用户名: 密码: 验证码:
声矢量传感器稳健空间谱估计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在传统的声矢量传感器空间谱估计方法中,常常假定具备理想的阵列孔径、阵列流型模型和接收数据协方差矩阵估计模型条件,然而在实际应用中,上述假设条件往往转化为模型失配的非理想条件。本文根据声矢量传感器技术的最新发展趋势,结合实际的应用环境,针对阵列孔径受限、阵列流型模型失配、接收数据协方差矩阵估计模型失配等非理想条件下矢量阵稳健空间谱估计的热点和难点,依据国内外研究现状,对声矢量传感器稳健空间谱估计问题开展了研究,主要研究内容包括:
     1.对于声矢量传感器阵列而言,其阵列孔径越大分辨能力就会越强。然而实际应用中,受安装平台、经济性、安全性等条件制约往往只能使用小孔径阵列。针对阵列孔径受限条件下的声矢量传感器空间谱估计问题,提出了一种声矢量传感器阵列虚拟扩展技术,详细探讨了虚拟扩展前后矢量阵列波束宽度、主旁瓣特性、处理增益和噪声特性的变化。
     为提高小孔径声矢量传感器阵列空间谱估计性能,提出一种基于声矢量传感器的时空变换信号处理方法。该方法考虑声矢量传感器的结构特性,利用各向同性声场中信号与噪声相关性差异和时空相关半径的不同,将声矢量传感器各通道时域采样转化成空域快拍,进而将小孔径声矢量传感器阵转化成多阵元矢量阵列。方法对于非相干宽/窄带信号均具有鲁棒性,依靠单个声矢量传感器即可完成对双目标的分辨。理论分析、仿真试验和湖上试验及消声水池试验结果验证了方法的有效性。
     2.对于众多声矢量传感器阵列空间谱估计算法而言,常常假定精确已知阵列流型,即阵列的阵元位置已知,通道幅度相位具有较好的一致性,阵元不存在矢量姿态误差等。现实应用中,由于安装位置、制作工艺、水文条件等的影响,上述理想条件往往不复存在,进而使得大部分空间谱估计算法性能受到严重影响。针对这样的问题,建立了声矢量传感器阵元位置误差、通道幅相响应误差和矢量姿态误差的数学模型,分析了上述误差对于矢量空间谱估计的影响。对于存在阵元位置误差或通道幅相响应误差的情况,提出一种有源误差校正方法。利用三个频率已知的辅助信源分时发送校正信号,通过求解阵元间接收数据的方程对上述误差进行校正。对于存在矢量姿态误差的情况,提出了一种基于正交加权能量检测的误差校正方法。通过对声矢量传感器的振速两通道进行正交加权,利用信噪能量差异完成误差校正。仿真结果验证了上述算法的有效性。
     3.声矢量传感器阵列信号处理应用环境中,往往存在对于高速运动目标或瞬态信号方位估计的需求。对于上述目标而言,在一个信号处理周期内,其可获得的空间采样快拍数往往是受限的,这将严重影响对于接收数据协方差矩阵的估计,进而影响空间谱估计性能。针对由高速运动目标或瞬态信号导致的小快拍(单快拍)条件下的空间谱估计问题,提出了一种基于压缩感知技术的时空联合滤波空间谱估计方法。方法具有较高的估计精度和较强的鲁棒性。仿真试验及湖上试验结果验证了方法的有效性。
In the conventional spatial spectrum estimation methods field for acoustic vector sensor,it is often considered that the sonar system has an ideal model of array aperture, arraymanifold model and receiving data covariance matrix for estimation. In practical applications,however, the above assumptions are often converted to model mismatch of non-idealconditions. According to the latest trends of acoustic vector sensor technology combined withthe actual application environment, the dissertation focuses on the robust space spectrumestimation problem under the limited array aperture, array manifold model mismatch andreceiving data covariance matrix estimation model mismatch non-ideal conditions with thenewest research results home and abroad. The key research results in this dissertation include:
     1. The resolving ability of an acoustic vector sensor array becomes stronger when theaperture of the array is broader. However, due to the consideration of the mounting platform,economy, and security in the practical application, a small aperture array is often adopted. Tothe problem of acoustic vector sensor array spatial spectrum estimation with a limitedaperture array, an acoustic vector sensor array virtual extension technology is proposed.Discussion in detail shows the changes of the array beam width, main sidelobe ratio,arrayprocessing gain, and the noise characteristics before and after a virtual extension of the vectorarray.
     To improve the performance of small aperture acoustic vector sensor array spatialspectrum, a novel time-space transform signal processing approach based on acoustic vectorsensor is proposed. The method takes the structural characteristics of the acoustic vectorsensor into account and uses the difference of space-time correlation radius of signal andnoise in the isotropic acoustic field, then putting each acoustic vector sensor channel timedomain samples into the snapshots in spatial field, in which the small aperture acoustic vectorsensor array is changed into an array of multiple vector elements. When using this newmethod, noncoherent wide/narrow-band signal is robust for spatial spectrum estimation. TheDOAs of dual objectives can be obtained relying on only a single acoustic vector sensor.Theoretical analysis, simulation and test results in lake and anechoic tank verify theeffectiveness of the method.
     2. For many acoustic vector sensor array space spectrum estimation algorithms, arraymanifold is often considered as priori knowledge, which includes a known array unit position,consistency of channel amplitude-phase response and calibrated units with no vector attitude error. However, the ideal conditions above do not exist due to the installation location,craftsmanship and hydrological conditions, which make performances of most of the spatialspectrum estimation algorithms affected severely. For the problems mentioned above,acoustic vector sensor array position error, amplitude and phase response error and vectorattitude error models are founded. Analysis of the impact of the error above to vector spatialspectrum estimation is given out. For the presence of sensor position errors or channelamplitude-phase response errors, an active error calibration method is proposed. The methoduses three auxiliary signal sources with known frequency to send calibration signals in timesequence. The error calibration is done by solving the equation of the received data in thearray element. For the presence of vector attitude error, an error calibration algorithm basedon orthogonal weighted energy detection is proposed. The algorithm weights on the twochannels of velocity, and thus uses the energy difference of signal and noise to complete errorcalibration. The simulation results verify the validity of the above algorithms.
     3. In acoustic vector sensor array signal processing applications environment, a demandin estimating the azimuth of high-speed moving targets or transient signal is existed. For theabove-mentioned objectives, the spatial sample snapshots number is often limited in onesignal processing time cycle, which will seriously affect the estimation for receiving datacovariance matrix, thereby affecting the spatial spectrum estimation performance. To solvethe problem of spatial spectrum estimation with small snapshots (single snapshot) caused byhigh-speed moving targets or transient signal, a compressed sensing technology based jointspatial and temporal filtering spatial spectrum estimation method is proposed. The method hashigh estimation accuracy and a strong robust ability. The simulation and lake test resultsverify the effectiveness of the method.
引文
[1]王永良,陈辉,彭应宁等.空间谱估计理论与算法.清华大学出版社.2004
    [2]陈新华.矢量传感器阵列信号处理.博士学位论文,哈尔滨:哈尔滨工程大学,2004
    [3]王德俊.矢量声场与矢量信号处理理论研究.博士学位论文,哈尔滨:哈尔滨工程大学,2005
    [4]孙贵青,李启虎.声矢量传感器信号处理.声学学报,2004,29(6):491-498
    [5] Leslie C B et al. Hydrophone for measuring particle velocity. J. Acoust. Soc. Am.,1956,28(4):711-715
    [6]李启虎.双线列阵左右舷目标分辨性能的初步分析.声学学报,2006,31(5):385-388
    [7]孙贵青,张春华,黄海宁等.声矢量传感器线阵的左右舷分辨.哈尔滨工程大学学报,2010,31(7):848-855
    [8]孙贵青,李启虎.声矢量传感器研究进展.声学学报,2004,29(6):481-490
    [9]刘伯胜,雷家煜.水声学原理.哈尔滨工程大学出版社.1993
    [10]杨益新.声呐波束形成与波束域高分辨方位估计技术研究.博士学位论文,西安:西北工业大学,2002
    [11] Daniel P P, John M C, and Miguel A L. Joint Tx-Rx Beamforming Design forMulticarrier MIMO Channels: A Unified Framework for Convex Optimization. IEEETrans. On SP,2003,51(9):2381-2401
    [12] Barry D V, Kevin M B. Beamforming: A Versatile Approach to Spatial Filtering. IEEEASSP Magizine,1988,5(2):4-24
    [13]杨益新.任意结构阵列宽带恒定束宽波束形成新方法.声学学报,2001,26(1):55-58
    [14] Godara L C. Application of Antenna Arrays to Mobile Communications, Part II:Beam-Forming and Direction-of-Arrival Considerations. Proceedings of IEEE,199785(8):1195-1245
    [15] Weiss A J, Friendlander B. Eigrnstructure methods for direction finding with sensor gainand phase uncertainties. Circuits system and Signal Processing,1990,119(3):272-300
    [16] B Friedlander, A J Weiss. Eigenstructure methods for direction finding with sensor gainand phase uncertainty. Proc. IEEE ICASSP,1988,2681-2684
    [17] Chun W J, Cadzow. Direction finding with sensor gain, phase and location uncertainty,Proc. ICASSP,1993
    [18] Dolph C L. A current distribution for broadside arrays which optimizes the relationshipbetween baem width and side-lobe level. Proc.IRE,1946,34(6):335-348
    [19] Applebaum S P. Adaptive arrays. IEEE Trans. On AP,1976,24(5):585-598
    [20] Monzingo R, Miller T. Introduction to Adaptive Arrays. New York: Wiley,1980.
    [21] Frost O L. An algorithm for linearly constrained adaptive array processing. Proc IEEE,1972,60(8):926-935
    [22] Hudson J E. Adaptive Array Principles. London: Peter peregrines,1981.
    [23] Cox H, Zeskind R M, Owen M M. Robust adaptive beamforming. IEEE Trans. OnASSP.,1987,35(10):1365-1376
    [24] Carlson B D. Covariance-matrix estimation errors and diagonal loading in adaptivearrays. IEEE Trans. On AES.,1988,24(4):397-401
    [25] Cox H, Zeskind R M, Kooji T. Practical supergain. IEEE Trans. On ASSP.,1986,34(3):393-398
    [26] Yan S F, Ma Y L. Robust supergain beamforming for circular array via second-ordercone programming. Applied Acoustics,2005,66(9):1018-1032
    [27] Chang L, Yeh C C. Performance of DMI and eigenspace-based beamformers. IEEETrans. on AP,1992,40(11):1336-1347
    [28] Youn W S, Un C K. Robust Adaptive Beamforming Based on the EigenstructureMethod. IEEE Trans. on SP.,1994,42(6):1543-1547
    [29] Yu J L, Yeh C C. Generalized eigenspace-based beamformers. IEEE Trans. on SP.,1995,43(11):2453-2461
    [30] Lee C C, Lee J H. Robust adaptive array beamforming under steering vector errors.IEEE Trans. on AP.,1997,45(1):168-175
    [31] Taylor T T. Design of line-source antennas for narrow beamwidth and low side lobes.IRE Trans. on AP.,1955.3(1):16-28
    [32] Elliott R S. Design of line-source antennas for sum patterns with sidelobes of inviduallyarbitrary heights. IEEE Trans. on AP.,1976,24(1):76-83
    [33] Olen C A, Compton R T. A numerical pattern synthesis algorithm for arrays. IEEE Trans.on AP.,1990,38(10):1666-1676
    [34]马远良.任意结构形状传感器阵方向图的最佳化.中国造船,1984,87(4):78-85
    [35] Zhou P Y, Ingram M A, Anderson P D. Synthesis of minimax sidelobe for arbitrayarrays. IEEE Trans. on AP.,1998,46(11):1759-1760
    [36] Lebret H, Boyd S. Antenna array pattern synthesis via convex optimization. IEEE Trans.on SP.,1997,45(3):526-532
    [37] Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge UniversityPress,2004
    [38] Yan S F, Ma Y L, Sun C. Optimal beamforming for arbitrary arrays using second-ordercone programming. Chinese Journal of Acoustic,2005,24(1):1-9
    [39] Krim H, Viberg M. Two decades of array signal processing research. IEEE SignalProcessing Magazine,1996,13(4),67-94
    [40] Kay S M, Marple S L. Spectrum analysis-a modern perspective. Proc. of the IEEE,1981
    [41] Burg J P. Maximum entropy spectral analysis. Proc. of the37thmeeting of the AnnaualInt. SEG Meeting, Oklahoma City, OK,1967
    [42] Capon J. High-resolution frequency-wavenumber spectrum analysis. Proc. of IEEE,1969,57(8):1408-1418
    [43] Simon H. Adaptive filter theory. Prentice-Hall,1996,241-274
    [44] Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Trans.,1986, AP-34(3):276-280
    [45] Barabell A J. Improving the resolution performance of eigenstructure-baseddirection-finding algorithms. IS=CASSP,1983,336-339
    [46] Zoltowski M, Kautz G M, Silverstein S D. Simultaneous sector processing viaRoot-MUSIC for large sensor array. In Proc fifth ASSP workshop spectrum esitm.Modeling,1990,317-321
    [47] Rao B D, Hari K V S. Performance analysis of Root-MUSIC. IEEE Trans. On ASSP,1989,37(12):1939-1949
    [48] Silverstein S D, Zoltowski M D. The mathematical basis for element and fourier beamspace MUSIC and Root-MUSIC algorithms. Digital signal processing,1991,1(4),1-15
    [49] Krim H, Forster P, Proakis J G. Operator approach to performance analysis ofRoot-MUSIC and root mim-norm. IEEE Trans. on SP,1992,40(7):1687-1696
    [50] Shan T J, Wax M, Kailath T. Adaptive beamforming for coherent signals andinterference. IEEE Trans. On ASSP,1985,33(3):527-536
    [51] Williams R T, Prasad S, Mahalanbis S K, Sibul L H. An inproved spatial smoothingtechnique for bearing estimation in a multipath environment. IEEE Trans. On ASSP,1988,36(4):425-432
    [52] Rao B D, Hari K V S. On spatial smoothing and weighted subspace methods. In Proc.24thAsilomar Conf. Signals, Syst., Comput., Nov.1990,936-940
    [53] Di A. Multiple sources location-a matrix decomposition approach. IEEE Trans. ASSP,1985,33(4):1086-1091
    [54] Di A, Tain L. Matrix decomposition and multiple sources location. Proc. IEEE ICASSP,1984,33.4.1-33.4.4
    [55] Cadzow J A, Kim Y S, Shiue D C. General direction-of-arrival estimation: a signalsubspace approach. IEEE Trans. on AES,1989,25(1),31-46
    [56] Cadzow J A, Kim Y S, Shiue D C, et.al. Resolution of coherent signals using a lineararray. Proc. IEEE ICASSP,1987,1597-1600
    [57]高世伟,保铮.利用数据矩阵分解实现对空间相干源的超分辨处理.通信学报,1988,9(1):4-13
    [58] Wang H, Kave H M. On the performance of signal-subspace processing-Part2:coherent wide-band systems. IEEE Trans. on ASSP,1987,35(11):1583-1591
    [59] Chen Y M, Lee J H, Yeh C C. Bearing estimation without calibration for randomlyperturbed arrays. IEEE Trans. on SP,39(1):194-197
    [60] Park H R, Krim Y S. A solution to the narrow-band coherency problem in multiplesource location. IEEE Trans. on SP,1993,41(1):473-476
    [61] Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariancetechniques. IEEE Trans. on ASSP,1989,37(7):984-995
    [62] Kung S Y, Arun K S, Rao D V B. State space and SVD based approximation methodsfor the harmonic retrieval problem. J. Opt. Soc. Amer.,1983,73(12):1799-1811
    [63] Roy R, Kailath T. ESPRIT-a subspace rotation approach to estimation of parameters ofcissoids in noise. IEEE Trans. on ASSP,1986,34(10):1340-1342
    [64] Boyer G L. Instrumentation for measuring underwater acoustic intensity. Journal of theAcoustic society of America,1960,32(11):1519-1519
    [65] A Nehorai and E Paldi. Acoustic vector sensor processing. In Proc.26th Asilomar Conf.Signals. Syst. Comput., Pacific Grove, CA,1992,192-198.
    [66] A Nehorai and E Paldi. Performance analysis of two direction estimation algorithmsusing an acoustic vector sensor, In Proc.27th Asilomar Conf.Signals, Syst. Comput.,Pacific Grove, CA,1993,360-363.
    [67] A Nehorai and E Paldi. Acoustic vector sensor processing. IEEE Transactions on SignalProcessing.1994,42(9):2481-2491.
    [68] A Nehorai and E Paldi. Vector sensor array processing for electromagnetic sourcelocalization. IEEE Trans. Signal Processing,1994,4(22):376-398.
    [69] M Hawkes and A Nehorai. Hull-mounted acoustic vector-sensor processing. In Proc.29th Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, Oct.1995,1046-1050
    [70] M Hawkes and A Nehorai. Surface-mounted acoustic vector-sensor array processing. InProc. Int. Conf. Acoust., Speech, Signal Processing, GA,1996,3169-3172
    [71] M Hawkes and A Nehorai. Acoustic vector-sensor beamforming and Capon directionestimation. IEEE Transactions on Signal Processing,1998,46(9):2291-2304
    [72] M Hawkes and A Nehorai. Effects of sensor placement on acoustic vector-sensor arrayperformance. IEEE Journal of Oceanic Engineering,1999,24(1):33-40
    [73] M Hawkes and A Nehorai. Distributed processing for3-D localization using acousticvector sensors on the seabed or battlefield. In Proc. of the Adaptive Sensor ArrayProcessing(ASAP) Workshop, Lexington, MA,2000
    [74] M Hawkes and A Nehorai. Acoustic vector-sensor correlations in ambient noise. IEEEJournal of Oceanic Engineering,2001,26(3):337-347
    [75] M Hawkes and A Nehorai. Wideband source localization using a distributed acousticvector-sensor array. IEEE Transactions on Signal Processing,2003,51(6):1479-1491
    [76] K T Wong and M D Zoltowski. Orthogonal velocity-hydrophone esprit for sonar sourcelocalization. IEEE OCEANS96MTS Conference Proceedings,1996,3:1307-1312
    [77] K T Wong and M D Zoltowski. Esprit-based extended-aperture source localization usingvelocity-hydrophones. IEEE OCEANS96MTS Conference Proceedings,1996,3:1427-1432
    [78] K T Wong and M D Zoltowski. Extended-aperture underwater acoustic multisourceazimuth/elevation direction-finding using uniformly but sparsely spaced vectorhydrophones. IEEE Journal of Oceanic Engineering,1997,22(4):659-672
    [79] K T Wong and M D Zoltowski. Closed-form underwater acoustic direction-finding witharbitrarily spaced vector hydrophones at unknown locations. IEEE Journal of OceanicEngineering,1997,22(3):566-575
    [80] K T Wong and M D Zoltowski. Root-music-based azimuth/elevation angle-of-arrivalestimation with uniformly spaced but arbitrarily oriented velocity hydrophones. IEEETransactions on Signal Processing,1999,47(12):3250-3260
    [81] K T Wong and M D Zoltowski. Self-initiating music-based direction-finding inunderwater acoustic particle velocity-field beamspace. IEEE Journal of OceanicEngineering,2000,25(2):262-273
    [82]杨德森等.矢量水听器湖试报告.中国国防科学技术报告,哈尔滨工程大学水声研究所,1998
    [83]杨德森等.矢量水听器海试报告.中国国防科学技术报告,哈尔滨工程大学水声研究所,2000
    [84]惠俊英,刘宏,余华兵等.声压振速联合信息处理及其物理基础初探.声学学报,2000,52(4):303-307
    [85]惠俊英,李春旭,梁国龙等.声压和振速联合信号处理抗相干干扰.声学学报,2000,25(5):389-394
    [86]生雪莉,惠俊英,梁国龙.矢量反转镜时空滤波技术研究.声学学报,2005,30(3):271-278
    [87]生雪莉.矢量反转镜时空滤波技术及其在水声中的应用.博士学位论文,哈尔滨:哈尔滨工程大学,2005
    [88]乔刚.基于矢量传感器的水声通信技术研究.博士学位论文,哈尔滨:哈尔滨工程大学,2004
    [89]陈欢,杨德森,张揽月等.基于遗传算法的声矢量阵虚拟阵元波束形成.信号处理,2009,25(10):1499-1501
    [90]黄金城.虚拟阵列扩展研究.硕士学位论文,哈尔滨:哈尔滨工程大学,2010
    [91]胡鹏.虚拟阵元波束形成方法研究.硕士学位论文,西安:西北工业大学,2006
    [92]孙颖.基于矢量水听器的虚拟阵元波束形成研究.硕士学位论文,哈尔滨:哈尔滨工程大学,2006
    [93]孙进才,朱维杰等.信号相位匹配原理及其应用.西北工业大学出版社.2005
    [94]梁国龙,张锴,范展等.单矢量传感器MUSIC算法的DOA估计及性能评价.哈尔滨工程大学学报,2012,33(1):30-36
    [95]姚直象,惠俊英,殷敬伟等.基于单矢量水听器四种方位估计方法.海洋工程,2006,24(1):122-127
    [96]岳剑平,王德俊,惠俊英等.单矢量传感器的互谱估计与方位估计.哈尔滨工程大学学报,2004,25(3):299-304
    [97]江磊.小尺度阵信号处理技术研究.博士学位论文,哈尔滨:哈尔滨工程大学,2007
    [98] Y Rockah, P M Schultheiss. Localization performance of array subject to phase errors,IEEE Trans. On AES,1988,24(4):402-409
    [99] Y Rockah, P M Schultheiss. Array shape calibration using sources in unknown location,Part1: Far-field sources, IEEE Trans. On ASSP,1987,35:286-299
    [100] Y Rockah, P M Schultheiss. Array shape calibration using sources in unknown location,Part2: Near-field sources and estimator implementation, IEEE Trans. On ASSP,1987,35:724-735.
    [101] B Friedlander, A J Weiss. Eigenstructure methods for direction finding with sensor gainand phase uncertainty. Proc. IEEE ICASSP,1988,2681-2684
    [102] A J Weiss, B Friedlander. Array shape calibration using eigenstructure methods. SP,1991,22(3):251-258
    [103]王布宏,王永良,陈辉等.方位依赖阵元幅相误差校正的辅助阵元法.中国科学E辑信息科学,2004,34(8):906-918
    [104] M Wylie, S H Roy. Joint DOA estimation and phase calibration of linear equispace array.IEEE Trans On SP,1994,42(4):973-976
    [105] V C Soon et al. A subspace methed for estimating sensor gain and phases. IEEE TransOn SP,1994,42(4):973-976
    [106] Brain P. Flanagan. Self Calibration of Antenna Arrays with Large Perturbation Errors.Virginia: George Mason University,2000
    [107]吕钱浩.矢量传感器阵列技术研究.博士学位论文,哈尔滨:哈尔滨工程大学,2004
    [108] J P Kitchens. Acoustic vector-sensor array performance. Massachusetts Institute ofTechnology,2008
    [109] B R Rapids. Processing of vector fields in underwater waveguides. In Proc. of the151stMeeting of the Acoustical Society of America, Providence, RI,2006
    [110] Malcolm Hawkes. Issues in Acoustic Vector-Sensor Processing. Connecticut: YaleUniversity,2000
    [111]程彬彬,杨士莪.基于二维压差式矢量水听器源估计误差分析.西北工业大学学报,2006,42(6):800-803
    [112]时胜国,杨德森.矢量水听器的源定向理论及其定向误差分析.西北工业大学学报,2006,42(6):800-803
    [113] Sarkar T K, Koh J. A pragmatic approach to adaptive antennas. IEEE AntennasPropagation Magazine,2000,42(2):39-55
    [114] Sarkar T K, Wang H, Park S, et al. A deterministic least-sequares approach tospace-time adaptive processing (STAP). IEEE Trans on Antennas and Propagation,2001,49(1):91-103
    [115] Choi W, Sarkar T K. Phase-only adaptive processing based on a direct data domain leastsquares approach using the conjugate gradient method. IEEE Trans on Antennas andPropagation,2004,52(12):3265-3272
    [116] Kim K,Sarkar T K, Hong W,et al. Direction of arrival estimation based on temporal andspatial processing using a direct data domain (D3) approach. IEEE Trans on Antennasand Propagation,2004,52(2):533-541
    [117]孙珂,张颢,李刚等.基于稀疏恢复的直接数据域STAP算法.清华大学学报(自然科学版),2011,51(7):972-976
    [118] D L Donoho. Compressive Sensing. IEEE Trans. Inform Theory,2006,52(4):1289-1306
    [119] E J Candes, M B Wakin. An introduction to compressive sampling. IEEE SignalProcessing Magazine,2008, March:21-30
    [120] E J Candes, J Romberg, T Tao. Robust uncertainty principles: Exact signalreconstruction from highly incomplete frequency information. IEEE Trans. Inform.Theory,2006,52(2):489-509
    [121] E J Candes, T Tao. Near optimal signal recovery from random projections: Universalencoding strategies?. IEEE Trans. Inform. Theory,2006,52(12):5406-5425
    [122] D L Donoho, X Huo. Uncertainty principles and ideal atomic decomposition. IEEETrans. Inform. Theory,2001,47(7):2845-2862
    [123] E J Candes, J Roberg. Sparsity and incoherence in compressive sampling. Inverse Prob.,2007,23(3):969-985
    [124] E J Candes, T Tao. Decoding by linear programming. IEEE Trans. Inform. Theory,2005,51(12):4203-4215
    [125] E J Candes, J Romberg, T Tao. Stable signal recovery from incomplete and inaccuratemeasurements. Comm. Pure Appl. Math.,2006,59(8):1207-1223
    [126] Y Tsaig, D L Donoho. Extension of compressed sensing. Signal Process.,2006,86(3):549-571
    [127] R G Baraniuk. Compressive Sensing. IEEE Signal Processing Mag.,2007,24(4):118-120
    [128] Shihao Ji, Ya Xue, Lawrence Carin. Bayesian Compressive Sensing. IEEE Trans. SignalProc.,2008,56(6):2346-2356
    [129]贺亚鹏,李洪涛,王克让等.基于压缩感知的高分辨DOA估计.宇航学报,2011,32(6):1344-1349
    [130]刘寅,吴顺君,吴明宇等.基于空域稀疏性的宽带DOA估计.航空学报,2012,33,1-10
    [131]付金山.基于稀疏分解理论的声矢量阵信号处理.博士学位论文,哈尔滨:哈尔滨工程大学,2012
    [132]邓军.基于凸优化的压缩感知信号恢复算法研究.硕士学位论文,哈尔滨:哈尔滨工业大学,2011
    [133]常明.基于压缩感知理论的窄带信号参数估计.硕士学位论文,成都:西南交通大学,2007
    [134]林波.基于压缩感知的辐射源DOA估计.硕士学位论文,长沙:国防科学技术大学,2010
    [135]赵臣龙.基于压缩感知理论的信号DOA估计.硕士学位论文,长春:吉林大学,2012
    [136]惠俊英,惠娟.矢量声信号处理基础.国防工业出版社,2009
    [137]陈洪娟.矢量传感器.哈尔滨工程大学出版社,2006
    [138]何祚镛,赵玉芳.声学理论基础.国防工业出版社,1981
    [139] Hawkes M et al. Acoustic vector-sensor beamforming and Capon direction estimation.IEEE Trans. on Signal Processing,1998,46(9):2291-2304
    [140]张揽月,杨德森.基于MUSIC算法的矢量水听器阵源方位估计.哈尔滨工程大学学报,2004,25(1):30-33
    [141] Gershman A B. Direction finding using beamspace root estimator banks. IEEE Trans onSignal Processing,1998,46(11):3131-3135
    [142] Wang Yongliang, Chen Hui, Wan Shanhu. An effective DOA method via virtual arraytransformation. Science in China,2001,44(1):75-82
    [143]叶中付.基于四阶累积量的约束最小冗余线阵的ESPRIT波达方向估计方法.信号处理,1997,31(1):28-35
    [144]梁国龙,马巍,范展等.水下声传感器阵列虚拟扩展技术研究.哈尔滨工程大学学报,2012,33(10):1265-1270
    [145] Schmidt R O. Multilinear array manifold interpolation. IEEE Trans. on SP.,1992,40(4):857-866
    [146] Pesavento M, Gershman A B, Luo Z Q. A robust technique for array interpolation usingsecond-order cone programming.11th IEEE Signal Processing Workshop on StatisticalSignal Processing, Singapore,2001
    [147]王静,黄建国.水下小孔径阵列自适应匹配滤波检测方法.电子与信息学报,2011,33(6):1385-1389
    [148]姚直象.单矢量水听器信号处理研究.硕士学位论文,哈尔滨:哈尔滨工程大学,2005
    [149]陈新华.矢量阵信号处理技术研究.博士学位论文,哈尔滨:哈尔滨工程大学,2004
    [150]陈新华,蔡平,惠俊英等.声矢量阵指向性.声学学报,2003,28(2):141-144
    [151]苏卫民,顾红,倪晋麟等.通道幅相误差条件下MUSIC空域谱的统计性能.电子学报,2000,28(6):105-107
    [152]刘凯,梁国龙,张光普等.初探阵列误差对矢量阵波束形成系统的影响.系统仿真学报,2012,24(4):848-853
    [153]刘凯,梁国龙,嵇建飞等.随机阵列误差影响下的声矢量阵噪声特性和阵增益.哈尔滨工程大学学报,2011,32(5):624-631
    [154] Weiss A J, Friedlander B. Manifold interpolation for diversely polarized arrays. IEEEProceedings-Radar, Sonar Navig,1994,141(1):19-24
    [155] Paulraj A, Kailath T. Direction of arrival estimation by eigenstructure methods withunknown sensor gain and phase. Proc. ICASSP’85,640-643
    [156]毛健,郭振民.高分辨阵列测向的最小二乘自校正算法.声学与电子工程,1995(4):1-7
    [157]郭振民,毛健.一种高精度阵列测向的自校正算法.扬州工学院学报,1996,8(1):11-16
    [158]梁国龙,张锴,吴文峰等.基于子空间拟合的声矢量阵阵型校正算法及DOA估计.兵工学报,2012,33(9):1112-1117
    [159]秦洪峰,黄建国,张群飞.基于子空间类法的阵列幅相误差校正方法.计算机工程与应用,2011,19(1):55-57
    [160] Friedlander B, Weiss A J. Direction finding in the presence of mutual coupling. IEEETrans. on AP.,1991,39(3):273-284
    [161] See C M, Poh B K. Parametric sensor array calibration using measured steering vectorsof uncertain locations. IEEE Trans. on SP.,1989,47(4):1133-1137
    [162] Rochah Y, Schuitheiss P M. Array shape calibration using sources in unknown locationspart1: far field sources. IEEE Trans. on ASSP.,1987,35(3):286-299
    [163] Rochah Y, Schuitheiss P M. Array shape calibration using sources in unknown locationspart2: near field sources and estimator implementation. IEEE Trans. on ASSP.,1987,35(6):724-735
    [164]杨德森,陈欢,时胜国.声压基阵误差单辅助矢量水听器快速校准方法.声学技术,2011,30(1):51-55
    [165]贾永康,保铮,吴洹.一种阵列天线阵元位置、幅度及相位误差的有源校正方法.1996,24(3):47-52
    [166]王德俊.矢量声场与矢量信号处理理论研究.博士学位论文,哈尔滨:哈尔滨工程大学,2004
    [167] R.J. Vaccaro, B.F. Harrison. Optimal matrix-filter design. IEEE Trans. on SignalProcessing,1996,44(3):705-709
    [168] Z. Zhu, S. Wang, H. Leung, et al. Matrix filter design using semi-infinite programmingwith application to DOA estimation. IEEE Trans. on Signal Processing,2000,48(1):267-271
    [169] A. Hassanien, S.A. Elkader, A.B. Gershman et al. Convex optimization based beam-space preprocessing with improved robustness against out-of-sector sources, IEEETrans. on Signal Processing,2006,54(5):1587-1595
    [170] A. Hassanien, S.A. Vorobyovy. New results on robust adaptive beamspace prepro-cessing. IEEE Sensor Array and Multichannel Signal Processing Workshop,2008:315-319
    [171] A. Hassanien, S.A. Vorobyovy. A robust adaptive dimension reduction technique withapplication to array processing. IEEE Signal Processing Letters,2009,16(1):22-25
    [172]韩东,章新华,康春玉.零点约束矩阵滤波设计.声学学报,2010,35(3):353-358
    [173]鄢社锋,马远良.传感器阵列波束优化设计及应用.科学出版社,2008
    [174] C.S. Macinnes. Source localization using subspace estimation and spatial filtering.IEEE Journal of Oceanic Engineering,2004,29(2):488-497
    [175] Pesavento M, Gershman A B, Luo Z Q. Robust array interpolation using second-ordercone programming. IEEE Signal Processing Lett,2002,9(1):8-11
    [176] A. Hassanien, S.A. Elkader, A.B. Gershman et al. Convex optimization based beam-space preprocessing with improved robustness against out-of-sector sources, IEEETrans. on Signal Processing,2006,54(5):1587-1595
    [177] Garey M R, Johnson D S. Computers and Intractability: a Guide to the Theory ofNP-Completeness. San Francisco: W.H. Freeman,1979
    [178] Forster P, Vezzosi G. Application of spheroidal sequences to array processing.International Conference on Acoustics, Speech and Signal Processing,1987,12:2268-2271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700