用户名: 密码: 验证码:
旋转式捷联惯导系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤陀螺相关技术的成熟,以光纤陀螺为基础构建的捷联惯导系统将越来越多的应用于航空、航天、航海以及陆用导航设备中。从惯导系统发展的趋势上看,捷联惯导系统必将取代老旧的平台惯导系统,这给光纤陀螺及其组成的光纤捷联惯导系统的发展提供了重要的历史机遇。在现有的光纤捷联惯导系统的基础上,采用旋转调制技术,对提高光纤捷联惯导系统的精度具有十分重要的意义。本文对旋转式捷联惯导系统的几个关键技术进行了深入研究,并以实验室自行研制的光纤陀螺及其组成的捷联惯导系统为基础,加之转位机构组成旋转式捷联惯导系统,进行了相关试验验证。
     论文首先介绍了旋转调制技术的基本原理,分析了单轴旋转调制只能自动补偿与旋转轴垂直方向上的惯性器件误差,不能自动补偿旋转轴方向上的惯性器件误差,在此基础上,提出了将IMU倾斜安装的改进单轴旋转方案,从原理上分析了该方案能够完全消除三个方向上的惯性器件误差,给出了仿真分析。
     给出了转位机构的转动模型,将转位机构的角加速度考虑到转位机构的转动模型中,在此基础上详细推导了单轴连续旋转、持续正反转旋转、大于360°四位置转停方案、小于360°四位置转停方案以及小于360°的改进四位置转停方案的误差传播特性,并对各转位方案进行了仿真分析。比较研究了几种单轴旋转调制方案,选择了最佳的转位方案,在此基础上,研究了转位机构的角加速度、调制角速度、停止时间的参数设置,并进行了仿真分析。
     研究了旋转式捷联惯导系统的两种基本解算结构,推导了转位机构误差在两种解算结构下的误差传播特性,通过对比分析,选择了角度调制型解算结构;在此基础上,分析了转位机构信息与光纤陀螺信息的时间同步性问题,推导了延迟时间对旋转式捷联惯导系统姿态误差的影响,给出了一种延迟时间的测量方法和补偿策略,并进行了相关试验验证;分析了转位机构启动过程角加速度对光纤陀螺的影响,将角加速度和角加速度的导数项扩展到光纤陀螺的静态误差模型中,对角加速度进行了补偿,并进行了相关试验验证。
     介绍了FOG的随机误差模型、静态误差模型、加速度计的静态误差模型。研究了一种智能优化算法:人工鱼群算法;利用AFSA对光纤陀螺的随机漂移进行了建模,得到了很好地建模效果;在无高精度转台的环境中,以IMU的加速度和角速度模方为观测,利用AFSA对IMU的静态误差参数进行辨识,提出了参数分步拟合、交叉迭代的IMU参数辨识算法流程,在人工鱼群迭代过程中实行人工鱼二次初始化的优化思想,并对其进行了仿真分析,得到了很好地拟合效果;在此基础上,以实验室自行研制的FOGSINS为平台,利用AFSA对IMU参数进行拟合,分别进行了静态导航试验、旋转调制导航试验,试验结果均表明,该方法得到IMU误差参数能够满足高精度导航系统的要求,是一种行之有效的IMU参数辨识方法,具有十分重要的现实意义。
     最后,以实验室自行研制的高精度FOG SINS为基础,结合单轴速率位置转台构成旋转式捷联惯导系统,设计了几种旋转调制方案,分别进行了载体航向误差分析和定位误差分析,验证了系统调制方案的有效性,试验结果证明了单轴旋转调制能够有效提高惯导系统的定位精度,在进行转位机构误差有效补偿的条件下,也能够提高系统的姿态精度。
With the rapid development of the Fiber optical gyroscope (FOG),the FOG-based strap-down inertial navigation system (SINS) has been widely used in areas like aviation, aerospace,marine and land navigation.As seen from the development trend of the inertial navigationsystem (INS), the SINS will replace the old platform inertial navigation system, and this pro-vides an important historical opportunity and challenge to the development of FOG andFOG-based SINS. With on the existing fiber SINS,it is of great significance to improve theprecision of the fiber SINS with the rotating modulation technology. The dissertation has adeep study on several key technologies of rotary SINS. Based on a laboratory-developed FOGand FOG-based SINS combined with a rotary indexing mechanism,experiments have beenconducted to verify the performance.
     The dissertation first introduces the basic principle of rotation modulation technique,then analyzed the automatic compensation on the perpendicular axis direction of inertial in-strument errors otherwise the rotation axis inertial instrument error in single-axis rotationmodulation.On this basis,a scheme that the IMU is incline installation has been pro-posed.From the principle analysis this can complete eliminate the inertial instrument errors inthree directions.Then are the simulation analysis.
     The actual system rotation model of the indexing mechanism has been demonstrated.Taking angular acceleration of the indexing mechanism into the rotation model of the index-ing mechanism, and on the basis, the detailed error propagation characteristics has been de-rived and the simulations analyse the single-axis continuous rotation scheme, continuous re-versible rotation scheme, four-position switch-stop over360°scheme, four-positionswitch-stop less360°scheme and improved four-position switch-stop less360°scheme.Several single-axis rotation modulation scheme has been studied to choose the best indexingscheme, on this basis, the indexing mechanism on the angular acceleration, the modulationangular velocity and the stop time parameter settings have been studied followed by simula-tion analysis.
     The dissertation researches on the two basic computation structures of rotary SINS, de-rives the error propagation characteristics of indexing mechanism error respectively, andchooses the angle modulation computation structure after comparative analysis. On this basis,the dissertation analyse the time synchronization of the indexing information and the FOGinformation, and derives the attitude error influence by delay time on rotary SINS, providesthe measurement method and the compensation strategy of the delay time, and conducts re- lated experiments. Besides the dissertation analyse the influence of indexing mechanism star-tup process to FOG, makes some compensations by extending angular acceleration and deriv-ative items of angular acceleration to the static error model of FOG, and has related experi-mental verification.
     The FOG random error model, static error model and accelerometer static error modelhave been introduced, An intelligent optimization algorithm: Artificial fish swarm algorithm(AFSA) have been proposed. Adopting AFSA to FOG random drift model can achieve goodmodeling effect. On the mode square observation of IMU acceleration and angular accelera-tion in the condition of without high-precision turntable, and static error parameters identifi-cation by using AFSA.Algorithm processes of parameters step-by-step fitting and cross itera-tion IMU parameters identification have been presented.By implementing artificial fish sec-ondary initialization optimization idea in artificial swarm iterative process,we can obtain wellfitting effects by through simulation. On this basis, adopting the AFSA to IMU parametersfitting to have on the static navigation experiments, the rotation modulation navigation expe-riments with the laboratory-developed FOG SINS platform respectively, and all the experi-ment results show that the IMU error parameters acquire method could meet the requirementsof high-precision navigation systems. It is an effective IMU parameters identification methodand has an important practical significance.
     Finally, the dissertation designs several rotation modulation schemes with theself-developed high-precision FOG and the single-axis rate and position turntable SINS, andanalyse the vehicle heading error and the positioning error respectively. Then the dissertationverifies the effectiveness of system modulation schemes. And the experiment results showthat the single-axis rotation modulation scheme can improve positioning accuracy of INS, andalso improve the attitude accuracy after the effective compensation on indexing error.
引文
[1]秦永元.惯性导航.北京:科学出版社.2006
    [2] Newton Isaac.Mathematical Principles of Natural Philosophy.Mott(1729)and Cajo-ri(trans)[M].Berkeley University of California Press,1960.
    [3] Pei-hwa L, Donald S, Herbert T C. Low Cost Fiber Optic Rate Sensor Inertial Mea-surement Unit. IEEE Position Location and Navigation Symposium. Palm Springs,CA, USA: IEEE,1998:256-263P
    [4]黄德鸣,程禄.惯性导航系统.北京:国防工业出版社.1986
    [5] Curey R K, Ash M E, Thielman L O, et al. Proposed IEEE Inertial Systems Termi-nology Standard and Other Inertial Sensor Standards. IEEE Position Location andNavigation Symposium. Montery. CA: IEEE,2004:83-90P
    [6] Lawrence A. Modern inertial technology: navigation guidance and control. SpringerVerlag Now York, Inc.1998
    [7] Titterton D H, Weston J L. Strapdown Inertial Navigation Technology. London: PeterPeregrinus Ltd.1997
    [8]樊荣.捷联惯性导航系统初始对准方法研究及其仿真.南京:南京理工大学硕士论文.2006
    [9]陈永冰,钟斌.惯性导航原理.北京:国防工业出版社.2007
    [10]以光衢.惯性导航原理.北京:航空工业出版社.1987
    [11]陈哲.捷联惯导系统原理.北京:宇航出版社.1986
    [12]梁谷.基于MEMS的捷联惯性导航系统的研究.哈尔滨:哈尔滨工程大学硕士学位论文.2008
    [13]郭秀中.惯导系统陀螺仪理论.北京:国防工业出版社.1996
    [14] Anderson,e.w.The principles of navigation.Hollis and Carter,1966
    [15]许国祯.惯性技术手册[M].北京:宇航出版社,1995.
    [16] Britting K.Inertial navigation system analysis.New York:Wiley Interscience,1971.
    [17] Macek,W.M,Davis,D.T.M.Rotation rate sensing with travelling wave ring las-ters.Applied Physics Letters,1963.
    [18] Vali,V.,Shorthill,R.W.Fibre ring interferometer,Applied Optics,1976.
    [19] Lefevre H C.光纤陀螺仪.北京:国防工业出版社.2002
    [20]周海波,刘建业,赖际舟等.光纤陀螺仪的发展现状.传感器技术.2005,24(6):1-3页
    [21]梁阁亭,惠俊军,李玉平.陀螺仪的发展及应用.飞航导弹.2006,4(4):38-40页
    [22] King,A.D.Characterisation of gyro in-run drift.Dgon Proceedings,Gyro TechnologySymposium,Stuttgart,1984
    [23] Ben Yueyang Sun Feng Gao Wei Yu Fei. Generalized method forimproved coningalgorithms using angular rate.2011IEEE Transactions on Aerospace and ElectronicSystems,1565-1572,2009
    [24] Ishibashi S, Tsukioka S, Sawa T, et al. The rotation control system to improve the ac-curacy of an inertial navigation system installed in an autonomous underwater ve-chicle. Workshop on Scientific Use of Submarine Cables and Related Technologies2007.495-498P,2007
    [25] Yang Y, Miao L J, Shen J. Method of improving the navigation accuracyof SINS bycontinuous rotation. Journal of Beijing Institute of Technology.14(1):45-49P,2005.
    [26] Huang W Q, Zhao G L, Tan Z F. Research of Gyro case rotating monitortechnique.Ship Building of China.43:54-59P,2002
    [27] Levison E,ter, HorstJ WilleoeksM. The next generation marine inertial navigator ishere now. IEEE PositionLocation and NavigationSymPosium,1994:121-127
    [28] Levinson E,Giovanni C S,Jr. Laser gyro Potential for long endurance marine na-vigation.IEEE Position Loeation and Navigation SymPosium,1980:115_129
    [29] Levinson E, MajureR. Accuracy enhancement techniques applied to the marine ringlaser inertial navigation(Marlin) Navigation: Joumal of The Institute of Naviga-tion,1987,34(1):64-86.
    [30] Tucker T, Levinson E.The AN/WSN-7B marine gyrocompass/navigator.IONNTM2000,Anaheim,CA,26-28,January,2000:348-357
    [31] Hibbard R,WylieB, Levinson E.Sperry marine MK-49,the word’s best ring laser gyroship’s inertial navigation system JSDE Proceedings Orlando FL,november1996.
    [32] Levinson E, San G C. Laser Gyro Potential for Long Endurance Marine Navigation.IEEE PLANS Position Location Navigation Symposium. Atlantic City, NJ: IEEE,Piscataway, NJ, l980:115-129P
    [33] Hays K M, Schmidt R G, Wilson W A, et al. A submarine navigator for the21th cen-tury. Position location and navigation symposium,2002:179-188P
    [34]时德刚,刘哗,邹建龙等.光纤传感技术发展及军需分析[J].计算机测量与控制.2002,10(9):561-563页
    [35]胡卫东.光纤陀螺发展评述[J].红外技术.2001,23(5):29-33页
    [36]曾杜林.光纤陀螺技术发展及军需分析[J].应用光学.2001,21(1):1-4页
    [37]张孝俊.船用激光陀螺惯性导航系统[J].惯性世界.1998.NO1:16-17.
    [38] Gary Adams, Dr. Michael Gokhale, Boeing,Fiber optic gyro based precision naviga-tion for submarines.AIAA Guidance, Navigation, and Control Conference,2000,1-6.
    [39]张树侠,孙静.捷联式惯性导航系统[M].国防工业出版社1992
    [40]肖昌宜.基于MEMS的导航系统设计与实现[D].哈尔滨:哈尔滨工程大学硕士学位论文,2010.
    [41] Schuler M,Die Storung von Pendel und Kreiselapparaten durch die beschleunigungdes fahrzeuges[J].Physik.Z.,Vol.24luly1923.a translation appears in G.R. Pitman,Jr.(ed.),“Inertial Guidance”New York:John Wiley&Sons,inc.,1962.
    [42] G.R. Pitman. Inertial Guidance [M].New York:John Wiley&Sons,inc.,1962.
    [43] Draper C S. Inertial Guidance [M].Pergamon, Oxford, New York,1960.
    [44] Chow W W,et al.Multioscilator laser gyros[J].IEEE J.of Quantum Electron-ics,1980,QE-16(9):918-936.
    [45]张炎华,吕葵,程加斌.光纤陀螺的研究现状及发展趋势[J].上海交通大学学报,1998,32(8):126-129.
    [46] WANGM,WAN GY,ZHANGY.Adaptive filter for aminiature MEMS based attitudeand heading reference system[J].Journal of Harbin Institute of Technology,2006,13(5):571575.
    [47]李仔冰.双轴旋转式捷联惯导系统的误差特性研究.哈尔滨工程大学硕士学位论文。2011:1-5页
    [48] Y. Yang. Tightly Coupled MEMS INS/GPS Integration with INS Aided ReceiverTracking Loops[D]. University of Calgary,2008.
    [49] Lin Zhao, Shuaihe Gao, Jicheng Ding, et al. Optimized FFT Algorithm and itsApplication to Fast GPS Signal Acquisition, Fourier Transforms-Approach toScientific Principles[M]. InTech Publisher,2011,157-174.
    [50] Xiaoming Han, Guangyu Zheng, Shusheng Peng. High Dynamic GPS Signal Analy-sisand Acquisition Algorithm[J]. Lecture Notes in Electrical Engineering,2011,100(4),773-779.
    [51]穆华,任治新,胡小平,马宏绪.船用惯性/地磁导航系统信息融合策略与性能[J].中国惯性技术学报,2007,15(3):322-326.
    [52]杨功流,李士心,姜朝宇.地磁辅助惯性导航系统的数据融合算法[J]。中国惯性技术学报,2007,15(1):47-50.
    [53]黄显林,李明明,卢鸿谦,胡海东.非线性地磁/GPS/SINS组合导航方法【J】.哈尔滨工程大学学报,2010,31(10):1340-1347.
    [54] Brown A, Mathews B, Nguyen D.GPS/INS/STAR Tracker Navigation Using a soft-ware defined radio[C]。Proceedings of29thAnnual AAS guidance and control confe-rence,Breckenridge,Colorado,2007.
    [55] Ma W H, Luo J J,Yuan J P.Fractionated earth observation satellite and its navigationinformation integrated plan[C].International conference on information technologyand environmental systems sciences2008,Jiaozuo,China,2008.
    [56] Joseph W Evans,Elfego Pinon III,Tom A Mulder.Autonomous Rendezvous Guidanceand navigation for orbital express and beyond[C].16thAAS/AIAA Space Flight Me-chanics Conference,Paper No.AAS06-194,Tamapa,Florida,January22-26,2006.
    [57] Zhang C B, Tian W F, Jin Z H. A novel method improving the alignment accuracy ofa strapdown inertial navigation system on a stationary base. Measurement science andtechnology.2004,15:765-769P
    [58]王其,徐晓苏.旋转IMU在光纤捷联航姿系统中的应用[J].中国惯性技术学报.2007,15(3):265-268页
    [59] Zhang L D, Lian J X, Wu M P, et al. Research on Auto Compensation Technique ofStrap-down Inertial Navigation Systems. International Asia conference on informaticsin control automation and robotics.2009:350-353P
    [60]于旭东,王宇,张鹏飞.单轴旋转对惯导系统误差特性的影响[J].中国惯性技术学报,2008,16(6):643-648.
    [61]袁保伦,饶谷音.光学陀螺旋转惯导系统原理探讨[J].国防科技大学学报,2006,28(6):76-80.
    [62]孙枫,孙伟.基于单轴旋转的光纤捷联惯导系统误差特性与实验分析[J].宇航学报,2010,31(4):1070-1077.
    [63] Ishibashi S, Tsukioka S, Sawa T, et al. The rotation control system to improve the ac-curacy of an inertial navigation system installed in an autonomous underwater vehicle.Workshop on Scientific Use of Submarine Cables and Related Technologies2007.2007:495-498P
    [64] Huang W Q, Zhao G L, Tan Z F. Research of Gyro case rotating monitor technique.Ship Building of China.2002,43:54-59P
    [65] Yang Y, Miao L J. Fiber-optic strapdown inertial system with sensing cluster conti-nuous rotation. IEEE Transactions on Aerospace and Electronic Systems.2004,40(4):1173-1178P
    [66] Yang Y, Miao L J, Shen J. Method of improving the navigation accuracy of SINS bycontinuous rotation. Journal of Beijing Institute of Technology.2005,14(1):45-49P
    [67]练军想.捷联惯导动基座对准新方法及导航误差抑制技术研究.长沙:国防科技大学博士学位论文.2007
    [68] Zhang Ling,Liu Jianye,Lai Jizhou. Rotating Fiber Optic Gyro Strapdown Inertial Na-vigation System with Three Rotating Axes[J]. Transactions of Nanjing University ofAeronautics&Astronautics,2008,25(4):289-294.
    [69]王荣颖,许江宁,卞鸿巍,徐金华.方位旋转式平台惯导系统的误差分析与仿真[J].系统仿真学报,2009,21(15):4786-4789.
    [70]陆煜明.机械抖动激光陀螺惯导系统自动补偿研究[J].中国惯性技术学报,2006,14(4):18-21.
    [71]张宇飞,陆全聪,翁海娜.基于IMU旋转的船用激光导航系统分析与设计[J].海洋技术,2009,28(2):88-91.
    [72]孙枫,孙伟,郭真.基于IMU旋转的捷联惯导系统自补偿方法[J].仪器仪表学报,2009,30(12):2511-2517.
    [73]孙枫,孙伟.基于单轴旋转的光纤捷联惯导系统误差特性与实验分析[J].宇航学报,2010,31(4):1070-1077.
    [74]颜苗,翁海娜,谢英.系统参数标定以及惯性元件安装误差测量与补偿技术研究[J].中国惯性技术学,2006,14(1).27-29,62.
    [75]张玲,刘建业,赖际舟.旋转光纤捷联惯性导航系统的误差调制分析[J].弹箭与制导学报,2009,29(2):1-3,135.
    [76] Terry T, Emanuel L. The AN/WSN-7B marine gyrocompass/navigator. Proceedings ofthe2000National Technical Meeting of the Institute of Navigation.2000:348-357P.
    [77] Marland P. The NATO ships inertial navigation system(SINS). Joumal of Naval Engi-neering.1992,33(3):688-700P.
    [78] MK39MOD3A Ring Laser Ship’s Inertial Navigation System Northrop GrummanElectronic systems-Sperry Marine. Printed inUSA,2005.
    [79] Lahham J I, Wigent D J,Coleman,A,L.Tuned Support Structure for Structure_BorneNoise Reduction of Inertial Navigator with Dithered Ring Laser Gy-ros(RLG).in:Position Location and Navigation Symposium,IEEE,2000:419-428.
    [80] Sperry Marine-Legacy, Systems&Technologies. Northrop Grumman Electronic sys-tems-Sperry Marine. Printed inUSA,2005.
    [81]袁保伦.四频激光陀螺旋转惯导系统研究.长沙:国防科技大学博士学位论文.2007.
    [82] Lahhan J I, Brazell J R. Acoustic Noise Reduction in the MK49Ship’s Inertial Navi-gation System (SINS). IEEE PLANS Position Location and Navigation Symposium.Monterey, CA, USA: IEEE, Piscataway, NJ, USA,1992:32-39P.
    [83]孙伟.调制型捷联惯性导航系统技术研究.哈尔滨:哈尔滨工程大学博士学位论文,2011.
    [84]李京书,许江宁,查峰等.捷联惯导系统旋转调制技术发展综述.惯性技术发展动态发展方向研讨会文集,2011年,135-141.
    [85] J. N. Blake. Magnetic field sensitivity of depolarized fiber optic gyros. SPIE Proceed-ings, Fiber Optic and Laser Sensors VIII Conference.1990,1367:81-86P.
    [86] G. A. Sanders, B. Szafraniec, R. Y. Liu, et al. Fiber optic gyros for space, marine andaviation applications. SPIE Proceedings, Fiber Optic Gyros:20th Anniversary Confe-rence.1996,2837:61-71P.
    [87] T. C. Sorensen, P. D. Spudis. The clementine mission-a10-year perspective. Journalof Earth System Science.2005,114(6):645-668P.
    [88] W. K. Burns. The impact of component development on the evolution of fiber opticgyroscopes. The18th International Conference on Optical Fiber Sensors, OSA/OFS.2006.
    [89] W. Hills. Lufthansa selects Northrop Grumman to provide next-generation air datainertial reference units. PrimeZone.2006,11.
    [90] IXSEA. Inertial navigation system PHINS.2005:1-8P.
    [91] http://www.northropgrumman.litef.de.
    [92] http://www.optolink.ru/.
    [93] V. Vali, R. W. Shorthill. Fiber ring Interferometer. Applied Optics.1976,15(5):1099-1100P.
    [94] N. Barhour, G. Schmidt. Inertial sensor technology trends. IEEE Sensors Journal.2001,1(4):332-339P.
    [95]张琛.光纤陀螺光路偏振特性及温度性能研研究.哈尔滨:哈尔滨工程大学博士学位论文,2010.
    [96] http://www.aviationnow.cn/2010/0130/23833.html.
    [97] Morrow R B, Heckman D W. High precision IFOG insertion into the strategic subma-rine navigation system. IEEE1998Position Location and Navigation Symposium.1998:332-338P.
    [98] Heckman D W, Baretela L M. Improved Affordability of High Precision SubmarineInertial Navigation by Insertion of Rapidly Developing Fiber Optic Gyro Technology.IEEE PLANS Position Location and Navigation Symposium. San Diego, CA, USA:IEEE, Piscataway, NJ, USA,2000:404-410P
    [99]孙枫,孙伟.旋转自动补偿捷联惯导系统技术研究[J].系统工程与电子技术,2010,32(1):122-125.
    [100]李仁,曾庆双,陈希军.基于光学陀螺惯导系统的误差自动补偿技术[J].电机与控制学报,2010,14(6):98-104.
    [101]王鑫哲.基于旋转的捷联惯导系统自补偿技术研究.哈尔滨工程大学硕士学位论文,2008.
    [102]刘勇,蔡体菁,芶志平.旋转光纤陀螺捷联式惯性导航系统[J].压电与声光,2009,31(3):315-318.
    [103]翁海娜,陆全聪,黄昆等.旋转式光学陀螺捷联惯导系统的旋转方案设计[J].中国惯性技术学报,2009,17(1):8-14.
    [104]罗超.FOG捷联惯导系统标定和误差补偿技术研究.哈尔滨:哈尔滨工程大学硕士学位论文,2006,5-6.
    [105]张天光,王秀萍,王丽霞.捷联惯性导航技术[M].北京,国防工业出版社,2010.
    [106]太松月.光纤陀螺捷联惯性导航系统标定测试技术研究.哈尔滨:哈尔滨工程大学硕士学位论文.2007.
    [107]张红良.陆用高精度激光陀螺捷联惯导系统误差参数估计方法研究.长沙:国防科学技术大学博士学位论文.2010.
    [108]严恭敏,秦永元.激光捷联惯组的双轴位置转台标定仿真[J].中国惯性技术学报,2007,15(1):123-127.
    [109]肖龙旭,魏诗卉,孙文胜.惯测组合快速高精度标定方法研究[J].宇航学报,2008,29(1):172-177.
    [110] Mirzaei F M, Roumeliotis S I. A Kalman Filter-Based Algorithm forIMU-Camera Ca-libration: Observability Analysis and Performance Evaluation[J].IEEETransactions onRobotics,2008,24(5):1143-1156.
    [111] Nebot E, Durrant-Whyte H. Initial Calibration and Alignment of Low-CostInertialNavigation Units for Land Vehicle Applications[J]. Journal of Robotic Systems,1999,16(2):81-92.
    [112]杨晓霞,孟浩然,王帅.激光捷联惯导系统的外场动态标定方法[J].中国惯性技术学报,2011.19(4):393-398.
    [113]王庭军,高延滨,李光春.利用人工鱼群算法对光纤陀螺随机漂移建模[J].中国惯性技术学报,2012,20(3):111-115.
    [114] Wang Tingjun,Gao Yanbin,Ma Tao. Research on FOG Random Errors ModelingBased on AFSA[C].International Conference on Industrial Control and ElectronicsEngineering,2012,1243-1246.
    [115] Box, G. E. P., G. M. Jenkins, G. C. Reinsel. Time series analysis: forecasting and con-trol [M]. Beijing: Post&Telecom Press,2005.
    [116] Broersen, P.M.T. de Waele, S. Costs of order selection in time series analysis [C]. In-strumentation and Measurement Technology Conference. Proceedings of the19thIEEE, Volume:1,21-23May2002, Pages:303-308.
    [117]程万娟.光纤陀螺信号处理及滤波技术研究[D].哈尔滨:哈尔滨工程大学硕士学位论文.2009.
    [118]杨叔子,吴雅,轩建平等.时间序列分析的工程应用(第二版)(下册)[M].华中科技大学出版社,2007
    [119]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38.
    [120]李晓磊,薛云灿,路飞.基于人工鱼群算法的参数估计方法[J].山东大学学报(工学版),2004,34(5):64-67.
    [121] Shen Wei, Guo Xiaopen, Wu Chao, et al. Forecasting stock indices using radial basisfunction neural network optimized by artificial fish swarm algorithm[J]. Know-ledge-Based Systems,2011,24(3):378-385.
    [122] Huang R, Tawfik H, Nagar AK.A novel hybrid Qos multicast routing based on clonalselection and artificial [C].Proceedings of the Second International Conference onDevelopments in System Engineering,2009,47-52.
    [123] Ma X,Liu Q.An artificial fish swarm algorithm for steiner tree program[C]. Proceed-ings of the18th International Conference on Fuzzy Systems,2009,59-63.
    [124] Ma M, Liang J H, Sun L, et al.SAR image segmentation based on SWT and improvedAFSA[C]. Proceedings of the Third International Symposium on Intelligent informa-tion Technology and Security Informatic,2010,146-149.
    [125]楚晓丽,朱英,石俊涛.基于改进人工鱼群算法的图像边缘检测.计算机系统应用,2010,19(8):173-176.
    [126] Wang Y, Wu X J, Wang S T, et al. Facial Expression recognition using RBF neuralnetWork based on improved artificial fish swarm algorithm[C]. Proceedings of the17th Chinese Control Conference,2008,416-420.
    [127] Zhang M F,Shao C,Li F C,et al.Evolving neural network classifiers and feature subsetusing artificial fish swarm [C]. Proceedings of the2006IEEE International Confe-rence on Mechatronics and Automation,2006,1598-1602.
    [128] Tian W J,Liu J C. A novel approach to fuzzy logic controller design[C]. Proceedingsof the Second International Conference on Computer Modeling and Simula-tion,2010,112-115.
    [129]王航,薛晓中,孙瑞胜,等.基于人工鱼群算法的制导炸弹多目标鲁棒PID控制器设计.战术导弹技术,2009,6:67-71.
    [130] Gong D S,Che J X,Wang J Z. Short-term electricity price forecasting based on novelSVM using artificial fish swarm algorithm under deregulated power[C]. Proceedingsof the Second International Symposium on Intelligent information Technology Appli-cation,2008,85-89.
    [131]程晓荣,张秋亮,王智慧,等.基于人工鱼群算法的配电网开关优化配置.华东电力,2008,36(1):104-108.
    [132] Wang F, Xu X H,Zhang J. Application ofartificial fish school and k-means clusteringalgorithms for stochastic GHP[C].Proceedings of Chinese Control and Decision Con-ference,2009,4280-4283.
    [133] Zhang M F,Shao C,Li M J,et al.Mining classification rule with artificial fish swarm[C].Proceedings of the6th World congress on Intelligent Control and Automa-tion,2006,5877-5811.
    [134] Gao Y F,Chen Y D.The optimization of water utilization based on artificial fish swarmalgorithm. Proceedings of the Sixth International Conference on NaturalComputation,2010,4415-4419.
    [135] Liu S,Jiang N.SVM parameters optimization algorithm and its application.Proceedings of IEEE International Conference on Mechatronics andAutomation,2008,509-513.
    [136]王联国,洪毅,赵付清等.一种改进的人工鱼群算法[J].计算机工程,2008,34(19):192-194.
    [137]吉训生,王寿荣.硅微陀螺漂移数据滤波方法研究[J].传感技术学报,2008,21(2):333-336.
    [138]陆芳,刘俊.卡尔曼滤波在陀螺仪随机漂移中的应用[J].微计算机信息,2007,23(8):229-231.
    [139]李国强.旋转式捷联惯导系统技术研究[D].哈尔滨:哈尔滨工程大学硕士学位论文,2011.
    [140]柴永利.捷联惯导系统误差调制技术研究[D].哈尔滨:哈尔滨工程大学硕士学位论文,2010.
    [141]庞松.光纤捷联组合导航系统设计[D].哈尔滨:哈尔滨工程大学硕士学位论文,2010.
    [142]李晓磊,钱积新.人工鱼群算法:自下而上的寻优模式[C].过程系统工程2001年会论文集,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700