用户名: 密码: 验证码:
分布式阵列米波雷达高精度测角问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
米波雷达的波长特性使米波雷达具有反隐身、抗反辐射导弹及作用距离远等突出优势,但米波雷达带宽窄、波束宽、角分辨率低、定位精度低等缺点也较为明显。如何提高米波雷达的角度分辨率及定位精度是米波雷达发展需解决的突出问题。而增大天线孔径是一种比较有效的解决方法,但是天线孔径的增大不仅不利于雷达或雷达平台的隐身需求,而且降低了系统的机动性、抗摧毁能力和战场生存能力。本文提出分布式阵列米波雷达系统的解决方案,该系统采用密布的主阵列发射、分布式阵列接收的配置结构,通过分布式接收阵列的相参处理可得到等效的大孔径天线。
     因此,结合某米波雷达课题,本文围绕分布式阵列米波雷达的高精度测角问题展开,对分布式阵列的稳健自适应波束形成、高精度方向估计、流形解模糊和低仰角估计等方面进行深入研究,具体工作概括如下:
     1.研究分布式阵列米波雷达的稳健自适应波束形成技术。首先针对分布式阵列的结构特征,提出分散式与集中式两种数字波束形成的实现结构;再分析波束指向误差、阵元幅相误差等对分布式阵列的各种稳健自适应波束形成算法的性能影响,为分布式阵列的波束形成选择合理算法提供理论指导;最后,针对子阵相位中心未知或存在扰动的部分校正的分布式阵列,提出其导向矢量的结构化不确定集模型,将其波束形成问题转换成非凸的伪半正定优化(SDP)问题,由于非凸优化问题的难以求解,本文采用优化理论中的松弛方法求解,从而提出了部分校正的分布式阵列的半正定松弛(SDR)波束形成器,并通过计算机仿真验证其正确性与有效性。
     2.提出三种分布式阵列结构及其高精度DOA估计方法。为了实现二维的高精度角度估计,本文依次提出干涉式L形阵、分布式相参阵列及斜线型分布式阵列三种分布式阵列结构及其高精度DOA估计方法。针对干涉式L形阵的结构特点,本文提出采用一维双尺度酉ESPRIT算法及基于子空间正交特性的配对算法实现无模糊高精度的方向估计,并简要地分析基线阵列基线长度对其DOA估计性能的影响。为了提高天线的增益、孔径,本文以干涉式L形阵为基础,将其一维线阵扩展为二维面阵,提出了分布式相参阵列。根据分布式相参阵列的面阵特征,本文采用二维双尺度ESPRIT算法及配对算法实现高精度的DOA估计。针对以上两种阵列的方向估计性能的明显门限效应,本文利用分段误差法(MIE)法分析分布式阵列的门限性能,并给出了SNR门限与基线门限的近似计算方法。最后,本文提出了斜线型分布式阵列,由于存在孔径耦合,斜线型分布式阵列的二维方向余弦精估计耦合并形成直线簇,因此本文提出基于点线间垂线距离最短准则的解模糊算法,且孔径耦合使斜线型阵列的方向估计性能存在明显的方位角与俯仰角分辨力得益区,并由分辨力得益区说明斜线型阵列仅能在方位维或俯仰维获得高精度性能,而无法同时获得二维方向的高精度估计性能。
     3.研究阵列流形模糊及干涉阵列的矩阵完型解模糊算法。流形模糊并不表示不可识别,本文从模式识别理论分析流形解模糊的两种基本方法,即关联法与模型拟合法或解卷积法。分布式阵列对空间场的欠采样是产生流形模糊的根本原因。由Caratheodory定理及Pisarenko谐波分解理论可知,若能得到与稀疏阵列同孔径的虚拟均匀线阵的正定厄密Toeplitz协方差矩阵,则可自动解模糊,即将解模糊问题转换成正定Toeplitz矩阵完型的纯数学问题。因此本文先简要地分析并比较已有正定Toeplitz矩阵完型算法的性能及适用条件。针对干涉阵列米波雷达的阵列结构的特殊性及已有完型算法的不稳定性,本文提出辅助阵元与Toeplitz矩阵完型相结合的矩阵完型解模糊算法,实现软件算法的硬件化,提高解模糊算法的稳定性,仿真与实测数据证明了算法的有效性与正确性。
     4.研究干涉式阵列米波雷达的高精度低仰角估计。由于地(海)面反射的多径反射信号严重影响了米波雷达的仰角估计性能,本文利用干涉式阵列扩展俯仰孔径,并提出了干涉式阵列的前后向空间平滑(IFBSS)解相干方法,以实现多径信号与直达信号的解相干,再采用ESPRIT算法提高米波雷达的仰角估计精度。仿真与实测数据验证了该阵列结构及IFBSS算法的有效性与正确性。针对常用的两目标近似模型与实际的多径信号的失配问题,本文研究了基于非参数化的MTM法的米波雷达多径信号自适应波数谱特征,实测数据分析结果表明了多径信号的色噪声特性及近似模型的不合理性。
VHF radar has the prominent advantages over the microwave radar of anti-stealth,anti-ARM and long detection range, while some distinct disadvantages such asnarrower bandwidth, wider beamwidth, lower angular resolution and lower localizationprecision are also severe. How to enhance the angular resolution and localizationprecision is indispensable for the development of VHF radar. An increase in the antennaaperture is an effective measurement for the problems mentioned above, but the stealthrequirement of radar or radar platforms, transportability, and battlefield survivingcapacity are adversely affected. As a solution to these problems, an array system withdistributed subarrays for VHF radar is proposed, consisting of a main transmit subarrayand distributed receive subarrays. Coherently Combination of the signals received bythe individual subarray can achieve high angular resolution of equivalent large antenna.
     This dissertation addresses some issues of distributed subarrays array VHF radarwith the research task of given VHF radar. The research concentrates on the robustadaptive beamforming, high accuracy DOA estimation, manifold ambiguity resolutionand low elevation angle estimation.
     The main content of this dissertation is summarized as follows.
     1. The techniques of robust adaptive beamforming for distributed subarrays arrayVHF radar are studied. Firstly, In terms of the configuration of distributed subarrays,centralized and distributed structures for digital beamforming are proposed. Secondly,An analysis of effects of mismatches caused by look direction/pointing error, sensorsgains and phase errors on the performance of robust adaptive beamformers is made, ascould be used to provide theoretical guidance for selecting appropriate beamformeralgorithem.Lastly, A structured uncertainty model of steering vector is proposed fordistributed array composed of partly calibrated subarrays in which cases the phasecenters of the subarrays are unknown or disturbed. Then, the robust adaptivebeamforming is converted into a non-convex Pseudo-SDP problem, and a Semi-DefiniteRelaxation(SDR)-based beamformer is proposed.
     2. High accuracy2-Dimensional DOA estimation methods for threeconfiguarations of distributed array are presented. Firstly, direction finding for aninterfermetric-like L shaped array and the effect of the baseline on accuracy of DOA areinvestigated. According to the array structure and the ambiguity caused by grating lobes, one-dimensional unitary ESPRIT algorithm is utilized to achieve lower variance andnon-ambiguous DOA estimates. Secondly,2-Dimensional unitary ESPRIT algorithm isused to estimate DOA for distributed coherent array. Threshold effect in DOAestimation is analyzed by Method of Interval Error(MIE), and the methods toapproximately compute threshold baseline and threshold SNR are presented. Lastly,aperture coupling between azimuthal and elevational aperture of slanting array leads tofine direction cosine estimate standing at a family of straight lines. Then, the directioncosine ambiguity can be resolved by the rule that the vectical distance between a dotand a line is the shortest. Simultaneously, aperture coupling causes the presence ofazimuthal and elevational resolution gain regions for slanting array.
     3.Manifold ambiguity and matrix completion-based ambiguity resolution algorithmof an interferometric array are studied. Manifold ambiguity does not necessarily implynonidentifiability. Association and model-fitting(Deconvolution) method for ambiguityresolution are derived from pattern recognition theory. Spatial under-sampling is theradical reason to manifold ambiguity. From Caratheodory theorem and Pisarenkoharmonic retrival theory, the manifold ambiguity resolution is automaticallyincorporated if a positive-definite and Toeplitz covariance matrix of a virtual uniformlinear array with the same aperture as the sparse array could be attained. Then manifoldambiguity resolution is translated into a pure math problem. The condition under whichthe various matrix completion method is applicable and the performance are analyzedand compared. For the particularity of an interferometric array configuration andinstability of the existing matrix completion methods, a novel ambiguity resolutionmethod with the combination of auxiliary elements and Toeplitz matrix completion isproposed, which improves stability.Simulation and real data demonstrate theeffectiveness and validity of the proposed method.
     4. Low elevation angle with high accuracy is studied for an interferometric-likearray VHF radar. Limited by aperture, VHF radar generally has a wider beam. When thetarget is at low grazing angle or lies below about one-third of the beamwidth above thehorizon, multipath signal reflected from ground(sea) surface come into the mainlobe aswell as the direct echo, in which case the performance of low elevation estimation ofVHF radar is highly affected. The interferometric-like array extends the verticalaperture with small pieces of hardware. The interferometric Forward/Backward spatialsmoothing(IFBSS) technique is proposed from the conventional spatial smoothingalgorithm for uniform linear array, being used to decorrelate the multipath and directsignal. Then high accurate elevation angle estimation with dual-size unitary ESPRIT algorithm is achieved. As the surface roughness increases or the target approaches thehorizon, there is a huge mismatch between two-target model and actual multipath. Acomplete theoretical model of multipath is nearly impossible at present. From theperspective of wavenumber spectrum estimation, the nonparametric Multi-taper Method(MTM) is utilized for the feature of adaptive wavenumber of multipath. It isdemonstrated that the diffuse component is characteristic of colored-noise by real dataresult.
引文
[1] R.C.Heimiller,J.E.Belyea, P.G.Tomlinson. Distributed arry radar[J]. IEEE Trans.On AES,1983,19(6):231-240.
    [2] B.D.Steinberg, E.Yadin. Distributed airborne array concepts[J].IEEE Trans. OnAES,1982,18(2):219-227.
    [3]杨振起,张永顺,骆永军.双(多)基地雷达系统[M].北京:国防工业出版社,1998.
    [4]李红伟.外辐射源雷达目标定位与跟踪方法研究[D].博士学位论文,西安:西安电子科技大学,2012.
    [5]齐飞林.复合制导体制下毫米波共形阵列的数字波束形成方法研究[D].博士学位论文,西安:西安电子科技大学,2010.
    [6] H. L. Van Trees. Optimum Array Processing[M]. NY:John Wiley&Sons,2002.
    [7] M. Skolnik. Radar handbook[M]. Second Edition. NY:McGraw–Hill;1990.
    [8] M. Skolnik. Radar handbook[M]. Third Edition. New York:McGraw–Hill;2008.
    [9] S.J.Orfanidis. Electromagnetic Waves and Antenna[M]. www.ece.rutger.edu/~orfanidis/ewa.
    [10] D. Johnson, D. Dudgeon. Array Signal Processing: Concepts and Techniques[M].Signal Processing Series, Englewood Cliffs:Prentice Hall,1993.
    [11] Forsythe K W, Bliss D W and Fawcett G S. MIMO radar: performance issues [C].Proc. of IEEE Radar Conference,2004,1:310-315.
    [12] Robey F C, Coutts S, Weikle D, et al. MIMO radar theory and experimentalresults [C]. Rec. of the38th Asilomar Conf. Signals, Systems and Computers,2004,1:300-304.
    [13] Fishler E, Haimovich A, Blum R, et al. MIMO radar: an idea whose time hascome [C]. Proc. of the IEEE Radar Conf.,2004:71-78.
    [14] Fishler E, Haimovich A, Blum R, et al. Performance of MIMO radar systems:advantages of angular diversity [C]. Records of the38th Asilomar Conf. Signals,Systems and Computers,2004,1:305-309.
    [15] Haimovich A M, Blum R S and Cimini L J. MIMO radar with widely separatedantennas [J]. IEEE Signal Processing Magazine,2008,25(1):116-129.
    [16] Li J and Stoica P. MIMO Radar with Colocated Antennas [J]. IEEE SignalProcessing Magazine,2007,24(5):106-114.
    [17] Li J and Stoica P. MIMO radar signal processing [M]. NY:John Wiley and Sons,Inc., Hoboken, New Jersey,2006.
    [18] Friedlander B. On the relationship between MIMO and SIMO radars [J]. IEEETrans. On SP,2009,57(1):394-398.
    [19]晁淑媛.MIMO雷达若干关键技术研究[D].博士学位论文,西安:西安电子科技大学,2011.
    [20] S.S.Iyengar,R.R.Brooks.Distributed sensor network[M].Florida:CRC Press,2007.
    [21] J.R.Raol. Multi-sensor data fusion with MATLAB[M].Florida: CRC,2010.
    [22]陈伯孝.SIAR四维跟踪及其长相干积累等技术研究[D].博士学位论文,西安:西安电子科技大学,1997.
    [23] Kuschel, H. VHF/UHF radarpart1: Characteristics[J].Electronics andCommunication Engineering Journal,2002,14(2),61-72.
    [24] Kuschel, H.VHF/UHF radar Part2: Operational aspects and applications[J],Electronics and Communication Engineering Journal,2002,14(3),101-111.
    [25]杨学亚.米波雷达阵列超分辨及测高方法研究[D].博士学位论文,西安:西安电子科技大学,2011.
    [26]李金梁,李永祯,王雪松.米波极化雷达的反隐身研究[J].雷达科学与技术,2005,3(6):321-326.
    [27]万山虎,丁建江.提高米波雷达四抗性能的关键技术[J].中国雷达,1998,2:1-4.
    [28]董智文,屈晓光.防空制导雷达反隐身性能分析[C].第十届全国雷达学术年会,长沙,2008:376-379.
    [29]陶茀毓.现代米波雷达介绍[J].地面防空武器,2002,4:34-38.
    [30]陈长兴,巩林玉,班斐等.米波谐振雷达反隐身技术研究[J].舰船电子对抗,2009,32(4):34-37.
    [31]胡晓琴.超分辨空间谱估计技术应用基础研究[D].博士学位论文,长沙:国防科技大学,2009.
    [32]保铮,张庆文.一种新型的米波雷达—综合脉冲与孔径雷达[J].现代雷达.1995,17(1):1-13.
    [33]赵小华,渠亮.雷达反隐身技术的浅析[J].现代雷达,2007,29(3):17-18.
    [34]古奥.英雄重生-米波三坐标雷达的发展现状[J].现代兵器,2009,4:50-51.
    [35]反隐身雷达的现状与发展[J].军事电子,2002,77-78.
    [36]刘俊.米波雷达低仰角估计方法研究[D].博士学位论文,西安:西安电子科技大学,2012.
    [37]史仁杰.雷达反导与林肯实验室[J].系统工程与电子技,2007,29(11):1781-1799.
    [38] V.Cheanyak,I.Immoreev,B.Vovshin.70years of Russian radar industry[C].2004,International Conference on Radar systems, Toulouse,France,2004:1-8.
    [39] E.F.Knott,J.F.Shaeffer,M.T.Tuley.Radar Cross Section[M]. NC:Scitech,2004.
    [40] Hongwei Gao, Zhe Cao, Shuliang Wen,et al. Study on Distributed ApertureCoherence-synthesizing Radar with Several Experiment Results[C].2011IEEERadar Conference,84-86.
    [41]高红卫,曹哲,鲁耀兵.分布式阵列相参合成雷达基本研究与原理验证[C].第十一届全国雷达学术年会论文集,武汉,2012,129-134.
    [42] Coutts S,Cuomo K,Mcharg J,et al.Distributed Coherent Aperture Measurementsfor Next Generation BMD Radar[C]. IEEE Workshop On Sensor Array andMultichannel Signal Process.,2006:390-393.
    [43] Chih-Heng Lin. Distributed subarray antennas for multifunction phased-arrayradar[D]. Master thesis, Naval Postgraduate School, California,USA,2003.
    [44] J.S.G.Noris.Wirelessly networks for beamforming in distributed phased arrayradar[D]. Master thesis, Naval Postgraduate School, California,USA,2007.
    [45] I.Tornazakis.Development of a distributed digital array radar[D]. Master thesis,Naval Postgraduate School, California,USA,2008.
    [46]赵飞.美军下一代雷达系统及其分布式孔径相干处理技术发展[C].空天防御雷达探测技术文集,中国航天科工集团第二研究院二十三所,2010,112-114.
    [47]史仁杰.新一代弹道导弹防御雷达-分布式相参合成孔径相控阵雷达[C].空天防御雷达探测技术文集,中国航天科工集团第二研究院二十三所,2010,1-6.
    [48] CDA-AESA.www.sbir.gov/sbirsearch/detail/378009.
    [49] J.E.Nillson, H.Warston.Radar with separated subarray antenna[C].2003Radarconference, Adelaide, Australia,203:194-199.
    [50] J. C.Marron;R. L. Kendrick. Distributed aperture active imaging[C],2007, International Society for Optical engineering,2007,May,04
    [51]曹哲,柴振海,高红卫.分布式阵列相参合成雷达技术研究与试验[J].现代防御技术,2012,40(4):1-11.
    [52] Jiang wei, Wang Ju, Wu Siliang,et al. Coherent detection and ambiguity forfrequency diversity separated subarrya radar[C]. Proc. of ICSP,2008:2364-2367.
    [53]姜伟,吴嗣亮,原浩娟.频率分集分布式子阵雷达的相参积累检测方法[J].北京理工大学学报,2010,30(1):96-80.
    [54] Kirk D R, Bergin J S, Techau P M, et al. Multi-static coherent sparse apertureapproach to precision target detection and engagement[C].Proceedings of IEEEInternational Radar Conference. Alexandria, VA: IEEE,2005:579-584.
    [55]张光义,赵玉杰.相控阵雷达技术[M].北京:电子工业出版社,2006.
    [56] H.Wang,K.J.R.Liu.Coherent signal processing using array of arbitraygeometry[R].Technical Report, Department of Electrical Engineering, Universityof Maryland,1994.
    [57] R.Wu, Y.Ma, R.D.James. Array pattern synthesis and robust beamforming for acomplex sonar system[J].IEE Radar, Sonar and Nav.,1997,144(6):370-376.
    [58] Jian Li, P. Stoica. Robust Adaptive Beamforming[M].NY: Wiley&Sons,2006.
    [59] B. D. Carlson, Covariance matrix estimation errors and diagonal loading inadaptive arrays[J]. IEEE Trans. On AES,1988,24(4):397-401
    [60] L. Hogben. Handbook of Linear Algebra [M],Boca Raton,Florida:CRC,2007.
    [61] K. Harmanci, J. Tabrikian, J. L. Krolik. Relationships between adaptive minimumvariance beamforming and optimal source localization [J].IEEE Trans. SignalProcessing,2000,48(1):1-13.
    [62] R. G. Lorenz, S. P. Boyd. Robust minimum variance beamforming[J]. IEEE Trans.On SP,2005,53(5):1684-1696.
    [63] J. Li, P. Stoica, Z. Wang. On robust Capon beamforming and diagonal loading.IEEE Transactions on SP,2003,51(7):1702-1715.
    [64] J. Li, P. Stoica, Z. Wang. Doubly constrained robust Capon beamformer[J]. IEEETransactions on SP,2004,52(9):2407-2423.
    [65] S. Vorobyov, A. B. Gershman, Z.-Q. Luo.Robust adaptive beamforming usingworst-case performance optimization: A solution to the signal mismatchproblem[J].IEEE Trans. On SP,2003,51(2):313-324.
    [66] S.Vorobyov,Yue Rong, A.B.Gershman.Robust Adaptive Beamforming UsingProbability Constrained Optimization[C].Proceeding of13th IEEE Workshopon Statistical Signal Processing,2005:934-939.
    [67] A. Leshem. Maximum likelihood estimation of constant modulus signals[J].IEEE Trans. Signal Processing,2000,48(2):2948-2952.
    [68] U. Nickel.Subarray configurations for interference suppression with phased arrayradar[C] Proc. of the International Conference on Radar, Paris,1989:82-86.
    [69] U. Nickel. Educational Note on Fundamentals of Signal Processing for PhasedArray Radar, in Advanced Radar Systems, Signal and Data Processing,http://www.rto.nato.int/abstracts.asp.
    [70] D. R.Matinez, R.A.Bond.High Performance Embedded Computing Handbook: ASystems Perspective[M], Boca Raton,Florida:CRC,2008.
    [71] B. D. Van Veen, K. Buckley.Beamforming: A versatile approach to spatialfiltering[J].IEEE ASSP Magazine,1988,5:4–24.
    [72] C.D. Bailey,D.D.Aalfs. Design of Digital Beamforming Subarrays for amultifunction radar[C].2009International Radar Conference,France,2009:1-6.
    [73] S. Boyd, L.Vandenberghe. Convex Optimization[M]. Cambridge: CambridgeUniversity press,2004.
    [74] Y. C. Eldar, A. Ben-Tal, A. Nemirovski,.Robust mean-squared error estimation inthe presence of model uncertainties[J]. IEEE Trans. On SP,2005,53(1):168-181,2005.
    [75] J. Capon. High-resolution frequency-wavenumber spectrum analysis[C]. Proc. ofIEEE,1969,57(8):1408-1418.
    [76] A. N. Tikhonov,Y. V. Arsenin. Solution of Ill-Posed Problems [M].Moscow:Winston&Sons,1977.
    [77] B.D. Carlson, L.M. Goodman, J. Austin,et al. ultralobesidelobe Adaptive arrayantenna[J]. The Lincoln Laboratory Journal,1990,3(2):291-310.
    [78] A.Antoniou,Wu-Sheng Lu.Practical Optimization algorithm and engineeringapplication[M]. NewYork:Springer,2007.
    [79] J. F. Sturm.Using SeDuMi1.02, a MATLAB toolbox for optimization oversymmetric cones. Optim. Meth. Soft.,11(12):625-653,1999.
    [80] M. Grant, S. Boyd, Y. Ye.CVX: Matlab software for disciplined convexprogramming.2012, http://www.stanford.edu/boyd/cvx.
    [81] A. Hassanien, S. A. Vorobyov, and K. M. Wong. Robust adaptive beamformingusing sequential quadratic programming: An iterative solution to the mismatchproblem[J] IEEE Signal Processing Letter,2008,15:733-736.
    [82] Lei Lei,Joni Polili Lie,A.B. Gershman.Robust Adaptive Beamforming in PartlyCalibrated Sparse Sensor Arrays[J].IEEE Trans. On SP,2010,58(3):1661-1667.
    [83] B. Widrow, K. M. Duvall, R. P. Gooch,et al. Signal cancellation phenomena inadaptive antennas: Causes and cures[J]. IEEE Trans. on A P,1982,30(3):469-478.
    [84]王永良,陈辉,彭应宁等.空间谱估计理论与算法[M].北京:清华大学出版社,2004.
    [85] E. Tuncer, B.Friedlander.Classical and Modern Direction of ArrivalEstimation[M]. Burlington, MA: Elsevier,2009.
    [86] Bin L., S. C.Chan.Direction Finding With Partly Calibrated Uniform lineararray[J].IEEE Trans. On AP,2012,60(2):922-929.
    [87] A. J. Weiss and B. Friedlander.DOA and steering vector estimation using apartially calibrated array[J]. IEEE Trans. On AES,1996,32(3):1047-1057.
    [88] M.Pesavento,A.B.Gershman,K.M.Wong.Direction finding in partly calibratedsensor arrays composed of multiple subarrays[J].IEEE,Trans.OnSP,2002,50(9):2103-2115.
    [89] W. K. Ma, T. N. Davidson, K. M. Wong, et al. Quasi-maximum-likelihoodmultiuser detection using semi-definite relaxationwith application to synchronousCDMA[M].IEEE Trans. On SP,2002,50(4):912–922.
    [90] Zhi-Quan Luo,Wing-Kin Ma, A.Man-Cho.Semidefinite Relaxation of QuadraticOptimization Problems[J].IEEE SP Magazine,Specail Issue,2010,1-14.
    [91] L.C.Godara.Handbook of Antenna in Wireless Communication[M]. BocaRaton,Florida:CRC,2002.
    [92] T.L.Wilson, K.Rohlfs, S.Huttemeister. Tools of Radio Astronomy[M],5thed.,NewYork: Springer,2009.
    [93] N. D. Sidiropoulos, T. N. Davidson, Z.-Q. Luo. Transmit beamforming forphysical-layer multicasting.IEEE Trans. On SP,2006,54(6):2239–2251.
    [94] S. Zhang.Quadratic maximization and semidefinite relaxation[J].Math.Program.,ser. A,2000,87:453-465.
    [95] P. Tseng.Further results on approximating nonconvex quadratic optimization bysemidefinite programming relaxation [J]. SIAM J. Optim.,2003,14(1):268-283.
    [96] M. O. Damen, H. E. Gamal, G. Caire.On maximum-likelihood detection and thesearch for the closest lattice point[J]. IEEE Trans. On Information Theory,2003,49(1):2389-2402.
    [97] P. Biswas, T.-C. Lian, T.-C. Wang, et al.Semidefinite programming basedalgorithms for sensor network localization[J]. ACM Trans.Sensor Networks,2006,2(2):188–220.
    [98]陈伯孝.现代雷达系统分析与设计[M].西安:西安电子科技大学出版社,2012.
    [99] B. R. Mahafza. Radar Signal Analysis and Pprocessing Using MATLAB[M].Boca Raton, Florida:CRC press,2009.
    [100] Jacobs E., Ralston W. Ambiguity resolution in interferometry[J]. IEEETransactions. On AES,1981,7(6):766-780.
    [101] Radar System Panel.IEEE Standard Radar Definitions[S], IEEE Std686-2008,2008.
    [102] Christer E., Model-based adaptive detection and DOA estimation using separatedsubarrays[C].Proc. of the2009IEEE Radar Conference,2009:104-109.
    [103] Robert J. Mailloux. Phased Array Antenna Handbook[M]. London: Artech House,2005.
    [104] D. Wirth.Radar techniques using array antennas[M].London: IEE,2001.
    [105] Zoltowski M D,Wong K T. Closed-Form Eigenstructure-Based Direction FindingUsing Arbitrary but Identical Subarrays on a Sparse Uniform Cartesian ArrayGrid[J], IEEE Trans.On SP,48(8), Aug2000.
    [106] K. T. Wong, M. D. Zoltowski. Direction finding with sparse rectangular dual-sizespatial invariance Array[J]. IEEE Trans. On AES,1998,34(4):1320-1335.
    [107] Lemma A N,A van Veen,Ed F Deprettere. Multiresolution ESPRIT algorithm[J].IEEE Trans. On SP,1999,47(6):1722-1726.
    [108] Richard Roy,Thomas Kailath. ESPRIT-Estimation of Signal Parameters ViaRotational Invariance Techniques[J].IEEE Trans On ASSP,1989,37(7):984-995.
    [109] Volodymyr I. Vasylyshyn,Direction of arrival estimation using ESPRIT withSparse Arrays[C]. Proc European Radar Conference, Italy,2009.246-249.
    [110] V I. Vasylyshyn.Closed-Form DOA Estimation with Multiscale Unitary ESPRITAlgorithm[C]. Proc European Radar Conference, Netherlands,2005.157-160.
    [111] Zhizhang Chen,Gopal Gokeda,Yiaiang Yu.Introduction to Direction-of-ArrivalEstimation[M],Boston:Artech House,2010.
    [112]陈根华,陈伯孝,杨明磊.干涉式L形阵的二维高精度方向估计[J].系统工程与电子技术,2012,34(01):17-23.
    [113]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [114] C D. Meyer.Matrix Analysis and Applied Linear Algebra[M].PA:SIAM,2000.
    [115] I.S.Gradshteyn, I.M.Ryzhik.Table of Integrals, Series, and Products[M],7thEdition. Burlington, MA:Elsevier,2007.
    [116] Genhua Chen, Baixiao Chen.Eigenstructure-based ambiguity resolutionalgorithm for distributed subarray antennas VHF radar[J].Electronics Letters,2012,48(13):788-789.
    [117] Y.I.Abramovich,N.K.Spencer,A.Y.Gorokhov.Resolving Manifold Ambiguities inDirection-of-Arrival Estimation for Nonuniform Linear Antenna Arrays[J].IEEETrans. On SP,1999,47(10):2629-2643.
    [118] M.Haardt, J. A. Nossek.Unitary ESPRIT: How to obtain increased estimationaccuracy with a reduced computational burden[J]. IEEE Trans.On SP,1995,43(5):1232-1242.
    [119] Zoltowski M D, Haardt M, Mathews C P. Closed-form2-D angle estimation withrectangular arrays in element space or beamspace via unitary ESPRIT[J]. IEEETrans.On SP,1996,44(2):316-328.
    [120]陈根华,陈伯孝,杨明磊.分布式相参阵列及其二维高精度方向估计[J].电子与信息学报,2012,34(11):2621-2627.
    [121] Yingbo Hua, Tapan K. Sarkar,An L-Shaped Array for Estimating2-D Directionsof Wave Arrival [J],IEEE Trans.on AP,1991,39(2):143-146.
    [122] R.J.Vaccaro.The threshold effect in signal processing algorithms which use anestimated subspace,In SVD,and Signal Processing algorithm,analysis andapplication [M]. Burlington, MA:Elsevier Press,1991.
    [123] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I, Detection,Estimation, and Linear Modulation Theory [M]. NY: John Wiley&Sons,2001.
    [124] Athley, F. Threshold region performance of maximum likelihood direction ofarrival estimators[J]. IEEE Trans. On SP,2005,53(4):1359-1373.
    [125] D.C.Montgomery,G.C.Runger. Applied Statistics and Probability forEngineers[M].3rdEdition. NY: Wiley&Sons,2003.
    [126] S.Haykin,J.P.Reilly,V.Keyzys,et al. Some aspects of array signalprocessing[J].IEE Radar, Sonar and Nav.,1992,139(1):1-26.
    [127] D. C. Rife, R. R. Boorstyn.Single-tone parameter estimation from discrete-timeobservations[J]. IEEE Trans. Information Theory,1974,20(5):591–598.
    [128] C.D.Richmond. Mean-Squared error and threshold SNR prediction ofmaximum-likelihood signal parameter estimation with estimated colored noisecovariances[J]. IEEE Trans. Information Theory,2006,52(5):2146-2164.
    [129] M. J. Malone.On the threshold effect in FM data systems[J]. IEEETrans.Communication. Technology,1966,14(5):625–631.
    [130] C. E. Shannon.Communication in the presence of noise[J]. Proceeding of IRE.,1949,37(1):10–21.
    [131] P. M.Woodward.Probability and Information Theory with Applications toRadar[M]. New York: McGraw-Hill,1953.
    [132] C. R. Rao. Information and Accuracy Attainable in the Estimation of StatisticalParameters[J]. Bull. Calcutta Math. Sot.,1945,37(8):1-91.
    [133] P.Stoica,A.Nehorai. MUSIC, Maximum Likelihood,and Cram&-RaoBound[J].IEEE Trans.On ASSP,1989,37(5):720-741.
    [134] E.Weinstein,A.J.Weiss. A General Class of Lower Bounds in parameterestimation[J]. IEEE Trans. Information Theory,1988,34(2):338-342.
    [135] E. W. Barankin. Locally Best Unbiased Estimates[C]. Ann. Math. Stat.,1949,20:477.
    [136] H. L. Van Trees. A Generalized Bhattacharyya Bound[J]. Internal Memo,IM-VT-6, MIT,1966.
    [137] Athley F.,Christere N.. Direction-of arrival estimation using separatedsubarrays[C] Proc. of34th Conference on Signals, Systems, and Computers,Pacific Grove,California,USA,2000:585-589.
    [138] S.D.Howard,P.Lavoie.Analysis of SNR threshold for differential Dopplerfrequency measurement in digital receivers[C].Proc. of ICASSP,Turkey,2000:289-292.
    [139]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2001.
    [140] Johnson R.L., Hipp, J.E., Sherrill, W.M. Radio direction finding[M].NewYork:Wiley&Sons,1999.
    [141] S Theodoridis, K Koutroumbas.Pattern recogonition[M],2nded,CA:Elsevier,2003.
    [142]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998.
    [143] A.Dogandzic,A.Nehorai.CRB for estimating range,velocity and direction with anactive arrays[J].IEEE Trans. On SP,2001,49(6):1122-1137.
    [144]《数学手册》编写组.数学手册[M].北京:高等教育出版社,1977.
    [145] E.Weinstein,A.J.Weiss.Fundamental Limitations in Passive Time DelayEstimation-Part I:Narrow-Band Systems[J].IEEE Trans. On ASSP,1983,31(2):472-486.
    [146] R. O. Schmidt. A signal subspace approach to multiple emitter location andspectral estimation[D]. Ph.D Dissertation, Stanford Univ., Stanford, CA,1981.
    [147] A. Manikas, C. Proukakis. Modeling and Estimation of Ambiguities in LinearArrays[J]. IEEE Transactions on SP,1998,46(8):2166-2179.
    [148] C. Proukakis, A. Manikas. Study of Ambiguities of Linear Array[C]. Proc. ofICASSP, Australia,1994,4:549-552.
    [149] Y.I.Abramovich, N.K.Spencer, A.Y.Gorokhov. Resolving Manifold Ambiguityin direction of arrival estimation for Nonuniform linear array[J].IEEE Trans. OnSP,1999,47(10):2629-2643.
    [150] Fuchs J. J. Extension of the Pisarenko method to sparse linear arrays[J].IEEETrans.On SP,1997,45(10):2413–2421.
    [151] J. T. H. Lo, S. L. Marple. Observability conditions for multiple signal directionfinding and array sensor localization[J].IEEE Trans. On SP,1992,40(11):2641-2650.
    [152]梅向明,黄敬之.微分儿何[M].北京:高等教育出版社,2003.
    [153] C.Y.Tseng, D.D.Feldman, L. J. Griffiths. Steering Vector Estimation inUncalibrated Arrays [J].IEEE Trans. On SP,1995,43(6):1397-1412.
    [154] H. A. Assumpcao. Some new signal processors for arrays of sensors[J].IEEETrans. Inform. Theory,1980,26(4):441-453,1980.
    [155] R.C.Aster,B.Borchers,C.H.Thurber.Parameter Estimation and InverseProblems[M]. Burlington, MA:Elesevier Press,2005.
    [156] Abramovich Y I, Spencer N K, Gorokhov A Y. Positive-definite Toeplitzcompletion in DOA estimation for nonuniform linear antenna arrays—Part I:fully augmentable arrays [J]. IEEE Transactions On SP,1998,46(9):2458-2471.
    [157] Abramovich Y I, Spencer N K, Gorokhov A Y. Positive-definite Toeplitzcompletion in DOA estimation for nonuniform linear antenna arrays—Part II:partially augmentable arrays [J]. IEEE Transactions On SP,1999,47(6):1502-1521.
    [158] Charles R. Johnson. Matrix Completion Problems: A Survey[C]. Proceeding ofSymposium Applied Math.1990,40:171–176.
    [159] C. J. Emmanuel, R. Benjamin. Exact Matrix Completion via ConvexOptimization[J].Foundations of Computational Mathematics,2009,9(6):717–772.
    [160]杨奇译.矩阵分析[M].北京:机械工业出版社,2005.
    [161] R. Grone, C.R. Johnson,et al. Positive definite completions of partial Hermitianmatrices[J]. Linear Algebra Application,1984,58:109–124.
    [162] A. Y. Gorokhov, Y. I. Abramovich, J. F. B¨ohme. Unified analysis of DOAestimation algorithms for covariance matrix transforms[J].Signal Processing,1996,55(1):107–115.
    [163] Y. I. Abramovich, A. Y. Gorokhov, N. K. Spencer. Positivedefinite Toeplitzcompletion in DOA estimation for partiallyaugmentable nonuniform linearantenna ar rays[C]. Proc. SSAP, Corfu, Greece,1996:550–553.
    [164] Y. I. Abramovich, N. K. Spencer, A. Y. Gorokhov. Generalized augmentationapproach for arbitrary linear antenna arrays[C]. Proc. ICASSP, Munich, Germany,1997,5:3757–3760.
    [165] S. Pillai, Y. Bar-Ness, F. Haber. A new approach to array geometry for improvedspatial spectrum estimation[C]. Proc.of IEEE,1985,73:1522–1524.
    [166] S. Pillai, F. Haber. Statistical analysis of a high resolution spectrum estimatorutilizing an augmented covariance matrix[J].IEEE Trans. On ASSP,1987.35(11):1517–1523.
    [167] J. P. Burg.Maximum entropy spectral analysis[D]. Ph.D Dissertation, StanfordUniversity, Stanford, CA,1975.
    [168] R. J.McAulay. Interferometer design for elevation angle estimation[J]. IEEETransactions On AES,1977,13(5):486-503.
    [169] Y. I. Abramovich D.A.Gory,N.K.Spencer,et al. Ambiguities in DOA estimationfor nonuniform linear antenna arrays[C]. Proc. ISSPA,1996:631–634.
    [170] A.Flieller, P.Larzabal,H.Clergeot.Study of Ambiguityies in Array Maniflold:A General Framework[C].Proc. of8thIEEE Signal Processing Workshop onStatistical Signal and ArrayProcessing,1996:574-577.
    [171] M.Wax,R.Tweg. Direction of arrival tracking below the ambiguitythreshold[J].IEEE Trans. On AES,2000,36(2):354-363.
    [172] A. Manikas, H. R. Karimi, I. Dacos. Study of the detection and resolutioncapabilities of one-dimensional array of sensors by using differential geometry[J].IEE Radar, Sonar and Nav.,1994,141(2):83–92.
    [173]刘洪盛.高分辨测向阵列几何结构研究[D].博士学位论文,成都:电子科技大学,2009.
    [174] K. C. Tan, G. L. Oh, and M. H. Er. A study of the uniqueness of steering vectorsin array processing[J].Signal Processing.,1993,34:245–256.
    [175] A.T.Moffet. Minimum-redundancy linear arrays[J].IEEE Trans. On AP,1968,16(2):172–175.
    [176] E.J.Vertatschitsch, S.Haykin.Impact of Linear Array Geometry on Direction ofArrival Estimation for a Single Source [J].IEEE Trans. On AP,1991,39(5):576-584.
    [177] Y. I. Abramovich, A.Y. Gorokhov, N.K. Spencer.Asymptotic efficiency ofmanifold ambiguity resolution for DOA estimation in nonuniform linear antennaarrays[C].Proc. IEEE SPAWC-97, Paris, France,1997:173–176.
    [178] D.C.Montgomery,G.C.Runger. Applied Statistics and Probability forEngineers[M],3rdEdition. NY: Wiley&Sons,2003.
    [179] A.J.Weiss,M.Gavish.Direction Finding Using ESPRIT with InterpolatedArrays[J].IEEE Trans. On SP,1991,39(6):1473-1478.
    [180] T. E. Tuncer, T. K. Yasar, B. Friedlander. Direction of arrival estimation fornonuniform linear arrays by using array interpolation[J].Radio Sci.,2007,42:1-11.
    [181] A.J.Weiss,B. Friedlander,P.Stoica.Direction of arrival estimation using MODEwith interpolated arrays[J]. IEEE Trans. On SP,1995,43(1):296-300.
    [182] Chen W, Xu X, Wen S, et al.. Super-resolution direction finding withfar-separated subarrays using virtual array elements [J]. IET Radar, Sonar andNav.,2011,5(8):824–834.
    [183] D.P.Petersen,D.Middleton. Linear Interpolation, Extrapolation, and Prediction ofRandom Space-Time Fields with a Limited Domain of Measurement[J].IEEETrans. On Information theory,1965,(1):18-30.
    [184] D.N.Swingler,R.S.Walker.Line-Array Beamforming Using Linear Prediction forAperture Interpolation and Extrapolation[J],IEEE Trans.On ASSP,1989,37(1):16-30.
    [185] M. D. Sacchi, T. J. Ulrych, C. J. Walker. Interpolation and Extrapolation Using aHigh-Resolution Discrete Fourier Transform[J].IEEE Trans. On SP,1998,46(1):31-38.
    [186] A.K.Jain, S.Ranganath. Extrapolation Algorithms for Discrete Signals withApplication in Spectral Estimation[J], IEEE Trans.On ASSP,1981,29(4):830-845.
    [187]刘三阳,马建荣.线性代数[M].北京:高等教育出版社,2004.
    [188] S.G.Lee, H.G.Seol. A survery on the matrix completion problem[J]. Trends inMathematics Information Center for Mathematical Sciences,2001,4(1):38–43.
    [189] S. Haykin. Adaptive Filter Theory[M],3rd ed. Englewood Cliffs, NJ:Prentice-Hall,1996.
    [190] K.C.Indukumar,V.U.Reddy. A note on redundancy averaging[J].IEEE Trans. OnSP,1992,40(2):466-469.
    [191] S. Boyd, L. E. Ghaoui, E. Feron, et al. Linear matrix inequalities in system andcontrol theory[M]. Philadelphia, PA: SIAM,1994.
    [192] Zatman M, Smith S T. Resolution and ambiguity bounds for interferometric-likesystems[C], Proc. of Asilomar Conference on Signals, Systems and Computers,Califoria,1998:1466-1470.
    [193] D.K. Barton. Low angle radar tracking[J]. Proceeding of IEEE,1974,62(6):687-704.
    [194] W.D.White. Low angle radar tracking in the presence of multipath[J].IEEETrans.On AES,1974,10(6):835-852.
    [195] T. P.McGarty. Antenna Performance in the Presence of Diffuse Multipath[J].IEEE Trans.On AES,1976,12(1):42-54.
    [196] A.V.Mrstik,P.G.Smith.Multipath Limitations on Low-Angle Radar Tracking[J].IEEE Trans.On AES,1978,14(1):85-102.
    [197] S.Haykin. Adaptive radar signal processing[M].New York:Wiley&Sons,2007.
    [198] A. Drosopoulos. Investigation of Diffuse Multipath at Low Grazing Angles[D].Ph.D Disseration, Hamilton,Ontario: McMaster University,1992.
    [199] T.Lo,L.Lai,J.Litva.Multipath propagation effects on low-angle radar tracking-anexperimental evaluation[C].1990International Symposium Digest. Antennas andPropagation,1990,4:1816-1819.
    [200] T.Lo J.Litva.Use of highly deterministic multipath signal model in low-angletracking[J].IEE Radar,Sonar and Navig1991,138(2):163-171.
    [201] J.B.Billingsley. Low angle radar land clutter measurement and empiricalmodels[M].NY:William Andrew.2002.
    [202] D.W. Tufts, R. Kumaresan. Estimation of frequencies of multiple sinusoids:making linear prediction perform like maximum likelihood[C], Proc.of IEEE,1982,70:975-989.
    [203]赵永波,张守宏.雷达低角跟踪环境下的最大似然波达方向估计方法[J].电子学报,2004,32(9):1520-1523.
    [204]刘张林,陈伯孝等.米波雷达最大似然超分辨测高技术研究[J].雷达科学与技术,2011,9(4):308-310.
    [205] K.Boman,P.Stoica.Low-Angle Estimation Models, Methods and Bounds[J].Signal Processing,2001,11(1):35-79.
    [206] U.Nickel,Dipl-Math.Angular superresolution with phased array radar: a review ofalgorithms and operational constraints[J].IEE Radar,Sonarand Nav.,134(1):53-59.
    [207]吴向东,赵永波.利用改进的Toeplitz化技术实现米波雷达低仰角测高[J].电子与信息学报,2010,32(3):570-574.
    [208] D.J. Thomson. Spectrum estimation and harmonic analysis[J].Proc.of IEEE,1982,70(9):1055-1096.
    [209] D.J. Thomson.Jackknifing multitaper spectrum estimation [J],IEEE SPMagazine,2007:20-30.
    [210] S. Haykin, A Steinhardt. Adaptive Radar Detection and Estimation[M]. NY:JohnWiley&Sons,1992.
    [211] Kim, J.et al. Low-angle tracking of two objects in a three-dimensional beamspacedomain[J].IET Radar, Sonar and Nav.,2012,6(1):9-20.
    [212] Fernandez, M.et al. Mainbeam multitarget monopulse super-resolution[C].2011IEEE Radar Conference,2011:447-52.
    [213]刘俊,刘峥,谢荣,张方芳.米波雷达低仰角波达方向估计的快速算法.西安电子科技大学学报,2011,38(5):115-120.
    [214] Blunt S. D. et al. Robust DOA Estimation: The Reiterative Super-resolution(RISR)Algorithm[J]. IEEE Trans. On AES,2011,47(1):332-346.
    [215] Chen Baixiao. Altitude measurement based on beam split and frequency diversityin VHF radar[J].IEEE Trans On AES,2010,46(1):3-13.
    [216] B.Friedlander, A.J. Weiss. Direction finding using spatial smoothing withinterpolated arrays[J]. IEEE Trans On AES,1992,28(2):574-587.
    [217]陈根华,陈伯孝.干涉阵列米波雷达的低仰角高精度估计方法[J].西安电子科技大学学报,2012,39(6):42-48.
    [218] Lo T and Litva J.Low-angle tracking using a multifrequency sampled apertureradar[J].IEEE Trans. On AES,1991,27(5):797-805.
    [219] K.E.Wage.Multitaper array processing[C].Proc. of41thAsilomar Conference OnSignal, Systems and Computers,2007:1242-1246.
    [220] M.K.Jataprolu,R.D.Koilpillai,S.Bhashyam.Optimal MTM spectral estimationbased Detection for congtive radion in HDTV[C].National ConferenceCommunications,2012:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700