明磊,压电铁电物理(科学出版社,北京,2009)
    [32]T. Thundat, E. A. Wachter, S. L. Sharp and R. J. Warmack, Appl. Phys. Lett.66, 1695(1995).
    [33]P. Li, X. X. Li, G. Zuo, J. Liu, Y. Wang, M. Liu, and D. Jin, Appl. Phys. Lett.89, 074104 (2006).
    [34]H. P. Lang, R. Gerger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, F. Battiston, J.-P. Ramseyer, E. Meyer, T. Mezzacasa, L. Scandella, H.-J. Guntherodt, Ch. Gerber, and J. K.Gimzewski,Appl.Phys.A66, S61 (1998).
    [35]R. Berger, E. Delamarche, H. P. Lang, C. Gerber, J. K. Gimzewski, E. Meyer, and H. Guntherodt, Science 276,2021 (1997).
    [36]H. P. Lang, M. Hegnera, and C. Gerber, Mater. Today 8,30 (2005).
    [37]H. Jensenius, J. Thaysen, A. A. Rasmussen, L. H. Veje, O. Hansen. and A. Boisen, Appl. Phys. Lett.76,2615 (2000).
    [38]J. Pei, F. Tian, and T. Thundat, Anal. Chem.76,292 (2004).
    [39]K. Y. Gfeller, N. Nugaeva, and M. Hegner, Biosens. Bioelectron.21,528 (2005).
    [40]J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, Ch. Gerber, and J. K. Gimzewski, Science 288,316 (2000).
    [41]J. H. Lee, T. S. Kim, and K. H. Yoon, Appl. Phys. Lett.84,3187 (2004).
    [42]M. Alvarez, L. G. Carrascosa, M. Morcno, A. Callc, A. Zaballos, L. M. Lechuga, C. Martinez-A, and J. Tamayo, Langmuir 20,9663 (2004).
    [43]R. McKendry, J. Zhang, Y. Arntz, T. Strunz, M. Hegner, H. P. Lang, M. K. Bailer, U. Certa, E. Meyer, H.-J. Guntherodt, and C. Gerber, P. Natl. Acad. Sci. USA 99,9783 (2002).
    [44]L. A. Pinnaduwage, A. Wig, D. L. Hedden, A. Gehl, D. Yi, T. Thundat, and R. T. Lareau, J. Appl. Phys.95,5871 (2004).
    [45]M. Napoli, B. Bamieh, and K. Turner, J. Dyn. Sys., Meas., Control 126,319 (2004).
    [46]J. E. Sader, I. Larson, P. Mulvaney, and L. R. White, Rev. Sci. Instrum.66,3789 (1995).
    [47]S. Kawai and H. Kawakatsu, Appl. Phys. Lett.89,013108 (2006).
    [48]K. Naeli and O. Brand, J. Appl. Phys.105,014908 (2009).
    [49]F. R. Blom, S. Bouwstra, M. Elwenspoek, and J. H. J. Fluitman, J. Vac. Sci. Technol. B10,19(1992).
    [50]W. Weaver, S. P. Timoshenko, and D. H. Young, Vibration Problems in Engineering (John Wiley & Sons, New York,1990).
    [51]J. Kokavecz and A. Mechler, Phys. Rev. B 78,172101 (2008).
    [52]Daniel Kiracofe and Arvind Raman, J. Appl. Phys.108,034320 (2010).
    [53]Y. Sugimoto, S. Innami, M. Abe,O. Custance, and S. Morita, Appl. Phys. Lett.91, 093120(2007).
    [54]T. R. Rodriguez and R. Garcia, Appl. Phys. Lett.84,449 (2004).
    [55]Y. T. Yang, K. L. Ekinci, X. M. H. Huang, L. M. Schiavone, M. L. Roukes, C. A. Zorman, and M. Mehregany, Appl. Phys. Lett.78,162 (2001).
    [56]K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, Appl. Phys. Lett.84,4469 (2004).
    [57]Z. J. Davis and A. Boisen,Appl. Phys. Lett.87,013102 (2005).
    [58]A. Husain, J. Hone, H. W. C. Postma, X. M. H. Huang, T. Drake, M. Barbic, A. Scherer, and M. L. Roukes, Appl. Phys. Lett.83,1240 (2003).
    [59]A. Ashkin, Phys. Rev. Lett.24,156 (1970).
    [60]R. C. Gauthier, R. N. Tait, H. Mende, and C. Pawlowicz, Appl. Optics 40,930 (2001).
    [61]M. Sulfridge. T. Saif N. Miller, and K. O'Hara,J. Microelectromech. S.11.574 (2002).
    [62]P. G. Datskos, S. Rajic, and I. Datskou, Appl. Phys. Lett.73,2319 (1998).
    [63]D. Dragoman and M. Dragoman, Appl. Optics 38,6773 (1999).
    [64]P. Domachuk, E. Magi, B. J. Eggleton, and M. C.-Golomb, Appl. Phys. Lett.89, 071106(2006).
    [65]N. L. Privorotskaya, H. Zeng, J. A. Carlisle, R. Bashir, and W. P. King, J. Microelectromech. S.19,1234 (2010).
    [66]J. L. Arlett and M. L. Roukes, J. Appl. Phys.108,084701 (2010).
    [67]T. P. Burg, J. E. Sader, and S. R. Manalis, Phys. Rev. Lett.102,228103 (2009).
    [68]D. Lee, E.-H. Kim, M. Yoo, N. Jung, K.-H. Lee, and S. Jeon, Appl. Phys. Lett.90, 113107(2007).
    [69]A. Jana, A. Raman, B. Dhayal, S. L. Tripp, and R. G. Reifenberger, Appl. Phys. Lett. 90,114110(2007).
    [70]T. Ivanov, T. Gotszalk, T. Sulzbach, I. Chakarov, and I. W. Rangelow, Microelectron. Eng.67,534 (2003).
    [71]S. H. Lee, P. K. Kim, W. Moon, and G. Lim, Microsyst. Technol.13,579 (2007).
    [72]M. S. Suh, J. H. Choi, Y. Kuk, and J. Jung, Appl. Phys. Lett.83,386 (2003).
    [1]W. Weaver, S. P. Timoshenko, and D. H. Young, Vibration Problems in Engineering (John Wiley & Sons, New York,1990).
    [2]L. D. Landau, and E. M. Lifshitz, Mechanics (Butterworth-Heinenann, Oxford, 1976).
    [3]杨桂通,弹塑性力学(人民教育出版社,北京,1980)
    [4]俞嘉声,弹性力学教程(高等教育出版社,北京,1991)
    [5]X. H. Guo, D. N. Fang, and X. D. Li, Mech. Eng.27,21 (2005).
    [6]N. A. Stelmashenko, M. G. Walls, L. M. Brown, and Y. V. Milman, Acta Metallurgica et Materialia 41,2855 (1993).
    [7]A. C. M. Chong and D. C. C. Lam, J. Mater. Res.14,4103 (1999).
    [8]N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson, Acta Metallurgica et Materialia 42,475(1994).
    [9]Q. Ma and D. R. Clarke, J. Mater. Res.10,853 (1995).
    [10]J. S. Stolken and A. G. Evans, Acta Mater.46,5109 (1998).
    [11]D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, and P. Tong, J. Mech. Phys. Solids 51,1477(2003).
    [12]A. W. McFarland and J. S. Colton, J. Micromech. Microeng.15,1060 (2005).
    [13]S. Kong, S. Zhou, Z. Nie, and K. Wang, Int. J. Eng. Sci.46,427 (2008).
    [14]R. D. Mindlin, Arch. Ration. Mech. An.16,51 (1964).
    [15]R. D. Mindlin and H. F. Tiersten, Arch. Ration. Mech. An.11,415 (1962).
    [16]R. A. Toupin, Arch. Ration. Mech. An.11,385 (1962).
    [17]钱伟长,变分法及有限元(科学出版社,北京,1980)
    [1]阮奇桢,我和LabVIEW-一个NI工程师的十年编程经验,(北京航空航天大学出版社,北京,2009)
    [2]陈树学,刘萱,LabVIEW宝典(电子工业出版社,北京,2011)
    [3]Jeffrey Travis and Jim Kring, LabVIEW大学实用教程(电子工业出版社,北京,2008)
    [1]J. Kokavecz and A. Mechler, Phys. Rev. B 78,172101 (2008).
    [2]D. Kiracofe and A. Ramana. J. Appl. Phys.108,034320 (2010).
    [3]Y. Sugimoto, S. Innami, M. Abe,O. Custance, and S. Morita, Appl. Phys. Lett.91, 093120(2007).
    [4]R. W. Stark, T. Drobek, and W. M. Heckl, Appl. Phys. Lett.74,3296 (1999).
    [5]G. Chawla and S. D. Solares, Appl. Phys. Lett.99,074103 (2011).
    [6]S. D. Solares and G. Chawla, J. Appl. Phys.108,054901 (2010).
    [7]A. N. Cleland and M. L. Roukes, Appl. Phys. Lett.69,2653 (1996).
    [8]A. Husain, J. Hone, H. W. C. Postma, X. M. H. Huang, T. Drake, M. Barbic, A. Scherer, and M. L. Roukes, Appl. Phys. Lett.83,1240 (2003).
    [9]R. B. Karabalin, S. C. Masmanidis, and M. L. Roukes, Appl. Phys. Lett.97,183101 (2010).
    [10]X. M. H. Huang, C. Zorman, M. Mehregany, and M. L. Roukes, Nature (London) 421,496 (2003).
    [11]N. Liu, F. Giesen, M. Belov, J. Losby, J. Moroz, A. E. Fraser, G. McKinnon, T. J. Clement, V. Sauer, W. K. Hiebert, and M. R. Freeman, Nat. Nanotechnol.3,715 (2008).
    [12]K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, Appl. Phys. Lett.84,4469 (2004).
    [13]Z. J. Davis and A. Boisen, Appl. Phys. Lett.87,013102 (2005).
    [14]K. Yum, Z. Wang, A. P. Suryavanshi, and M.-F. Yu, J. Appl. Phys.96,3933 (2004).
    [15]M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic, D. A. Czaplewski, and H. G. Craighead, Phys. Rev. Lett.90,044102 (2003).
    [16]C. Castille,I. Dufour, and C. Lucat, Appl. Phys. Lett.96,154102 (2010).
    [17]G. Keskar, B. Elliott, J. Gaillard, M. J. Skove, and A. M. Rao, Sens. Actuators A 147,203 (2008).
    [18]J. Gaillard, M. J. Skove, R. Ciocan, and A. M. Rao, Rev. Sci. Instrum.77,073907 (2006).
    [19]A. N. Cleland and M. L. Roukes, Appl. Phys. Lett.69,2653 (1996).
    [20]A. N. Cleland and M. L. Roukes, Sens. Actuators A 72,256 (1999).
    [21]W. Weaver, S. P. Timoshenko, and D. H. Young, Vibration Problems in Engineering (John Wiley & Sons, New York,1990).
    [22]R. N. Bracewell, The Fourier Transform and Its Applications,3rd ed. (McGraw-Hill, Boston,1999).
    [23]M. Omidi, M. A. Malakoutian, M. Choolaei, F. Oroojalian, F. Haghiralsadat, and F. Yazdian, Chin. Phys. Lett.30,068701 (2013).
    [24]A. D. Zhao, Y. J. Zheng, and X. M. Yu, Chin. Phys. Lett.29,058502 (2012).
    [25]J. Q. Zhang, X. Q. Feng, G. Y. Huang, and S. W. Yu, Chin. Phys. Lett.29,056801 (2012).
    [26]L. X. Cao, F. X. Zhang, Y. F. Zhu, and J. L. Yang, Chin. Phys. Lett.27,108501 (2010).
    [27]Z. Feng, D. Liu, Z. Zuo, Q. Yu, R. Wang, and X. Xu, Appl. Phys. Lett.101,061901 (2012).
    [28]M. Cao, L. Ye, L. Zhou, Z. Su, and R. Bai, Mech. Syst. Signal Process.25,630 (2011).
    [29]T. R. Rodriguez and R. Garcia, Appl. Phys. Lett.84,449 (2004).
    [30]G. Koley, M. G. Spencer, and H. R. Bhangale, Appl. Phys. Lett.79,545 (2001).
    [31]S. Jeon, Y. Braiman, and T. Thundat, Rev. Sci. Instrum.75,4841 (2004).
    [32]A. Hoffmann, T. Jungk, and E. Soergel, Rev. Sci. Instrum.78,016101 (2007).
    [33]D. Lee, S. Kim, N. Jung, T. Thundat, and S. Jeon, J. Appl. Phys.106,024310 (2009).
    [34]C. A. V. Eysden and J. E. Sader, J. Appl. Phys.101,044908 (2007).
    [35]W. J. Venstra, H. J. R. Westra, and H. S. J. van der Zant, Appl. Phys. Lett.97, 193107(2010).
    [36]P. Paolino, B. Tiribilli and L. Bellon, J. Appl. Phys.106,094313 (2009).
    [37]M. Bache, R. Taboryski, S. Schmid, J. Aamand, and M. H. Jakobsen, Nanoscale Res. Lett.6,386(2011).
    [38]V. Madurga, J. Vergara, and C. Favieres, Nanoscale Res. Lett.6,325 (2011).
    [39]J. H. Lee, K. S. Hwang, and T. S. Kim, Nanoscale Res. Lett.6,55 (2011).
    [40]P. Wang, H. Du, S. Shen, M. Zhang, and B. Liu, Nanoscale Res. Lett.7.176 (2012).
    [41]E. Benes, M. Groschl, W. Burger, and M. Schmid, Sens. Actuators A 48,1 (1995).
    [42]T. M. Huber, B. C. Abell, D. C. Mellema, M. Spletzer, and A. Raman, Appl. Phys. Lett.97,214101 (2010).
    [43]M. Fatemi and J. F. Greenleaf, Science 280,82 (1998).
    [44]T. Hasegawa, T. Kido, T. Iizuka, and C. Matsuoka, J. Acoust. Soc. Jpn. E 21,145 (2000).
    [45]F. R. Blom, S. Bouwstra, M. Elwenspoek, and J. H. J. Fluitman, J. Vac. Sci. Technol. B 10,19(1992).
    [46]D. Ramos, J. Tamayo, J. Mertens, and M. Calleja, J. Appl. Phys.99,124904 (2006).
    [47]N. Umeda, S. Ishizaki, and H. Uwai, J. Vac. Sci. Technol. B 9,1318 (1991).
    [48]M. C. Y. Huang, Y. Zhou, and C. J. C. Hasnain, Nat. Photonics 1,119 (2007).
    [49]H. Yang, D. Zhao, S. Chuwongin, J. H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, Nat. Photonics 6,615 (2012).
    [50]J. E. Sader, I. Larson, P. Mulvaney, and L. R. White, Rev. Sci. Instrum.66,3789 (1995).
    [51]J. D. Jackson, Classical Electrodynamics 3rd ed. (John Wiley & Sons, Inc., New York,1998).
    [52]P. B. Johnson and R. W. Christy, Phys. Rev. B 6,4370 (1972).
    [53]F. A. Jenkins and H. E. White, Fundamentals of Optics 4th ed. (McGraw-Hill, Inc., London,1979).
    [54]L. H. Han, S. Wu, J. C. Condit, N. J. Kemp, T. E. Milner, M. D. Feldman, and S. Chen, Appl. Phys. Lett.96,213509 (2010).
    [55]B. S. Yilbas, Int. J. Heat Mass Transfer 40,1131 (1997).
    [56]R. M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics Publishing, Bristol and Philadelphia,2003).
    [1]M. Thomsen, H. Jonen, U. Rossow, and A. Hangleiter, J. Appl. Phys.109,123710 (2011).
    [2]P. W. M. Blom, R. M. Wolf, J. F. M. Cillessen, and M. P. C. M. Krijn, Phys. Rev. Lett.73,2107 (1994).
    [3]U. Karrer, O. Ambacher, and M. Stutzmann, Appl. Phys. Lett.77,2012 (2000).
    [4]M. W. Allen, P. Miller, R. J. Reeves, and S. M. Durbin, Appl. Phys. Lett.90, 062104 (2007).
    [5]F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).
    [6]A. Gruverman, B. J. Rodriguez, W.-C. Yang, and R. J. Nemanich, Appl. Phys. Lett. 86,112115(2005).
    [7]G. Koley, M. G. Spencer, and H. R. Bhangale, Appl. Phys. Lett.79,545 (2001).
    [8]L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media 2nd ed. (Pergamon Press, Oxford,1984).
    [9]K. Yum, Z. Wang, A. P. Suryavanshi, and M.-F. Yu, J. Appl. Phys.96,3933 (2004).
    [10]W. Weaver, S. P. Timoshenko, and D. H. Young, Vibration Problems in Engineering 5th ed. (John Wiley & Sons, Inc., New York,1990).
    [11]黄维,密保秀,高志强,有机电子学(科学出版社,北京,2011)
    [12]施敏,半导体器件物理与工艺(苏州大学出版社,苏州,2003)
    [13]施敏,伍国珏,半导体器件物理(西安交通大学出版社,西安,2008)
    [14]G. Sauerbrey, Z. Phys.155,206 (1959).
    [15]C. S. Lu and O. Lewis J. Appl. Phys.43,4385 (1972).
    [16]D. Johannsmann, Macromol. Chem. Phys.200,501 (1999).
    [17]A. P. M. Glassford, J. Vac. Sci. Technol.15,1836 (1978).
    [18]S. J. Martin, J. J. Spates, K. O. Wessendorf, T. W. Schneider, and R. J. Huber, Anal. Chem.69,2050 (1997).
    [19]R. L. Jackson and G. W. Tyndall, J. Appl. Phys.62,315 (1987).
    [20]K. E. Hurst, A. V. D. Geest, M. Lusk, E. Mansfield, and J. H. Lehman, Carbon 48, 2521 (2010).
    [21]T. Kawasaki, T. Mochida, J. Katada, and Y. Okahata, Anal. Sci.25,1069 (2009).
    [22]A. L. Kimball, Jr., and D. E. Lovell, Phys. Rev.26,121 (1925).
    [23]L. Bruschi, G. Delfitto, and G. Mistura, Rev. Sci. Instrum.70,153 (1999).
    [24]L. Bruschi and G. Mistura, Phys. Rev. B 63,235411 (2001).
    [25]P. B. Johnson and R. W. Christy, Phys. Rev. B 6,4370 (1972).
    [26]J. D. Jackson, Classical Electrodynamics 3rd ed. (John Wiley & Sons, Inc., New York,1998).
    [27]F. A. Jenkins and H. E. White, Fundamentals of Optics 4th ed. (McGraw-Hill, Inc., London,1979).
    [28]Z. Feng, D. Liu, Z. Zuo, Q. Yu, R. Wang, and X. Xu, Appl. Phys. Lett.101,061901 (2012).
    [29]E. Benes, M. Groschl, W. Burger, and M. Schmid, Sens. Actuators, A 48,1 (1995).
    [30]M. Lax, J. Appl. Phys.48,3919 (1977).
    [31]G. Keskar, B. Elliott, J. Gaillard, M. J. Skove, and A. M. Rao, Sens. Actuators, A 147,203 (2008).
    [32]S. Kim and K. D. Kihm, Appl. Phys. Lett.90,081908 (2007).
    [33]F. R. Blom, S. Bouwstra, M. Elwenspoek, and J. H. J. Fluitman, J. Vac. Sci. Technol. B 10,19(1992).
    [34]R. Lifshitz and M. L. Roukes, Phys. Rev. B 61,5600 (2000).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700