用户名: 密码: 验证码:
透射式变掺杂GaAs光电阴极及其在微光像增强器中应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高我国三代微光像增强器的技术水平,本文围绕透射式变掺杂GaAs光电阴极材料及组件的制备及评价、组件光学性能、自动激活技术、透射式光谱响应理论以及透射式变掺杂GaAs光电阴极应用等方面开展了系统研究。
     采用MBE和MOCVD生长了八种不同掺杂结构的透射式变掺杂GaAs光电阴极材料,对光电阴极材料进行了电化学C-V测试,说明了光电阴极材料实现指数掺杂、梯度掺杂、变组分等不同结构的可行性。对阴极材料和组件进行了X射线衍射测试,建立了GaAlAs/GaAs光电阴极X射线相对衍射强度与灵敏度之间的关系,提出了用X射线相对衍射强度评价GaAlAs/GaAs光电阴极晶体结构的完整性。
     建立了透射式阴极组件薄膜光学矩阵理论模型,分析了透射式GaAs光电阴极组件反射率和透射率曲线与膜层几何厚度的关系。利用分光光度计测试了透射式指数掺杂阴极组件样品的反射率和透射率曲线,通过编写的光学性能测试软件很好地拟合了反射率和透射率曲线,获得了阴极组件中各膜层厚度。
     通过重新设计微弱信号检测模块,采用程控铯源和氧源电流源,以及优化激活工艺流程,成功研制了透射式变掺杂GaAs光电阴极自动激活系统,实现了变掺杂GaAs光电阴极的自动激活,避免了人工激活误操作的影响,大大提高了光电阴极的激活效率和工艺重复性,从而为高性能透射式变掺杂GaAs光电阴极的量产奠定了坚实的基础。
     通过求解一维连续性方程,从短波截止、光学性能两方面修正了透射式GaAs光电阴极量子效率公式,利用该公式很好地拟合了国内外透射式GaAs光电阴极量子效率曲线,获得了相关阴极性能参量。国内外GaAs光电阴极性能参量对比表明,国内变掺杂GaAs光电阴极的电子扩散长度和表面电子逸出几率已经接近甚至超过国外水平,但后界面复合速率仍比国外阴极大,导致国产阴极的短波响应尚不及国外阴极。
     对采用透射式变掺杂GaAs光电阴极的12只微光像增强器的灵敏度、分辨力、等效背景照度和亮度增益等参数分别进行了测试,测试得到平均灵敏度为1947μA/lm,平均分辨力为49lp/mm,平均等效背景照度为1.76×10-7lx,平均亮度增益为11155.14。开展了变掺杂GaAs光电阴极微光像增强器的光谱响应监测试验、冲击试验、振动试验和高低温试验的研究,评估了采用透射式变掺杂GaAs光电阴极的微光像增强器光谱灵敏度的稳定性,结果表明变掺杂像管的稳定性要优于均匀掺杂像管,验证了透射式变掺杂GaAs光电阴极在微光像增强器中应用的优越性。
In order to improve the technical level of domestic3rd low-light-level image intensifier, the systematic researches on the preparation and evaluation of transmission-mode varied-doping GaAs cathode material and module, optical performance of cathode module, automatic activation technology, tranmission-mode spectral response theory and application of the tranmission-mode varied-doping GaAs photocathode were carried out in this thesis.
     Eight transmission-mode varied-doping GaAs photocathode materials of different doping structures were grown by MBE and MOCVD. The cathode material structure was measured by electrochemical C-V, which validates the feasibility of achievement of the exponential-doping, gradient-doping and varied-composition structure. The cathode material quality was measured by X-ray diffraction, and the relationship between X-ray relative diffraction intensity and integral sensitivity of GaAlAs/GaAs photocathode was established, which proposed an evaluation methode for the crystal lattice integrality of GaAlAs/GaAs photocathode material.
     A theoretical mode using the thin film optical matrix for transmission-mode cathode module was set up, which analyzed the relationship between the the reflectance and transmittance curve of transmission-mdoe GaAs photocathode module and the film geometrical thickness. The reflectance and transmittance curves of transmission-mode exponential-doping cathode modules were tested by the spectrophotometer, and were well fitted by the programmed optical performance testing software which could reveal the respective film thickness value in the cathode module.
     A computer-automated system that could activate transmission-mode varied-doping GaAs photocathode was developed by redesigning the weak signal detection module, adopting the programmable current source regarding cesium source and oxygen source, and optimizing the activation process flow. This system realized the automatic activation of varied-doping GaAs photocathode, which avoided the manual mis-operation and greatly increased the photocathode activation efficiency and process repeatability. Development of the system laid a foundation for mass-production of high-performance varied-doping GaAs photocathode.
     By solving one-dimensional continuity equation, the quantum efficiency formula of transmission-mode GaAs photocathode was revised, which considers the shortwave cutoff and the optical performance. Using the formula, the domestic and foreign quantum efficiency curves of the transmission-mode GaAs photocathode were well fitted and the cathode performance parameters were obtained. Comparison of domestic and foreign GaAs cathode performance parameters shows that the electron diffusion length and surface electron escape probability of varied-doping GaAs photocathode is close to or above the foreign level, while the interface recombination rate is still higher than the foreign cathode, which leads to the backwardness of shortwave response for the domestic cathode.
     The sensitivity, resolution, equivalent background input and brightness gain of12low-light-level image intensifiers adopting transmission-mode varied-doping GaAs photocathode were measured, and the measured average sensitivity, average resolution, average equivalent background input and average brightness gain were1947μA/lm,49lp/mm,1.76x10-7lx, and11155.14, respectively. The spectral response monitoring test, impact test, vibration test and high-low temperature test of the image intensifier with varied-doping GaAs photocathode was carried out to assess the spectral sensitivity stability of the low-light-level image intensifier equipped with transmission-mode varied-doping GaAs photocathode. The results show that the the better stability of the varied-doping image intensifier than the uniform-doping one, whihch verifies the superiority in application of the transmission-mode varied-doping GaAs photocathode into image intensifier.
引文
[1]江剑平,翁甲辉,杨泮棠,等.阴极电子学与气体放电原理.北京:国防工业出版社,1980
    [2]刘元震,王仲春,董亚强.电子发射与光电阴极.北京:北京理工大学出版社,1995
    [3]薛增泉,吴全德.电子发射与电子能谱.北京:北京大学出版社,1993
    [4]Sommer A H. Brief history of photoemissive materials. Proc. SPIE,1993,2022:2-17
    [5]Spicer W E. Photoemissive, photoconductive, and absorption studies of alkali-antimony compounds. Physical Review,1958,112(1):114-122
    [6]Spicer W E and Herrera-Gomez A. Modern theory and application of photocathodes. Proc. SPIE,1993,2022:18-33
    [7]萨默AH.光电发射材料制备、特性与应用.北京:科学出版社,1979
    [8]Scheer J J and Vanlar J. GaAs-Cs:new type of photoemitter. Solid State Communications, 1965,3:189-193
    [9]Turnbull A and Evans G. Photoemission from GaAs-Cs-O. Applied Physics,1968,1: 155-160
    [10]Eden R C, Moll J L and Spicer W E. Experimental evidence for optical population of the X minima in GaAs. Physical Review Letters,1967,18(15):597-599
    [11]James L W, Eden R C, Moll J L and Spicer W E. Location of the L1 and X3 minima as determined by photoemission studies. Physical Review,1968,174(3):909-910
    [12]James L W and Moll J L. Transport properties of GaAs obtained from photoemission measurements. Physical Review,1969,183(3):740-753
    [13]Gutierrez W A and Pommerrenig H D. High-sensitivity transmission-mode GaAs photocathode. Applied Physics Letters,1973,22(6):292-293
    [14]Fisher D G and Olsen G H. Properties of high sensitivity GaP/InxGa1-xP/GaAs:(Cs-O) transmission photocathodes. Journal of Applied Physics,1979,50(4):2930-2935
    [15]Olsen G H, Szostak D J, Zamerowski T J, et al. High-performance GaAs photocathodes. Journal of Applied Physics,1977,48(3):1007-1008
    [16]Ettenberg M, Olsen G H and Nuese C J. Effect of gas-phase stoichiometry on the minority-carrier diffusion length in vapor-grown GaAs. Applied Physics Letters,1976, 29(3):141-142
    [17]Liu Y Z, Hollish C D and Stein W W. LPE GaAs/(Ga,Al)As/GaAs transmission photocathodes and a simplified formula for transmission quantum yield. Journal of Applied Physics,1973,44(12):5619-5621
    [18]Antypas G A, Escher J S, Edgecumbe J, et al. Broadband GaAs transmission photocathode. Journal of Applied Physics,1978,49(7):4301-4301
    [19]Gutierrez W A, Wilson H L and Yee E M. GaAs transmission photocathode grown by hybrid epitaxy. Applied Physics Letters,1974,25(9):482-483
    [20]Hayfuji N, Mizuguchi K, Ochi S and Murotani T. Highly uniform growth of GaAs and GaAlAs by large-capacity MOCVD reactor. Journal of Crystal Growth,1986,77:281-285
    [21]Dipkus P D, Manaserit H M, Hess K L, et al. High purity GaAs prepared from trimethylgallium and arsine. Journal of Crystal Growth,1981,55:10-23
    [22]Andre J P, Giittard P, Hallais J, et al. GaAs photocathodes for low light level imaging. Journal of Crystal Growth,1981,55:235-245
    [23]Smith A, Passmore K, Sillmon R, et al. Transmission mode photocathodes covering the spectral range. New Developments in Photodetection 3rd Beaune Conference, France. June 17-21,2002.
    [24]Bourreea L E, Chasseb D R, Thambana P L S, et al. Comparison of the optical characteristics of GaAs photocathodes grown using MBE and MOCVD. Proc.SPIE,2003, 4796:11-22
    [25]杨树人,丁墨元.外延生长技术.北京:国防工业出版社,1992
    [26]Turnbull A A and Evans G B. Photoemission from GaAs-Cs-O. Journal of Physics D: Applied Physics,1968,1:155-160
    [27]Fisher D G. The effect of Cs-O activation temperature on the surface escape probability of NEA (In,Ga)As photocathodes. IEEE Transactions on Electron Devices,1974, ED-21: 541-542
    [28]知愚.美国夜视技术的最新进展.应用光学,2006,27(4):354
    [29]徐江涛,张兴社.微光像增强器的最新发展动向.应用光学,2005,26(2):21-23
    [30]程耀进,石峰,郭晖,等.MCP参数对微光像增强器分辨力影响研究.应用光学,2010,31(2):292-296
    [31]周立伟.关于微光像增强器的品质因数.红外与激光工程,2004,33(4):331-337
    [32]金伟其,刘广荣,王霞,等.微光像增强器的进展及分代方法.光学技术,2004,30(4):460-466
    [33]向世明.微光像增强器信噪比理论极限问题研究.应用光学,2008,29(5):724-726
    [34]李辉,钱芸生,常本康,等.微光像增强器信噪比测试中的K因子研究,红外技术,2007,29(8):488-490
    [35]徐江涛.三代微光像增强器制管工艺对阴极光电发射性能的影响.应用光学,2004, 25(5):30-32
    [36]Alsman D, Paul C and Sartor M. Machine vision image analysis capability for image intensifier tubes and systems. Proc. SPIE,2003,4769:90-99
    [37]Bai Lianfa, Qian Weixian, Zhang Yi, et al. Analysis and study on the stadia of low light level imaging system. Proc. SPIE,2005,5633:460-469
    [38]Kulov S K, Kesaev S A, Makarov E N, et al. The small pore microchannel plates for night vision devices. Proc. SPIE,1999,3749:713-714
    [39]骆冠平,何开远,王志宏,等.二代微光像增强器的发展与应用.红外技术,2000,22(2):7-10
    [40]倪平平.红外与微光融合夜视系统研究:[硕士学位论文].南京:南京理工大学,2006
    [41]Lampoa D L. Low Light and Thermal Imaging Systems. International Conference,1975
    [42]Chang Benkang. Study of control principles photocathode composition of the "super second generation" image intensifier. Acta Optica Sinica,1994,14(2):193-197
    [43]陈庆佑.微光夜视技术进展简介.真空电子技术,2001,1:32-35
    [44]Hambro C and Harris J. Image Intensifies:Advancing the State of the Art. Optical Engineering,1999,38(6):1041-1047
    [45]周立伟.微光成像技术的发展与展望.天津:天津科学技术出版社,2003
    [46]Goodman G W, Jr. Night-fighting advantage:US army fields next-generation night-vision devices. Armed forces journal international,2000,138:40-46
    [47]田金生,骆冠平(译).像增强器技术的最新进展.云光技术,2000,32(1):32-36
    [48]Estrera J P, Bender E J, Giordana A, et al. Long lifetime generation IV image intensifiers with unfilmed microchannel plate. Proc. SPIE,2000,4128:46-53
    [49]郑为建.从伊拉克战争看我国夜视技术的发展策略.中国兵工学会第四届夜视技术专业委员会,2003,53:8-11
    [50]阎金良,彭玉田GaAs/GaAsAl阴极粘结X射线双晶衍射测量.半导体光电,1998,19:119-122
    [51]李晓峰,张景文,高鸿楷,等.透射式GaAs光电阴极AlGaAs/GaAs外延层X射线衍射遥摆曲线半峰宽研究.光子学报,2002,31(1):93-97
    [52]李晓峰,张景文,高鸿楷,等.透射式GaAs光电阴极AlGaAs窗层Al组份的X射线衍射分析.光子学报,2002,31(4):454-457
    [53]李晓峰,张景文,高鸿楷,等.透射式GaAs光电阴极AlGaAs窗层和GaAs光电发射层界面应变状况的X射线衍射研究.光子学报,2002,31(3):308-311
    [54]徐大鹏,王玉田,杨辉,等.立方相GaN/GaAs(100)质量的X射线双晶衍射研究.中国科学A辑,1998,28:1112-1116
    [55]王向武,程祺祥.短周期AlGaAs/GaAs超晶格的MOCVD生长及X射线衍射研究.固体电子学研究与进展,2000,20:212-215
    [56]赵庆兰,黄依森.低温偏硼酸钡(BBO)单晶包裹物的X射线形貌衬度.物理学报,1990,39(9):1424-1428
    [57]储刚.含非晶相样品的X射线衍射无标定量相分析方法.物理学报,1995,44(10):1679-1683
    [58]李洪涛,罗毅,席光义,等.基于X射线衍射的GaN薄膜厚度的精确测量.物理学报,2008,57(11):7119-7125
    [59]许振嘉.半导体的检测与分析.第2版.北京:科学出版社,2007
    [60]邹继军,常本康,杨智.指数掺杂GaAs光电阴极量子效率的理论计算.物理学报,2007,56(5):2992-2997
    [61]Rodway D C and Allenson M B. In situ surface study of the activating layer on GaAs(Cs,O) photocathodes. Journal of Physics D:Applied Physics.1986,19:1353-1371
    [62]Goldstein B. LEED-Auger characterization of GaAs during activation to negative electron affinity by the adsorption of Cs and O. Surface Science,1975,47(1):143-161
    [63]Zhang Yijun, Chang Benkang, Yang Zhi, et al. Distribution of carriers in gradient-doping transmission-mode GaAs photocathodes grown by molecular beam epitaxy. Chinese Physics B,2009,18(10):4541-4546
    [64]Drouhin H J, Hermann C and Lampel G Photoemission from activated gallium arsenide. I. Very-high-resolution energy distribution curves, Physical Review B,1985,31(6): 3859-3871
    [65]Liu Z, Sun Y, Peterson S, et al. Photoemission study of Cs-NF3 activated GaAs(100) negative electron affinity photocathodes. Applied Physics Letters,2008,92:241107.
    [66]Sun Y, R. Kirby E, Maruyama T, et al. The surface activation layer of GaAs negative electron affinity photocathode activated by Cs, Li, and NF3. Applied Physics Letters, 2009,95:174109
    [67]Karkare S and Bazarov I. Effect of nanoscale surface roughness on transverse energy spread from GaAs photocathodes. Applied Physics Letters,2011,98:094104
    [68]Songprakob W, Zallen R, Tsu D V, et al. Intervalenceband and plasmon optical absorption in heavily doped GaAs:C. J. Appl. Phys.2002,91:171-177
    [69]Khan W I, Makdisi Y, Marafi M, et al. Laser and thermal annealing effects on the optical properties of n-GaAs (100) crystals:application to its Schottky diodes. Phys. Stat. Sol. 2000,181:551-559
    [70]Bhat A, Yao H D, Compaan A, et al. Pulsed laser heating of silicon-nitride capped GaAs: Optical properties at high temperature. J. Appl. Phys.1988,64:2591-2594
    [71]Yao H, Snyder P G and Woollam J A. Temperature dependence of optical properties of GaAs. J. Appl. Phys.1991,70:3261-3267
    [72]Bourreea L E, Chasseb D R, Thambana P L S, et al. Comparison of the optical characteristics of GaAs photocathodes grown using MBE and MOCVD. Proc. SPIE,2003, 4796:11-22
    [73]Spicer W E, Gregory P, Chye P W, et al. Photoemission study of the formation of Schottky barriers. Applied Physics Letters,1975,27:617-620
    [74]Fisher D G, Enstrom R E, Escher J S, et al. Photoelectron surface escape probability of (Ga,In)As:Cs-O in the 0.9 to 1.6μm. Journal of Applied Physics,1972,43(9):3815-3823
    [75]牛军,杨智,常本康,等.反射式变掺杂GaAs光电阴极量子效率模型研究.物理学报,2009,58(7):5002-500
    [76]刘元震,王仲春,董亚强.电子发射与光电阴极.北京:北京理工大学出版社,1995
    [77]Su C Y, Chye P W, Pianetta P, et al. Oxygen adsorption on Cs covered GaAs (110) surfaces. Surface Science,1979,86:894-899.
    [78]Su C Y, Lindau I and Spicer W E. Photoemission studies of the oxidation of Cs identification of the multiple structures of oxygen species. Chemical Physics Letters,1982, 87(6):523-527.
    [79]Su C Y, Spicer W E and Lindau I. Photoelectron spectroscopic determination of the structure of (Cs,O) activated GaAs (110) surface. Journal of Applied Physics,1983,54(3): 1413-1422
    [80]杜晓晴,常本康,宗志园GaAs光电阴极p型掺杂浓度的理论优化.真空科学与技术,2004,24(3):195-198
    [81]Zou Jijun and Chang Benkang. Gradient doping negative electron affinity GaAs photocathodes. Optical Engineering,2006,45(5):054001
    [82]杜晓晴,常本康,邹继军,等.利用梯度掺杂获得高量子效率的GaAs光电阴极.光学学报,2005,25(10):1411-1414
    [83]Niu Jun, Zhang Yijun, Chang Benkang, et al. Influence of exponential doping structure on the performance of GaAs photocathodes. Applied Optics,2009,49(29):5445-5450
    [84]Yang Zhi, Chang Benkang, Zou Jijun, et al. Comparison between gradient-doping GaAs photocathode and uniform-doping photocathode. Applied Optics,2007,46(28): 7035-7039
    [85]Estrera J P, Bender E J, etc. Long Lifetime Generation IV Image Intensifiers with Unfilmed Microchannel Plate. Proc. SPIE,2000,4128:46-48
    [86]Andre J P, Hallais G J, Piaget C. GaAs photocathodes for low light level imaging. Journal of Crystal Growth,1981,55:235-245
    [87]Smith A, Passmore K, Sillmon R, et al. Transmission mode photocathodes covering the spectral range. New Developments in Photodetection 3rd Beaune Conference,2002
    [88]Bell R L, James L W, Moon R L. Transferred electron photoemission from InP. Applied Physics Letters,1974,25(1):645-646
    [89]Baum A W, Spicer W E, Pease R F W, et al. Negative electron affinity photocathodes as high-performance electron sources—part2:energy spectrum measurements. Proc. SPIE, 1995,2550:189-191
    [90]Maruyama T, Brachmann A, Clendenin J E, et al. A very high charge, high polarization gradient-doped strained GaAs photocathode. Nuclear Instruments and Methods in Physics Research A,2002,492:199-200
    [91]李晓峰.第三代像增强器研究:[博士学位论文].西安:西安光机所,2001
    [92]Sinor T W, Estrera J P, Philips D L, et al. Extended blue GaAs image intensifiers. Proc. SPIE,1995,2551:130-134
    [93]Enloe W, Scheldon R, Reed L, et al. An electron-bombarded CCD image intensifier with a GaAs photocathodes. Proc. SPIE,1992,1655:41-49
    [94]杜晓晴.高性能GaAs光电阴极:[博士学位论文].南京:南京理工大学,2005
    [95]邹继军GaAs光电阴极理论及其表征技术研究:[博士学位论文].南京:南京理工大学,2007
    [96]朱宏权,王奎禄,向世明,等.微通道板像增强器的调制传递函数的测量与研究.光子学报,2007,36(11):1983-1987
    [97]张淑琴.电子倍增器微通道板(MCP)在微光夜视技术中的应用.山西电子技术,2003,4:28-30
    [98]傅文红,常本康.扩口微通道板对电流增益和噪声因子关系的影响.应用光学,2004,25(5):22-24
    [99]Goodrich G W, Wiley W C. Continuous channel electron multiplier. Review of Scientific Instruments,1962,33(2):761-765
    [100]Morrow W B, Jr., Rennie J and Markey W. Development and manufacture of the microchannel plate (MCP). AD-A195556,1988
    [101]刘术林,邓广绪,苏德坦,等,低噪声、高增益微通道板的研究.应用光学,2006,27(6):553-557
    [102]向世明,倪国强.光电子成像器件原理.北京:国防工业出版社,1999
    [103]刘广斌,杜秉初,应根裕,等.像增强器荧光屏亮度均匀性自动测试系统.光学技 术,1998,4:30-35
    [104]邱亚峰,常本康,孙恋君,等.像增强器的荧光屏亮度均匀性测试的校正法研究.光学技术,2008,34(6):911-913
    [105]邱亚峰,常本康,富容国,等.微光像增强器荧光屏测试系统的研究.光学技术,2008,34(3):473-475
    [106]邱亚峰,石峰,孟凡荣,等.真空系统中荧光屏余晖测试技术研究.真空科学与技术学报,2009,29(1):82-84
    [107]江月松,阎平,刘振玉.光电技术与实验.北京:北京理工大学出版社,2005
    [108]向世明.双近贴聚焦微光像增强器分辨力理论极限问题研究.应用光学,2008,29(3):351-353,
    [109]钱芸生,常本康,邱亚峰,等.微光像增强器亮度增益和等效背景照度测试技术.真空电子技术,2004,2:34-36
    [110]汪丽,田维坚,王耀祥,等.光锥与CCD耦合器件调制传递函数的测量方法.光子学报,2005,34(4):613-615
    [111]李升才,金伟其,许正光,等.微光增强型电荷耦合装置成像系统调制传递函数测量方法研究.兵工学报,2005,26(3):343-347
    [112]皇甫俊,贾欣志,李集田.一种利用CCD测量像增强器MTF的方法研究.光学与精密工程,1995,3(4):102-107
    [113]Roger M E, Timothy J S and Stan W T. Measurement of modulation transfer function for four types of imaging elements used in fast cameras. Proc. SPIE,1991,1539:145-151
    [114]康来鹏.采用选通像增强器的二维荧光寿命成像系统.真空电子技术,1994,3:56-62
    [115]Thomas P J, Allison R S, Carr P, et al. Physical modeling and characterization of the halo phenomenon in night vision goggles. Proc. SPIE,2005,5800:21-31
    [116]http://www.nightvision.com/products/military/military_products_intl.htm
    [117]http://www.photonis.com/nightvision/products
    [118]http://www.photonis.com/nightvision/technology/what_is_meant_by_halo_size
    [119]Estrera J P, Ostromek T, Isbell W, et al. Modern night vision goggles for advanced infantry applications. Proc. SPIE,2003,5079:196-207
    [120]Zacher J E., Brandwood T, Thomas P, et al. Effect of image intensifier halo on perceived layout. Proc. SPIE,2007,6557:1-12
    [121]刘粤惠,刘平安.X射线衍射分析与应用.北京:化学工业出版社,2003
    [122]Antypas G A, Escher J S, Edgecumbe J, et al. Broadband GaAs transmission photocathode. Journal of Applied Physics,1978,49:4301-4305
    [123]Zhang Y J, Niu J, Zou J J, et al. Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process. Applied Optics,2010, 49:3935-3940
    [124]Zou J J, Yang Z, Qiao J L, et al. Activation experiments and quantum efficiency theory on gradient-doping NEA GaAs photocathodes. Proc. SPIE,2007,6782:67822R
    [125]唐晋发,顾培夫,刘旭,等.现代光学薄膜技术.杭州:浙江大学出版社,2006
    [126]Aspnes D E, Kelso S M, Logan R A, et al, Optical properties of AlxGa1-xAs. Journal of Applied Physics,1986,60:754-767
    [127]Jung C, Rhee B K. Simultaneous determination of thickness and optical constants of polymer thin film by analyzing transmittance. Applied Optics,2002,41:3861-3865
    [128]Zhao J, Chang B K, Xiong Y J, et al. Spectral transmittance and module structure fitting for transmission-mode GaAs photocathode. Chinese Physics B,2011,20:047801

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700