用户名: 密码: 验证码:
四阶累积量波束形成及其在水下目标探测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于受各种复杂海洋环境因素的影响,水下目标探测与识别仍是水声信号处理中的重要难题之一。如何在复杂的海洋环境下获取高信混比(信噪比)的目标回波数据是提高水下目标探测能力与识别精度所迫切需要解决的关键问题。本文围绕水雷目标探测问题,对抑制主动声纳的混响干扰、获取高信混比的目标回波这一问题展开研究。
     本文研究的思路是基于基阵信号处理手段,利用小尺度基阵,通过形成空间的窄波束来实现目标方位估计的同时降低混响干扰。再依据目标回波和混响在信号特性上的差异,利用信号处理手段滤除混响。通过在空间域和变换域上实现混响干扰的二次抑制,以提高目标回波信号的信混比。
     文中首先对主动声纳探测目标所涉及到的三类信号形式(目标回波、混响、海洋环境噪声)在信号模型和信号特性上的差异进行了分析和总结,给出抑制混响干扰的处理思路,为后续处理提供理论依据。
     为了兼顾波束形成高的空间分辨率和稳健的性能,利用四阶累积量对阵列孔径的扩展特性,结合最小冗余阵列的构造,给出一种基于最小冗余阵列的四阶累积量波束形成方法。该方法仅利用少的基元数便可以实现高的空间分辨率的同时使四阶累积量数据矩阵构造的复杂度由原来的M~2×M~2降低到M×(2M1)。文中着重推导了四阶累积量波束形成处理增益的理论值,证明了在特定噪声分布条件下的阵增益与常规波束形成的阵增益之间存在临界信噪比。同时对四阶累积量波束形成方法在分辨率、快拍数影响、误差等方面的性能进行了深入讨论。并结合实际数据,对四阶累积量的空间分辨率进行了验证,结果表明基于四阶累积量波束形成方法比常规波束形成方法具有更高的空间分辨率和背景干扰抑制能力。
     针对宽带探测系统的处理要求,文中结合分数阶Fourier变换将基于四阶累积量波束形成方法扩展到LFM信号的方位估计中,并进行了性能分析。同时,利用目标回波信号和混响在分数阶Fourier变换后的差异,对混响信号进行变换域下的滤波。文中对单LFM信号、亮点模型信号叠加实测混响的情况进行了仿真分析,结果表明分数阶Fourier变换可以有效地滤除混响干扰,进一步提高目标回波信号的信混比。以分数阶Fourier变换为纽带,文中还给出了一种结合波束形成和变换域抗混响的联合处理方法。
     最后利用主动声纳海上目标探测数据进行了文中方法的验证。文中分别给出了海上实验数据单脉冲下的目标回波空间谱和在特定角度下的数据走航匹配结果。并对实测混响的概率密度进行了分析和拟合,给出了实测混响背景下四阶累积量波束形成的理论处理增益。最后对主波束回波信号进行了分数阶Fourier变换域上的混响滤波处理,进一步提高了目标回波的信混比。以文中的信混比定义方式,定量的给出了在两种掠射角下的平均处理增益。
     论文针对主动声纳水下目标探测的需求,实现了小尺度基阵的窄波束探测。相关研究方法可以简化水声探测设备和信号处理复杂度,并可以广泛应用于其它类型的水下目标探测中。
Due to all kinds of complicated influences of sea environment, how to detect andrecognize underwater target is still one of the essentials in underwater acoustic signalprocessing. How to obtain target echo data with high SRR (Signal-to-Reverberation Ratio)(SNR:Signal-to-Noise Ratio) is the key issue to improve the ability of underwater targetsdetection and the accuracy of recognition in complex environments. Methods to suppressreverberation interference of active sonar and obtain target echo with high SRR data havebeen proposed in this paper, which are typical underwater mines detection problems.
     Firstly, array signal processing method, which is used to form narrow beams in spacedomain by small size arrays, realizes both target DOA (direction of arrival) estimation andreverberation suppression. Simultaneously, basing on the characteristic differences betweentarget echo and reverberation, a signal processing method is taken to filter reverberation.Adopting twice suppression of reverberation interference in both spatial domain andtransform domain, the purpose to improve the target echo SRR can be achieved.
     The differences on models and characteristics of three types of signals (the target echo,reverberation, noise) related to active sonar target detection are analyzed and summarized inthis paper. And a suppression scheme of reverberation interference is provided which is also atheoretical basis for the subsequent processing.
     In order to balance high spatial beamforming resolution and robust performance, thefourth-order cumulants which has the array aperture extension characteristics is used.Combined with minimum redundancy array structure, a fourth-order cumulants beamformingmethod based on minimum redundancy array is proposed. The method uses only a few arrayelements to achieve high spatial resolution, and reduces matrix complexity of data matrix ofthe fourth-order cumulants from the original M~2×M~2to M×(2M1). The theoreticalgain of fourth-order cumulants beamforming processing is calculated in this paper, whichproved that under some special noise distribution, there is a critical SNR between the gain offourth-order cumulants beamforming and that of conventional beamforming. At the same time,the performances of the fourth-order cumulants beamforming are fully discussed, includingresolution, snapshot influence, error performances. In order to verify the spatial resolution ofthe fourth-order cumulants beamforming, the experiment data from lake is processed, resultsof which proved the fourth-order cumulants beamforming method, which has higher spatialresolution and better background suppression ability, is better than the conventional beamforming method.
     To fulfill the requirements of broadband detection, the fourth-order cumulantsbeamforming combined with the fractional Fourier transform is extended to realize DOAestimation of LFM signal, and the performance of the method is also analyzed. At the sametime, based on the aggregation differences between target echo and reverberation afterfractional Fourier transform, the reverberation can be filtered in transform domain. The singleLFM signal, highlight model signal added with real reverberation signal are processed, andthe results showed that the reverberation interference can be filtered by the fractional Fouriertransform effectively, and the SRR of the target echo can be further raised. Taking fractionalFourier transform as a link, method combined target DOA estimation with anti-reverberationis given in this paper.
     The active sonar sea target detection data is dealt with to validate the characteristics ofthe proposed method finally. Both the target DOA estimation of single pulse and sailing matchresults in particular angle are presented in the paper. The probability density of realreverberation is analyzed and fitted. Moreover, under given reverberation background, thefourth-order cumulants beamforming processing gain is calculated.Then the fractional Fouriertransform domain reverberation filtering method is adopted for the main beam output signal.Based on the SRR definition in the paper, the averages of SRR processing gain under twograzing angles are obtained.
     According to target detection demands of underwater active sonar, a method by usingonly a small apture of array obtaining narrow beamwith is proposed. Related researches inthis paper can simplify the complexity of acoustic detection and signal processing, and can bewidely applied to other types of underwater targets detection.
引文
[1]刘伯胜,雷家煜.水声学原理.哈尔滨:哈尔滨工程大学出版社,1993:159.
    [2]赵太勇,冯顺山,董永香.水雷武器的现状及发展趋势.中北大学学报,2007,28(增刊):81-84.
    [3]田路,陈伏虎,钟铁城.反水雷技术的发展概况和声系统实现构想.声学与电子工程,2004(4):17-20.
    [4] J. Chatillon, A. E. Adams, M. A. Lawlor, M. E.Zakharia. SAMI:a low-frequencyprototype for mapping and imaging of the seabed by means of synthetic aperture. IEEE J. ofOceanic Engineering,1999,24(1):4-15.
    [5] Steven G.Shock, et a1. Buried object scanning sonar. IEEE Journal of OceanicEngineering,2001,26(4):677-689.
    [6] Kevin D, et a1. Bistatic synthetic aperture imaging of proud and buried targets from anAUV. IEEE Journal of Oceanic Engineering,2002,27(3):471-483.
    [7] Wachowski N, Azimi-Sadjadi M R. Buried underwater target classification usingfrequency subband coherence analysis. OCEANS2008:1-8.
    [8]李军,丛卫华,霍国正,郑一鸣,易杏甫.低频宽带合成孔径声纳实验研究新进展.水声物理与水声工程技术交流会.
    [9] David Boulinguez, et a1.3-D underwater object recognition. IEEE Journal of OceanicEngineering,2002,27(4):814-829.
    [10]刘朝晖,马国强.水下声自导武器目标识别技术综述.声学与电子工程,2004(3):25-30.
    [11] Yves Doisy, et al. Reverberation Suppression Using Wideband Doppler-Sensitive Pulses.IEEE Journal of Oceanic Engineering,2008,33(4):419-433.
    [12] P.R. Atkins, T.Collins, K.G. Foote. Transmit-Signal Design and Processing Strategies forSonar Target Phase Measurement. IEEE Journal of Selected Topics in Signal Processing,2007,1(1):91-433.
    [13] Kay S. Optimal signal design for detection of Gaussian point targets in stationaryGaussian clutter/reverberation. IEEE Journal of Selected Topics in SignalProcessing,2007,1(1):31-41.
    [14]赵申东,唐劲松,黄海宁,蔡志明.三维空时多波束方法在抗混响中的应用.声学学报,2008,33(2):124~130.
    [15] Baoguo Yang, Tan Tian, Dianlun Zhang. The Application of Incoherent CorrelationDetection Method in Stochastic Resonance Beam-forming. Proceedings of the2010IEEEInternational Conference on Information and Automation,2010:1887-1890.
    [16] I.P. Kirsteins, John Fay, and James Kelly. Suppressing Reverberation by MultipathSeparation for Improved Buried Object Detection. OCEANS2001:236-244.
    [17] Peter T. Gough and Michael P. Hayes. A simulation model of the pulse returns for ashort-range SAS. OCEANS2010:1-10.
    [18] Mio K, Chocheyras Y, Doisy Y. Space time adaptive processing for low frequency sonar.Oceans2000MTS/IEEE conference and exhibition.2000,2:1315-1319.
    [19]郭国强.基于时反处理的混响抑制技术研究.西北工业大学硕士论文,2007:19-71.
    [20] H.C. Song, S. Kim, W.S. Hodgkiss, ect. Experimental demonstration of adaptivereverberation nulling using a time reversal. J. Acoust. Soc. Am,2005,118(3):1318-1387.
    [21] Pan Xiang. Research on underwater acoustic signal enhancement based on time reversalprocessing. Chinese Journal of Sensors and Actuators,2006,19(3):847-850.
    [22] Cong F Y, Liang Y X, Shi X Z. Blind signal separion and reberberation cancelling withactive sonar data. Proceeding of the Eighth International Symposium on Signal Processingand its Application.2005:523-526.
    [23] Taehwan Kim, Jeonoghyun Parkb, Keunsung Bae. Feature Extraction of Active SonarData using Independent Component Analysis. The10thWestern Pacific Acoustic Conference.2009.
    [24] Li Xiukun, Wang Qiyong. Blind separability of reverberation and target echo based onspatial correlation.4th International Conference on Measuring Technology and MechatronicsAutomation (ICMTMA2012). Sanya, China,2012:538-543.
    [25] Steven Kay, John Salisbury. Improved active sonar detection using autoregressiveprewhiteners. J. Acoust. Soc. Am,1990,87(4):1603-1611.
    [26] V. Carmillet, P O. Amblard, G.Jourdain. Detection of phase or frequency modulatedsignal in reverberation noise. J. Acoust. Soc. Am,1999,105(6):3375-3389.
    [27]朱广平.沉底目标回波检测方法研究.哈尔滨工程大学硕士学位论文.2009:69-73.
    [28] Wang Ru-hang, Huang Jian-guo, Zhang Yu-jie. An Improved Prewhitening Method forLFM Reverberation in Shallow Sea Using Frequency Focusing Transformation.2ndInternational Conference on Signal Processing Systems.2010:422-425.
    [29]邓兵,陶然,齐林,刘峰.基于分数阶傅里叶变换的混响抑制方法研究.兵工学报,2005,26(6):761-765.
    [30]姜可宇,蔡志明.主动声纳中混响干扰的一种非线性抑制方法.信号处理,2007,23(2):235-238.
    [31] Paul C. Hines, Nancy Allen, Victor W. Young Aural. Classification for ActiveSonar.technical report.2008.
    [32] Vincent Myers, John Fawcett, Paul Hines, Victor Young. Reconstruction and fusion ofperceptual features for automatic classification of sonar echoes.OCEANS2008:1-7.
    [33] Rudy Rotili, Simone Cifani, Emanuele Principi. A robust Iterative Inverse Filteringapproach for Speech Dereverberation in presence of Disturbances. APCCAS2008:434-437.
    [34] DolPh C L. A Current distribution for broadside arrays which optimizes the relationshipbetween beam width and side-lobe level. Proceedings of the IRE,1946,34:335-348.
    [35] Capon J. High-resolution frequency-wave number spectrum analysis. Processing of theIEEE,1969,57(8):1408-1418.
    [36] Krolik J L, Swingler N. On the mean-square error performance of adaptive minimumvariance beamformers based on the sample covariance matrix. IEEE Trans. Signal Processing,1994,42(2):445-448.
    [37] Wax M, Anu Y. Performance analysis of the minimum variance beamforming in thepresence of steering vector errors. IEEE Trans. on Signal Processing,1996,44(4):938-947.
    [38] B.D. Carlson. Covariance matrix estimation errors and diagonal loading in adaptivearrays. IEEE Trans. On Aerospace and Elecronic Systems,1988,24(10):397-401.
    [39] O. Besson, F. Vincent. Performance analysis for a class of robust adaptive beamformers.IEEE International Conference on Acoustic, Speech and Signal Processing,2004:169-172.
    [40] A. Elnashar, S.M. Elnoubi, H.A. El-Mikati. Further study on robust adaptivebeamforming with optimum diagonal loading. IEEE Trans. on Antennas and Propagation,2006,45(1):3647-3658.
    [41] Tseng C Y. Griffiths L J. A unified approach to the design of linear constraints inminimum variance adaptive beamformers. IEEE Trans. On Antennas and Propagation,1992,40(12):1533-1542.
    [42] A.B. Gershman, UNickel, J.F.Bohme. Adaptive beamforming algorithms with robustnessagainst jammer motion. IEEE Transactions on signal processing,1997,45(4):1878-1885.
    [43] C.C.Lee, J.H.Lee. Robust adaptive array beamforming understeering vector errors. IEEETrans. on Antennas and Propagation,1997,45(1):168-175P.
    [44]程春悦,吕英华.非线性约束的自适应波束形成算法.北京邮电大学学报,2005,28(5):62-65.
    [45] K. Hugl, J. Laurila, E. Bonek. Downlink performance of adaptive antennas with nullboardening. IEEE49th Vehicle Technology Conference,1999:872-876.
    [46] Z. Xu, Y.Zakharov. Modified null broadening adaptive beamforming: constrainedoptimization approach. Electronics Letters,2007,43(3):145-146.
    [47] H.C. Song, W.A. Kuperman. W.S.Hodgkiss, et al. Null Broadening with snapshotdeficient covariance matrices in passive sonar. IEEE Journal of Oceanic Engineering,2003,28(2):250-261.
    [48]冯杰.稳健波束形成与高分辨方位估计技术研究.西北工业大学博士论文,2006:38-49.
    [49]刘凯.声纳波束形成鲁棒性及算法研究.哈尔滨工程大学博士论文,2011:28-43.
    [50] Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Trans. OnAntennas and Propagation,1986,34(3):276-280.
    [51] R. Roy, T. Kailath. ESPRIT-a subspace rotation approach to estimation of parameters ofcissoids in noise. IEEE Trans. on. ASSP,1986,34(10):1340-1342.
    [52] R. Roy, T. Kailath. ESPRIT-Estimation of signal parameters via rotational invariancetechniques, IEEE Trans. on. ASSP,1989,37(7):984-995.
    [53] Yoram Bresler, Albert Macovski. Exact Maximum Likelihood Parameter Estimation ofSuperimposed Exponential Signals in Noise, IEEE Trans on ASSP,1986,34(5):1081-1089.
    [54] P. Stoica, K. C. Maximum Likelihood Methods for Direction-of-Arrival Estimation,IEEE Trans on ASSP,1990,38(7):1132-1143.
    [55] Xu X L, Buckley K M. An analysis of beamspace source localization. IEEE Trans.Signal Processing,1993,41(1):501-504.
    [56] Xu G, Silverstein S D, Roy R H, Kailath T. Beamspace ESPRIT. IEEE Trans. SignalProcessing,1994,42(2):349-356.
    [57] Jansson M, Swindlehurst A L, Ottersten B. Weighted subspace fitting for general arrayerror models. IEEE Trans. Signal Processing,1998,46(9):2484-2498.
    [58] J M Mendel. Tutorial on higher-order statistics (spectra) in signal processing and systemtheory: theoretical results and some applications. Proceedings of the IEEE.1991,79(3):277-304.
    [59] Brooks D H, Nikias C L. The cross-bicepstrum: Definiton, properties, and application forsimultaneous reconstruction of three nonminimum phase signals. IEEE Trans. SignalProcessing,1993,41(7):2389-2404.
    [60] Carter G C. Time delay estimation for passive sonar signal processing. IEEE Trans.Acoustics,Speech, Signal Processing,1981,29(3):463-470.
    [61] Hinich M. J, Wilson G R. Detection of non-Gaussian signals in non-Gaussian noise usingbispectrum. IEEE Trans. Acoustics,Speech, Signal Processing,1990,38(7):1136-1131.
    [62] Chiang H, Nikias C L. The ESPRIT algorithm with higher-order statistics. Proc.Workshop on higher-order spectral analysis,1989:163-168.
    [63] Poral B, Friedlander B. Direction finding algorithms based on higher-order statistics.IEEE Trans. On signal processing,1991,39(9):2016-2023.
    [64] P. Tichavsky, A. Swami. Statistics characterization of sample fourth-order cumulants ofa noisy complex sinusoidal process. IEEE Transactions on signal processing,1995,43(7):1620-1629.
    [65]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法.清华大学出版社,2005:390-410.
    [66] Mithat C. Dogan. Applications of Cumulants to Array Processing-Part I: ApertureExtension and Array Calibration. IEEE Transactions on signal processing,1995,43(5):1200-1216.
    [67] Mithat C. Dogan. Applications of Cumulants to Array Processing-Part II:Non-GaussianNoise Suppression. IEEE. Transactions on signal processing,1995,43(7):1663-1676.
    [68]向前,林春生.累量域虚拟阵列二维波达方向估计算法.电子与信息学报,2005.27(2):229-331.
    [69] Pascal Chevalier. On the Virtual Array Concept for the Fourth-Order Direction FindingProblem, IEEE. Transactions on signal processing.2005,47(9):2592-2595.
    [70]武思军,张锦中,张曙.基于四阶累积量进行阵列扩展的算法研究.哈尔滨工程大学学报,2005,26(3):393-397.
    [71]刘学斌,韦岗,季飞.基于四阶累积量扩展孔径的线阵设计.电波科学学报,2006,21(1):126-130.
    [72]林刚,许家栋,樊寄松.对四阶累积量MUSIC算法的分析与应用.电波科学学报,2006,21(3):357-360.
    [73] Pascal Chevalier. High-Resolution Direction Finding From Higher Order Statistics: The2q-MUSIC Algorithm. IEEE. Transactions on signal processing,2006,54(8):2986-2996.
    [74]陈建,王树勋.基于高阶累积量虚拟阵列扩展的DOA估计.电子与信息学报,2007,29(5):1041-1044.
    [75]王良,宋志杰,杜纪燕.基于四阶累积量的被动测向声纳高分辨力算法研究.中国海洋大学学报,2007,37(2):211-214.
    [76] Wenjun Zeng, Xilin Li, Xianda Zhang. Direction-of-arrival Estimation Based on the JointDiagonalization Structure of Multiple Fourth-Order Cumulant Matrices. IEEE SignalProcessing Letters,2009,16(3):691-694.
    [77]顾晓东,邱志明,袁志勇.单矢量水听器ESPRIT波达方向估计算法.哈尔滨工程大学学报,2009,30(8):867-871.
    [78]韩勇,乔晓林,金铭等.基于高阶累积量的酉变换DOA估计算法.计算机仿真,2010,27(11):336-339.
    [79] Morse Philip M, Herman Feshbach. Methods of Theoretical Physics. McGraw-Hill BookCo,New York,1964.
    [80] P.C.Waterman. New formulation of acoustic scattering. J.Acoust.Soc.Am,1968,45(6),1417-1429.
    [81] R.D.miller, H.Huang, E.T.Moyer and H.Uberall. The analysis of the radiated andscatteringacoustic field from submerged shell structures using a modal finiteelement/boundary element formulation. Proc.1989ASME Winter Annual meeting, SanFrancisco, CA,10-15,DRC,1989.
    [82] T.W.Wu, W.L.Li and A.F.Seybert. An effcient boundary element algorithm formulti-frquency acoustical analysis. J. Acoust. Soc. Am,1993,94(1):447-452.
    [83] Shuozhong Wang. Finite-difference time-domain approach to acoustic scatteringproblems. J.Acoust. Soc. Am.,1996,99(4):1924-1931.
    [84] Flax, L., Dragonette, L.R., Uberall, H. Theory of Elastic Resonance Excitation by SoundScattering. J.Acoust.Soc.Am,1978,63(3):723-731.
    [85]范军,汤渭霖.覆盖粘弹性层的水中双层弹性球壳的回声特性.声学学报,2001,26(4):302-306.
    [86]汤渭霖.声纳目标回波的亮点模型.声学学报,1994,19(2):92-100.
    [87] P.Faure. Theoretical model of reverberation noise. J.Acoust.Soc.Amer.,1964,36(2):59-266.
    [88] B.B奥里雪夫斯基.海洋混响的统计特性.北京:科学出版社,1977:67-147.
    [89] David Middleton. A statistical theory of reverberation and similar first-order scatteredfields Part I: waveforms and the general process. IEEE transactions on informationtheory,1967,13(3):372-392.
    [90] R.J. Urick.水声原理.哈尔滨船舶工程学院出版社,1985,190-225.
    [91] A. P. Lyons, D. A. Abraham. Statistical characterization of high-frequencyshallow-water seafloor backscatter. J.Acoust.Soc.Amer,1999,106(3):1307-1315.
    [92] D. A. Abraham. Detection-threshold approximation for non-Gaussian backgrounds.IEEE J. OCEAN.Eng,2010,35(2):355-365.
    [93] A. P. Lyons and D. A. Abraham, S. F. Johnson. Modeling the effect of seafloor rippleson synthetic aperture sonar speckle statistics. IEEE J. OCEAN.Eng,2010,35(2):242-249.
    [94] Doulgas A. Abraham. Modelong non-rayleigh reverberation. OCEANS’97ConferenceHalifax, NS, Canada,1997:500-505.
    [95] Redner R A, Walker H F. Mixture densities, maximum likelihood, and the EM algorithm.SIAM Review,1984,26(2):195-202.
    [96] M Jordan, R Jacobs. Hierarchical mixtures of experts and the EM algorithm. NeuralComputation,1994,15(6):181-214.
    [97] Der Simonian R. Maximum likelihood estimation of a mixing distribution. Journal of theRoyal Statistical Society, Series C,1996,35(3):303-309.
    [98] D Blacknel, R J A Tough. Parameter estimation for the K-distribution based on [zlog(z)].IEEE Proc Radar Sonar Naving,2001,148(6):309-312.
    [99]张树京,张思东著.统计信号处理.北京:机械工业出版社,2003:1-21.
    [100] Carmillet V., Jourdain G. Wideband sonar detection in reverberation usingautoregressive models. OCEANS’96. MTS/IEEE.‘Prospects for the21st Century’.Conference Proceedings,1996:23-26.
    [101]吴国清.自适应分段技术在回波分析中的应用.应用声学,1985,4(4):23-31.
    [102] V. Carmillet, P. O. Amblard, G. Jourdain. Detection of phase-or frequency-modulatedsignals in reverberation noise. J. Acoust. Soc. Amer.,1999,105(6):3375-3389.
    [103]惠俊英编著.水下声信道.北京:国防工业出版社,1992:105-106.
    [104]王永良,陈辉,彭应宁等.空间谱估计理论与算法.北京:清华大学出版社,2005:359-365.
    [105] A. T. Moffet. Minimum-redundancy Linear Arrays. IEEE Tran. Atennas Propagation,MARCH,1968,16(2):172-175.
    [106] Christopher S. Ruf. Numerical Annealing of Low-Redundancy Linear Arrays. IEEEtransactions on antennas and propagation,1993,41(1):85-90.
    [107] Namias. The fractional order Fourier transform and its application to quantummechanics. J. Inst. Math. APPlication,1980(25):241-265.
    [108]李林.基于分数阶变换的干扰抑制技术.西南交通大学硕士学位论文,2003:57-75.
    [109] Folland G B, Nikias C L. A new positive time-frequency distribution. Proc. IEEEICASSP,1994:301-304.
    [110] Bernardo L M, Soates O D. Fractional Fourier transforms and imaging.J.Opt.Soc.Am.A,1994,11:2622-2626.
    [111] Ozakta H M, Aytur O. Fractional Fourier Domains. IEEE. Sinal Procssing,1995,Vol46:119-124.
    [112]李秀坤,李婷婷,尹世梅.应用FRFT的矢量水听器阵方位估计.哈尔滨工程大学学报,2010,31(6):708-713.
    [113] Haldum M.Ozaktas, Orhan Arikan, Alper Kutay, etc. Digital Computation of theFractional Fourier Transform. IEEE Transactions on Signal Processing,1996,44(9):2141-2150.
    [114]邓兵,齐林,王越.分数阶Fourier变换原理与应用.北京:清华大学出版社,2004:31-35.
    [115]齐林,陶然,周思永,王越.基于分数阶傅里叶变换的线性调频信号的自适应时频滤波.兵工学报,2003,24(4):499-503.
    [116] H.M.Ozaktas, O.Arikan, M.A.Kutay, G.Bozdagt. Digital Computation of the FractionalFourier Transform. IEEE Trans.on Signal Processing,1996,44(9):2141-2149.
    [117]陈萍.分数阶Fourier变换在水雷目标特征提取中的应用.哈尔滨工程大学硕士学位论文,2007:10-19.
    [118]张恒,胡文龙,丁赤飚.一种自适应学习的混合高斯模型时频目标检测算法.中国图像图形学报,2010,15(4):631-636.
    [119]金广智,石林锁,白向峰,滕春明.基于混合高斯模型的新型目标检测系统.计算机应用,2011,31(12):3360-3365.
    [120]李秀坤,李婷婷,夏峙.水下目标特性特征提取及其融合.哈尔滨工程大学学报,2010,31(7):903-908.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700