用户名: 密码: 验证码:
鱼鳔作为新型心血管外科手术生物材料的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物材料(Biomaterials)已在心血管外科领域得到广泛使用,其中又以生物心脏瓣膜和人工血管使用较多。生物瓣膜因血流动力学出色、血栓栓塞发生率低、术后生活质量高等优点,尤其在发达国家已有较高的认可度,但由于牛心包等异种材料本身原因,早期即可能出现机械性毁损和钙化衰败,大大限制了生物瓣膜的适用范围。大口径人工血管已成功应用于心血管手术且术后效果好,而小口径人工血管(口径<6mm)因血液相容性差导致的术后通畅率低等原因,仍未获得临床认可。因此,目前人们正在努力通过对现有材料加工改性及寻找新材料的角度出发以期解决以上问题。由此目的出发,本文分别从物理性能、体外生物相容性及动物实验三个不同层面深入研究鱼鳔性质,旨在寻求一种优于目前临床常用材料的新型心血管外科生物材料。
     第一部分鱼鳔的物理性能试验研究
     目的:研究鱼鳔各项生物力学性能和热稳定性,以及交联处理(0.625%戊二醛溶液)对其性能的影响。
     方法:1、通过单轴拉伸试验(Uniaxial Tensile Test)获得被测材料拉伸至毁损时的极限阿尔曼西应变(FailureAlmansi strain,f)、极限柯西应力(Failure Cauchy stress,f)以及极限弹性模量(Peak Elastic Modulus,MP),比较新鲜、戊二醛处理后的鱼鳔在不同方向上和牛心包的力学差异。结合预试验中维多利亚蓝-苦味酸酸性复红染色(Victoria blue-van Gieson, VG)染色、透射电镜观察以及本试验结果,对纤维排列做出描述。2、通过差示量热扫描技术(Differential Scanning Calorimetry,DSC)检测新鲜和戊二醛处理后鱼鳔的热变性温度并分析交联处理对其热稳定性的影响。
     结果:1、单轴拉伸试验:(1)无论新鲜或是戊二醛交联后鱼鳔在周向的三个力学结果均高于纵向。(2)戊二醛处理后鱼鳔周向的f、MP均高于同方向的新鲜鱼鳔,两者f无显著统计学差异。(3)戊二醛交联后鱼鳔纵向f大于同方向新鲜鱼鳔,两者f、MP无显著统计学差异。(4)戊二醛处理后牛心包f、MP均高于新鲜牛心包,两者f无统计学差异。(5)两材料经戊二醛处理后,鱼鳔周向及纵向f、MP均低于牛心包,f显著高于牛心包。2、差示量热扫描:新鲜鱼鳔热变性温度高于正常人体温范围,且戊二醛处理后鱼鳔热稳定性优于新鲜时。
     结论:1、鱼鳔纤维排列较牛心包规则,胶原纤维主要沿周向排列,弹力纤维在周向及纵向均有分布。2、戊二醛处理后鱼鳔僵硬度(Stiffness)低于牛心包,延展性优于牛心包,更接近人正常主动脉瓣膜力学范围。3、鱼鳔,尤其经过戊二醛处理后,热稳定性可达到体温要求。
     第二部分鱼鳔生物相容性体外试验评价
     目的:根据国际ISO10993医疗器械生物学评价指南研究鱼鳔体外细胞毒性及血液相容性。
     方法:1、体外细胞毒性试验:用含10%胎牛血清的MEM培养液浸提新鲜鱼鳔,采用MTT法检测浸提液对小鼠成纤维细胞L929的细胞毒性作用。2、体外血小板激活试验:用人全血浸提鱼鳔,通过CD62p检测法计算活化血小板数量。3、体外溶血试验:用无菌生理盐水浸提鱼鳔,采用游离血红蛋白直接测定法检测浸提液与人血混合后的游离血红蛋白含量并计算溶血率。以上试验均以牛心包材料作为试验对照组。结果:1、100%新鲜鱼鳔和100%新鲜牛心包浸提液接触后的L929细胞活力分别为85.7%和94.2%,可认为两材料对L929细胞无毒性影响。2、戊二醛处理后鱼鳔和牛心包组CD62P百分率分别为0.940.27%和1.730.35%,可认为两材料均对体外人血血栓形成没有影响。3、戊二醛处理后鱼鳔和牛心包组溶血率分别为0.2%和0.6%,可认为两材料对体外溶血没有影响。
     结论:鱼鳔材料在体外细胞毒性检测和体外血液相容性检测中表现出良好的生物相容性并为进一步动物试验提供理论基础。
     第三部分鱼鳔体内钙化研究目的:采用大鼠背部皮下埋植模型,定性及定量评估鱼鳔不同时间点钙化程度,并与牛心包进行对比。
     方法:1、采用已在牛心包中验证有效的DSC(Denaturant-surfactant-crosslinking)抗钙化方法(美国Edwards公司专利,Patent No.:US6214054B1)预处理鱼鳔及牛心包材料,行幼年大鼠背部皮下埋植,于术后7天、21天、56天取出样本,定性及定量检测钙化情况并明确与免疫反应的关系。2、钙定性检测:采用X线摄影、HE染色、VG染色及Von Kossa染色从样本形态学和组织学水平评价各时间点钙盐沉积情况。3、钙定量测定:采用电感耦合等离子体发射光谱仪(Indutive Coupled Plasma EmissionSpectrimeter,ICP)对比分析样本钙含量。4、免疫组织化学:CD68+巨噬细胞及CD8+T细胞特异性免疫组化染色研究材料内部炎性细胞浸润情况,并与钙化程度关联。
     结果:1、鱼鳔各期钙化程度均低于牛心包,鱼鳔纤维完整排列有序,仅在后期局部钙化处发生纤维断裂,牛心包早期出现钙盐沉积,纤维破坏严重。定量测定表明牛心包各期钙含量高于鱼鳔组,以21天时差异最显著。2、免疫组化染色显示各时期鱼鳔内部未见炎性细胞浸润,而牛心包各期均有CD68+巨噬细胞及CD8+T细胞浸入。结论:大鼠皮下埋植钙化模型显示经戊二醛-DSC抗钙化方法处理后鱼鳔各期钙化程度显著低于牛心包,鱼鳔在体内具有更出色的抗钙化性能。
     第四部分新型材料小口径人造血管的试验研究
     目的:采用大鼠腹主动脉置换模型评估鱼鳔作为小口径人造血管材料的效果,并与牛心包相比较,进一步评估两者的血液相容性。
     方法:根据ISO10993指南,使用鱼鳔和牛心包材料制作小口径人造血管并行大鼠腹主动脉置换,于30天及60天取出并观察如下指标。1、通畅率及血管瘤观察:采用320排CT扫描并三维成像观察通畅率及血管瘤形成。2、内皮化及新生内膜观察:采用扫面电镜直观观察内皮细胞黏附,采用HE、VG染色观察通畅血管管壁纤维排列及弹力纤维增生,采用第八因子相关抗原及α-SMA免疫组化染色观察人造血管各期纤维排列、内皮化及平滑肌细胞增生程度。3、钙化研究:采用X线体外摄影及离体样本Micro CT扫描初步评估血管壁钙盐沉积,采用组织切片Von Kossa染色镜下进一步观察钙盐沉积情况。
     结果:1、各期鱼鳔人造血管通畅率均为100%,牛心包人造血管均为16.67%。通畅血管均未见血管瘤形成。2、通畅血管各期纤维排列有序,仅60天牛心包血管可见纤维破坏断裂,两者通畅血管均可见弹力纤维覆盖,鱼鳔血管中弹力纤维更丰富;鱼鳔内皮化与牛心包比较速度更快程度更完整;两材料吻合口处均可见平滑肌细胞增生,30天及60天鱼鳔内膜厚度无明显差异,30天时牛心包内膜增生较鱼鳔显著,60天时牛心包内膜几乎堵塞管腔。3、X线体外摄影及离体样本Micro CT扫描均未发现血管中明显钙化点,经组织切片Von kossa染色显示,仅60天时牛心包血管材料管壁可见钙盐点状沉积并致纤维断裂,其余时期两者通畅血管中均未见钙盐沉积。
     结论:鱼鳔材料血液相容性优于牛心包,可以作为小口径人造血管材料。
     全文总结:
     本课题研究表明,鲤鱼鳔最大断裂强度低于牛心包,延展性及柔韧性优于牛心包,热稳定性能达到人体内使用要求。鱼鳔生物相容性优良,无细胞毒性、致血栓形成及致溶血的性质。大鼠皮下埋植模型结果表明,经抗钙化处理后,钙化率显著低于牛心包。鱼鳔小口径人造血管行大鼠腹主动脉置换结果表明,鱼鳔材料作为人造血管,血液相容性满意,30及60天通畅率高于牛心包组,内皮覆盖迅速完全,且无动脉瘤发生。
Biomaterials are widely used in cardiovascular surgery, among which the xenogaftheart valve and vascular graft are the most popular. Due to the excellent blood flow, lowincidence of thrombosis and embolism and high quality of life after surgery, xenograftvalves are of growing interest as the popular therapeutic procedure especially in thedeveloped countries. But the relatively high occurence of early mechanical failure andcalcification because of the property of the pericardium material have limited theapplication. Big-caliber vascular grafts has been widely applied in the clinical practice andbeen proved to have good performance, However, small-caliber vascular grafts (diameter <6mm) has not been widely accepted because of the low long-term patency caused by itspoor hemocompatability. So people are working on improving the property of biomaterialsor exploring novel biomaterials.The aim of this dissertation is to test the property ofnovel cardiovascular biomaterial-carT’W W[MQbPaddeV baWed SR XKVee dMffeVeRX aWTecXWwhich are physical performance、in-vitro biocompatability and in-vivo trials of rat..
     Part1Study on physical properties of swimbladderObjective:1、Investigate the biomechanical properties and thermal stability of the swim
     bladder and analyse the influence of crosslinking with0.625%glutaraldeyde.
     Methods:1.FaMPYVe$PQaRWM WXVaMR (f), faMPYVe&aYcK] WXVeWW (f) and peak elasticmodulus (Mp) were measured using the uniaxial tensile test.then compare the difference incircumferential and longitudinal direction of fresh and glut-fixed swimbladder, differencebetween glut-fixed swimbladder and bovine pericardium. Describe the fiber alignmentaccording to the mechanical index and the results of VG(Victoria blue-van Gieson)stainand transmission electron microscope in preliminary experiments.2. Thermal denaturationtemperatures of the fresh and glutaraldehyde-treated swim bladder were measured using adifferential scanning calorimeter. The effect of crosslinking with glutaraldehyde-treatmenton the thermal stability of swim bladder was characterized.Result:1. uniaxial tensile test:(1)No matter fresh or glut-fixed,the index off、fand
     Mpwere higher in circumferential direction(circ) than in longitudinal(long) direction.(2)fand Mpin circ direction of glut-fixed swimbladder were higher than the index of samedirection in fresh one, there was no statistic difference inf.(3)fof glut-fixed swimbladderin long direction is apparently higher than the one of the same direction in freshswimbladder, but there was no difference infand Mp.(4)fand Mpof glut-fixed bovine pericardium are apparently higher than the index of fresh pericardium,but no difference inf.(5)fand Mpof swimbladder in circ and long direction are apparently lower thanTeVMcaVdMYQ, bYX XKe VeWYPX Sffare opposite.2. Scan differential calorimeter: The thermaldenaturation temperature of fresh swim bladder is higher than human body temperature.Meanwhile, the thermal denaturation temperature of glutaraldehyde-treated swim bladderis significantly higher than that of fresh swim bladder, which indicating a better thermalstability.
     Conclusion:1、Fiber alignment of swimbladder are more uniform than pericardium, thecollagen fiber are mainly aligned in circ direction, and elastic fiber are aligned both in twodirection.2、Stiffness of glut-fixed swimbladder is lower than pericardium, and better inelongation performance which is more similar with human heart valve.3.Thermal stabilityof swimbladder, especially after crosslinking, can achieve the human temperaturerequirement.
     Part2In vitro biocompatibility evaluation of swimbladder
     Objective:According to international standard for medical devices biocompatibilityevaluation-ISO10993, we study on the in vitro cytotoxicity and hemocompatability ofswimbladder.
     Methods:1、In vitro cytotoxicity test: Extract swimbladder with MEMmedium(10%FBS). Test the cytotoxicity by MTT method.2、In vitro platelet activationtest:extract swimbladder with human blood, calculate the activated platelet by CD62pcontent.3、In vitro hemolysis test:Extract the swimbladder with sterile0.9%NaCl, mix theextract and blood, then test the hemolytic rate. Bovine pericardium are applied as control inall the test above.Result:1、Cell vitality of L929after contact with100%fresh swimbladder and100%fresh pericardium extract were85.7%and94.2%respectively. Both of the two materialsshowed no cytotoxicity to L929cells.2、CD62p in the group of glut-fixed swimbladderand bovine pericardium are0.94±0.27%and1.73±0.35%respectively. Both of themshowed no influence to the thrombus formation in vitro.3、Hemolytic rate of glut-fixedswimbladder and pericardium were0.2%and0.6%respectively. Both showed no influencein hemolysis.
     Conclusion: According to in vitro cytotoxicity test and hemocompatability test(plateletactivation test and hemolysis test), swimbladder performed good biocompatibility whichprovided foundation for in vivo test.
     Part3Calcification test of subcutaneous implantedswimbladder in rats
     Objective: Qualitatively and quantitatively analyse the calcification degree ofswimbladder and bovine pericardium in rat subcutaneous implantation model,then comparewith bovine pericardium.
     Methods:1、According to glut-DSC anticalcification treatment which has been proved tobe effectivt in pericardium material(Edwards Lifesciences Corporation, Patent No.:US6214054B1),we treated the swimbladder and pericardium, then implanted the twomaterials in young rat subcutaneously. Explanted them in7、21、56days, then qualitativelyand quantitatively analysed the calcification degree and described the relationship withimmune response.2、Qualitative analysis of calcification: Study on the calcium depositfrom morphology and biology aspects.3、Quantitative analysis of calcification: Calculatethe calcium content with ICP test.4、 Immunohistochemistry stain: We did theImmunohistochemistry stain for CD68+macrophage and CD8+T cell then described therelationship between the immune response and calcification degree.
     Rsults:1、Caicification degree of swimbladder in every stage were lighter thanpericardium, fibers of swimbladder were intact and aligned uniformly except for thedamage in late stage because of calcification. However, calcium deposition and fiberdamage were found even in the7th day of pericardium. Calcium content was higher inpericardium than swimbladder eapecially in21day stage.2、Immunohistochemistry stainshowed no inflammatory reaction among swimbladder tissue but CD68+macrophage andCD8+T cell could been seen in pericardium tissue in every stage.
     Conclusion:After anti-calcification treatment of DSC method, bovine pericardiumcalcified severely than swimbladder in rat subcutaneous model. Swimbladder has betteranti-calcification property.
     Part4Novel biomaterial small-caliber vasculargraft-experiment in rat model
     Objective: Replace abdominal aorta of rat with small-caliber vascular graft made byswimbladder and bovine pericardium then compare the outcome and hemocompatabilitybetween them.
     Methods: Replace abdominal aorta of rat with small-caliber vascular graft made byswimbladder and bovine pericardium according to ISO10993standard. Explant them at30、60day stage and compare the following aspects.1: compare the patency and aneurysm formation by320row CT.2、Sduty on the endothelialization with scanning electionmicroscope then compare the endothelialization and the degree of intimal intimalhyperplasia by HE、VB stain and Immunohistochemistry stain with factorⅧ antigen andα-SMA antigen.3、Study on the calcification by X-ray、Micro CT and Von Kossa stain..
     Results:1、The patency of swimbladder graft in two stage was both100%,with thepatency of pericardium was16.67%in both time.2、Fibers in swimbladder was intact inevery stage,new elasin fiber content were rich in swimbladder. Endothelialization wasfaster and better in swimbladder. Intimal heperplasia could be seen in every anastomoticarea. Intimal growth was not apparently different in30and60stage swimbladder, but wasapparent between two different mateials. Cavity was almost occluded in60day openpericardial vascular graft.3、No calcification was observed in swimbladder and early stageof pericardium. However, in60day explant pericardium sample, calcium deposition andfiber destrction could been observed.
     Conclusion:Swimbladder has better hemocompatability than pericardium.Small-caliber vascular graft made of swimbladder has excellent two month patency.
     Conclusion
     It was showed in this study that ultimate strength of swimbladder was lower than bovinepericardium,its flexibility and rigidity was better than bovine pericardium.Biocompatability test of swimbladder showed that its cytotoxicity,thrombogenicity andhemolytic capability were satisfactory. Calcification test in rat subcutaneously implantmodel showed calcification of swimbladder underwent anti-calcification procedure wasobviously lower than bovine pericardium with the same procedure. Small-caliber vasculargraft made of swimbladder was studied in rat abdominal aorta transplantation model, theresult showed that in30and60period, the patency, endothelialization capability wassatisfactory and no aneurysm appeared.
引文
[1]杨立峰,许建霞,奚廷斐.生物材料血液相容性的研究与评价.生物医学工程学杂志.2009;26:1162-1166.
    [2]Jonathan T. Butcher, Gretchen J. Mahler, Laura A. Hockaday, Aortic valve disease and treatment:Theneed for naturally engineered solutions. Drug Delivery Reviews,2011;63(4-5):242-68.
    [3]J.J.Takkenberg, The need for a global perspective on heart valve disease epidemiology. The SHVDworking group on epidemiology of heart valve disease founding statement, J.Heart ValveDis.17(1)(2008)135-139
    [4] G.L. Grunkemeier, et al., Long-term performance of heart valve prostheses, Curr.Probl. Cardiol.25(2)(2000)73–154.
    [5]Sinning JM, Werner N, Vasa-Nicotera M, Ghanem A, Hammerstingl C, Grube E, Nickenig G.Innovations and novel technologies in TAVI. Second generation transcatheter heart valves.Minerva Cardioangiol.2013Apr;61(2):155-63.
    [6]Munnelly AE, Cochrane L, Leong J, Vyavahare NR. Porcine vena cava as an alternative to bovinepericardium in bioprosthetic percutaneous heart valves.Biomaterials.2012Jan;33(1):1-8.
    [7]Schoen FJ, Levy RJ. Tissue heart valves: current challenges and future research perspectives. JBiomed Mater Res.1999;47:439–65.
    [8]Schoen FJ, Hobson CE. Anatomic analysis of removed prosthetic heart valves: causes of failure of33mechanical valves and58bioprostheses,1980to1983. Hum Pathol.1985;16:549.
    [9]Turina J, Hess OM, Turina M, Krayenbuehl HP. Cardiac bioprostheses in the1990s.Circulation.1993;88:775–81.
    [10]Jamieson WR, Munro AI, Miyagishima RT, Allen P, Burr LH, Tyers GF. Carpentier-Edwardsstandard porcine bio-prosthesis: clinical performance to seventeen years. Ann Thorac Surg1995;60:999–1006.
    [11]Cohn LH, Collins JJ, DiSesa VJ, et al. Fifteen-year experience with1678Hancock porcinebioprosthetic heart valve replacements. Ann Surg.1989;210:435–42.
    [12]Grunkemeier GL, Jamieson WR, Miller DC, Starr A. Actuarial versus actual risk of porcinestructural valve deterioration. J Thorac Cardiovasc Surg.1994;108:709–18.
    [13] Vesely I, Barber JE, Ratliff NB. Tissue damage and calcification may be independent mechanismsof bioprosthetic heart valve failure. J Heart Valve Dis2001;10:471.
    [14] Sacks MS, Schoen FJ. Collagen fiber disruption occurs.Ann Thorac Surg2005;79:1072–80
    [15] Barnhart GR, Jones M, Ishihara T, Rose DM, Chavez AM,Ferrans VJ. Degradation andcalcification of bioprosthetic cardiac valves: bioprosthetic tricuspid valve implantation in sheep. Am JPathol.1982;106:136–9.
    [16]S.H. Rahimtoola, Choice of prosthetic heart valve in adults an update.J.Am.Coll.Cardiol.55(22)(2010)2413–2426.
    [17] Schoen FJ, Fernandez J, Gonzalez-Lavin L, Cernaianu A. Causes of failure and pathologic findingsin surgically removed Ionescu-Shiley standard bovine pericardial heart valve bioprostheses: emphasison progressive structural deterioration. Circulation1987;76:618–27.
    [18] Walley VM, Keon WJ. Patterns of failure in Ionescu-Shiley bovine pericardial bioprosthetic valves.J Thorac Cardiovasc Surg.1987;93:925–33.
    [19]欧阳晨曦,李沁.小口径人工血管血液相容性.中国组织工程与临床康复,2008,12:1119-1123
    [20]罗新锦,吴清玉.小口径人工血管的研究进展.中国胸心血管外科临床杂志,2001,8:193-195
    [21]唐朝君,王贵学.小口径人工血管研究的进展.Chinese Journal of Medical Instrumentation,2005,29:439-442
    [22]施德兵,符伟国.小口径人工血管内皮化临床研究现状.国际外科学杂志,2007,34:796-798
    [23]张文波,何红兵.内皮化小口径人工血管的研究.中华实验外科杂志,2010,27:556-557
    [24]蔡巍巍,陈勇兵.肝素包被对异种脱细胞血管移植后内膜增生得影响.上海交通大学学报,2008,11:1420-1424
    [25]胡波,何延政.人工血管内皮化进展.中国组织工程研究与临床康复,2007,11:1923-1926
    [26] Matthew R. Stoyek, Frank M. Smith. Effects of altered ambient pressure on the volume anddistribution of gas within the swimbladder of the adult zebrafish, Danio rerio. The Journal ofExperimental Biology,2011,214,2962-2972
    [27] Jessica L. Finney, George N. Robertson. Structure and Autonomic Innervation of the Swim Bladderin the Zebrafish (Danio rerio). THE JOURNAL OF COMPARATIVE NEUROLOGY,2006,495:587–606
    [28]林辉.淡水鱼鳔营养化学成分分析.基层中药杂志,1998,12:38-39
    [29]庞坤玮.鱼鳔及其鱼鳔胶黏剂(一)鱼鳔的基本组成与性能..CHINA ADHESIVES,2001.11:14-15
    [30]张更申,张庆俊.应用鲤鱼鳔进行家兔硬脑膜修补术实验研究.2000,21:337-340
    [31]罗文彬,杨波,徐斌.泌尿外科高难度腹腔镜手术关键操作步骤强化训练模型的制备及应用.第二军医学学报,2010,31:101-103
    [32]ISO10993-1:Biological evaluation of medical devices-Part1:Evaluation and testing within a riskmanagement process,Switzerland,2009
    [33]ISO10993-4:Biological evaluation of medical devices-Part4:Selection of tests for interactions withblood+AMENDMENT1, Switzerland,2006
    [34]ISO10993-5:Biological evaluation of medical devices-Part5:Tests for in vitrocytotoxicity,Switzerland,2009
    [35]Seong-Jun Hwang,Seong Who Kim. The Decellularized Vascular Allograft as an ExperimentalPlatform for Developing a Biocompatible Small-Diameter Graft Conduit in a Rat SurgicalModel.Yonsei Med J,2011,52(2):227-233
    [1]Patrick Argos, Michael G. Thermal stability and protein structure. Biochemistry,1979,18(25),pp5698-5703
    [2]John C.Bischof, Xiaoming He. Thermal Stability of Proteins.Annals of the New York Academy ofSciences,2006,1066:12-33
    [3]Shah SR, Vyavahare NR. The effect of glycosaminoglycan stabilization on tissue buckling in bioprosthetic heart valves. Biomaterials,2008,29:1645-53.
    [4]Schoen FJ. Evolving concepts of cardiac valve dynamics: the continuum of development, functionalstructure, pathobiology, and tissue engineering. Circulation,2008;118:1864-80
    [5]Vesely I, Boughner D, Song T. Tissue buckling as a mechanism of bioprosthetic valve failure. Ann Thorac Surg1988;46:302-8.
    [6]Fisher J, Davies GA. Buckling in bioprosthetic valves. Ann Thorac Surg1989;48:147-8.
    [7] Steven Perrin, Celeste B. Rich. The Zebrafish Swimbladder: A Simple Model for Lung ElastinInjury and Repair.Connective Tissue Research,1999,40(2):105-112
    [8]谈梦伟.Stanford A型主动脉夹层管壁生物力学及弹力纤维相关蛋白表达情况的研究.上海.长海医院.2012
    [9]Loke WK, Khor E. Validation of the shrinkage temperature of animal tissue for bioprosthetic heartvalve application by differential scanning calorimetry. Biomoterials1995;16:251-258.
    [10]Shah SR, Vyavahare NR. The effect of glycosaminoglycan stabilization on tissue buckling in bioprosthetic heart valves. Biomaterials2008;29:1645-53.
    [11] Porcine vena cava as an alternative to bovine pericardium in bioprosthetic percutaneous heartvalves Amy E. Munnelly, Leonard Cochrane, Biomaterials33(2012):1-8
    [12]--<.%SYVJeW,).-.5SNS.5(/$7,216+,3%(7:((1),%5(25,(17$7,21$1'7(16,/(675(1*7+2)1$785$/&2//$*(10(0%5$1(6)25+($579$/9(/($)/(76.$RaPeW de0ec RMca de la Fractura,2011,1:51-55
    [13]Zioupos P, Barbenel JC. Mechanics of native bovine pericardium. II. A structure based model for the anisotropic mechanical behaviour of the tissue. Bioma-terials1994;15:374-82.
    [14]Lee CH, Vyavahare N, Zand R, Kruth H, Schoen FJ, Bianco R, et al. Inhibition of aortic wall calcification in bioprosthetic heart valves by ethanol pretreatment: biochemical and biophysical mechanisms. JBiomed Mater Res,1998;42:30-7.
    [15]Lee TC, Midura RJ, Hascall VC, Vesely I. The effect of elastin damage on themechanics of the aortic valve. J Biomech,2001;34:203-10.
    [16]JoyceEM,LiaoJ,SchoenFJ.Functionalcollagenfiberarchitecture of the pulmonary heart valve cusp. Ann Thorac Surg2009;87:1240-9.
    [17]Friebe VM, Mikulis B. Neomycin enhances extracellular matrix stability of glutaraldehyde crosslinked bioprosthetic heart valves. J Biomed Mater Res B Appl Biomater;2011,99(2):217-29.
    [18] G.W. Christie, Anatomy of aortic heart valve leaflets: the influence of glutaraldehyde fixation onfunction, Eur. J. Cardiothorac. Surg.6(Suppl1)(1992): S25–S328discussion S33.
    [19] Y.F. Missirlis, C.D. Armeniades, Stress analysis of the aortic valve during diastole: important parameters, J. Biomech.9(7)(1976):477–480.
    [20] R.E. Clark, Stress-strain characteristics of fresh and frozen human aortic and mitral leaflets and chordae tendineae. Implications for clinical use, J. Thorac. Cardiovasc. Surg.66(2)(1973):202–208.
    [21] J. Leeson-Dietrich, D. Boughner, I. Vesely, Porcine pulmonary and aortic valves: a comparison of their tensile viscoelastic properties at physiological strain rates, J. Heart Valve Dis.4(1)(1995):88–94.
    [22] E.H. Stephens, et al. Age-related changes in material behavior of porcine mitral and aortic valves and correlation to matrix composition. Tissue Eng. Part A.16(3)(2010)867–878.
    [23] Y.F. Missirlis, C.D. Armeniades, J.H. Kennedy, Mechanical and histological study of aortic valve tissue from a patient with Marfan's disease, Atherosclerosis24(1–2)(1976)335–338.
    [24] Y.F. Missirlis, M. Chong, Aortic valve mechanics—Part I: material properties of natural porcine aortic valves, J. Bioeng.2(3–4)(1978)287–300.
    [25] E.P. Rousseau, et al., Elastic and viscoelastic material behaviour of fresh and glutaraldehyde-treated porcine aortic valve tissue, J. Biomech.16(5)(1983)339-348.
    [26] A.A. Sauren, et al., The mechanical properties of porcine aortic valve tissues,J. Biomech.16(5)(1983)327–337.
    [27] D.Mavrilas,Y.Missirlis,An approach to the optimization of preparation ofbioprosthetic heart valves,J. Biomech.24(5)(1991)331–339.
    [28]Yamashita H, Ozaki S, Iwasaki K,Tensile strength of human pericardium treated with glutaral-dehyde.Ann Thorac Cardiovasc Surg.2012;18(5):434-7
    [29]Jonathan T. Butcher, Gretchen J. Mahler, Laura A. Hockaday, Aortic valve disease andtreatment:The need for naturally engineered solutions. Drug Delivery Reviews,2011;63(4-5):242-68
    [30]Virgilio Tattini Jr.a, Jivaldo do Rosario Matosb. Evaluation of Shrinkage Temperature of BovinePericardium Tissue for Bioprosthetic Heart Valve Application by Differential Scanning Calorimetry andFreeze-drying Microscopy. Materials Research,2007,Vol.10, No.1,1-4
    [31]J.Michael Lee,Christopher A.Effect of molecular structure of poly(glycidyl ether)reagents oncrosslinking and mechanical properties of bovine pericardial xenograft materials.Journal of BiomedicalMaterials Research,1994,28:981-992
    [32]Won Kyu Lee, Ki Dong Park.Heparinized bovine pericardium as a novel cardiovascularbioprosthesis.Biomaterials,2000,21:2323-2330
    [33] R.M.T. Fernandes a, R.G. Couto Neto.Collagen films from swim bladders: Preparation method andproperties. Biointerfaces2008,62:17-21
    [34]Hickman, T.J. Sims, C.A. Miles, A.J. Bailey, M. de Mari, M. Koopmans, J. Biotech.79(2000)245
    [35] Kyoung Soo Jeea, Yong Soo Kima.A novel chemical modification of bioprosthetic tissues usingL-arginine. Biomaterials,24(2003):3409–3416
    [1] International Organization for Standardization, ISO10993-1:Biological evaluation of medicaldevices-Part1:Evaluation and testing within a risk management process, Geneve,ISO,,2009
    [2] International Organization for Standardization, ISO10993-4.Biological evaluation of medicaldevices-Part4:Selection of tests for interactions with blood+AMD1, Geneve,ISO,2006
    [3] International Organization for Standardization, ISO10993-5. Biological evaluation of medicaldevices-part5. Tests for cytotoxicity: in vitro methods. Geneve: ISO,2009
    [4]Kutlu Gokhan Ozdemir,Handan Yilmaz.In vitro evaluation of cytotoxicity of soft lining materials onL929cells by MTT assay.J Biomed Mater Res B Appl Biomater,2009,90(1):82-6
    [5] International Organization for Standardization, ISO7405. Dentistry-Preclinical evaluation ofbiocompatibility of medical devices used in dentistry-Test methods for dental materials. Geneve: ISO,1997.
    [6] Thonemann B, Schmalz G, Hiller KA, Schweikl H. Responses of L929mouse fibroblasts, primaryand immortalized bovine dental papilla-derived cell lines to dental resin components. Dent Mater2002;18:318–323.
    [7]杨立峰,许建霞,奚廷斐.生物材料血液相容性的研究与评价.生物医学工程学杂志.2009;26:1162-1166
    [8]TSAIC C,CHANG Y,SUNG H W,et al.Effects of heparin immobilization on the surfacecharacteristics of a biological tissue fixed with a naturally occurring cross-linking agent(genipin):an invitro study.Biomaterials,2001,22:523
    [9]WASILUKA.Makers of platelets activation,CD62p and soluble P-selection in healthy termneonates.J Perinat Med,2004,32:514-515
    [10]ZHOU C,YI Z.Blood-compatibility of polyurethane/liquid crystal compositemembranes.Biomaterials,1999,20(22):2093-2099
    [11]Shim D,Wechsler DS,Lloyd TR,Beekman RH.Hemolysis following coil embolization of a patentductus arteriosus.Cathet Cardiovasc Diagn1996;39:287-290
    [12] George Fotakis, John A. Timbrell. In vitro cytotoxicity assays: Comparison of LDH, neutral red,MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride ToxicologyLetters,160(2006):171–177
    [13]Alicja Wasiluk.Markers of platelets activation,CD62P and soluble P-selectin in healthy termneonates.J.Perinat.Med,2004.123
    [14] Rothamel D, Schwarz F, Sculean A, Herten M, Scherbaum W, Becker J. Biocompatibility ofvarious collagen membranes in cultures of human PDL fibroblasts and human osteoblast-like cells. ClinOral Implants Res2004;15:443–449.
    [15] Speer DP, Chvapil M, Eskelson CD, Ulreich J. Biological effects of residual glutaraldehyde inglutaraldehyde-tanned collagen bioma-terials. J Biomed Mater Res1980;14:753–764.
    [16]:Mebe ',0eJeVQaR-,/’,XaPMeR*-,$bbSXX:0.*PYXaVaPdeK]de VePeaWe fVSQ ZaWcYlar prosthesesof biologic origin. Surgery1988;104:26–33.
    [17]杨立峰,许建霞,奚廷斐.生物材料血液相容性的研究与评价.生物医学工程学杂志.2009;26:1162-1166.
    [1] G.L. Grunkemeier, et al., Long-term performance of heart valve prostheses, Curr.Probl. Cardiol.25(2)(2000)73–154.
    [2]Ferrans VJ, Boyce SW, Billingham ME, Jones M, Ishihara T, Robert WC. Calci"c deposits inporcine bioprostheses: structure and pathogenesis. Am J Cardiol1980;46:721-34
    [3]Schoen FJ, Levy RJ. Bioprosthetic heart valve failure: pathology and pathogenesis. Cardiol Clin1984;2:717-39.
    [4]Milano A, Bortolotti U, Talenti E, Valfre C, Arbustini E, Valente M, et al. Calcific degeneration asthe main cause of porcine bio-prosthetic valve dysfunction. Am J Cardiol1984;53:1066-70.
    [5]Schoen FJ, Levy RJ, Nelson AC, et al. Onset and progression of experimental bioprosthetic heartvalve calcification. Lab Invest1985;52:523–32.
    [6]Schoen FJ, Tsao JW, Levy RJ. Calcification of bovine peri cardium used in cardiac valvebioprostheses. Implications for mechanisms of bioprosthetic tissue mineralization. Am J Pathol1986;23:143–54.
    [7]Valente M, Bortolotti U, Thiene G. Ultrastructural sub-strates of dystrophic calcification in porcinebioprosthetic valve failure. Am J Pathol1985;119:12.
    [8]Schoen FJ. Future directions in tissue heart valves: impact of recent insights from biology andpathology. J Heart Valve Dis1999;8:350–8.
    [9]Levy RJ, Schoen RJ, Levy JT, Nelson AC, Howard SL, Oshry LJ. Biologic determinants ofdystrophic calcification and osteocalcin deposition in glutaraldehyde-preserved por-cine aortic valveleaflets implanted subcutaneously in rats. Am J Pathol1983;113:142–55.
    [10] Frederick J. Schoen and Robert.Calcification of Tissue Heart Valve Substitutes: Progress TowardUnderstanding and Prevention J. Levy Ann Thorac Surg.2005;79:1072-1080
    [11]Crystal M.Cunanann, Lillian Quintero, Michael N.Helmus, Christine Loshbaugh, H.Chris Sarner.Method for fixation of biological tissues having mitigated propensity for post-implantation calcificationand thrombosis and bioprosthetic devices prepared thereby.[P].United States:US6214054b1,2001
    [12] G.L. Grunkemeier, et al., Long-term performance of heart valve prostheses, Curr.Probl. Cardiol.25(2)(2000)73–154
    [13]Sinning JM, Werner N, Vasa-Nicotera M, Ghanem A, Hammerstingl C, Grube E, Nickenig G.Innovations and novel technologies in TAVI. Second generation transcatheter heart valves.Minerva Cardioangiol.2013Apr;61(2):155-63.
    [14]Schoen FJ, Levy RJ, Nelson AC, Bernard WF, Nashef A, Hawley M. Onset and progression ofexperimental bioprosthetic heart valve calcification. Lab Invest1985;52:523-32.
    [15] Schoen FJ, Levy RJ, Piehler HR. Pathological considerations in replacement heart valves.Cardiovasc Pathol1992;4:69-73
    [16] Vyavahare N, Hirsch D, Lerner E, Baskin J, Schoen FJ, Bianco R, et al. Prevention of bioprostheticheart valve calcification by ethanol preincubation: efficacy and mechanisms. Circulation1997;95:479-88.
    [17] Schoen FJ, Levy RJ. Heart valve bioprostheses: antimineraliza-tion. Eur J Cardiothorac Surg1992;6(suppl1):S91-4.
    [18] Schoen FJ, Harasaki H, Kim K, Anderson HC, Levy RJ. Biomaterial associated calcification:pathology, mechanisms, and strategies for prevention. J Biomed Mater Res1988;22:11-36.
    [19] Gott JP, Chih P, Dorsey L, Jay JL, Jett GK, Schoen FJ, et al. Calcification of porcine valves: asuccessful new method of antimineralization. Ann Thorac Surg1992;53:207-16.
    [20] Jones M, Eidbo EE, Hilbert SL, Ferrans VJ, Clark RE. Anticalcification treatments of bioprostheticheart valves: in vivo studies in sheep. J Cardiovasc Surg1989;4:69-73.
    [21] Grabenw ger M, Sider J, Fitzal F, Zelenka C, Windberger U, Grimm M, et al. Impact ofglutaraldehyde on calcification of pericardial bioprosthetic heart valve material. Ann Thorac Surg1996;62:772-7.
    [22] Webb CL, Benedict JJ, Schoen FJ, Linden JA, Levy RJ. Inhibition of bioprosthetic valvecalcification with aminodiphos-phonate covalently bound to residual aldehyde groups. Ann ThoracSurg1988;46:309-16.
    [23] Valente M, Pettenazzo E, Gaetano T, Molin GM, Martignago F, DeGiorgi G, et al. Detoxifiedglutaraldehyde cross-linked peri-cardium: tissue preservation and mineralization mitigation in asubcutaneous rat model. J Heart Valve Dis1998;7:283-91
    [24] Okoshi T, Noishiki Y, Tomizawa Y, Morishima M, Terada R, Koyanagi H. Long-term results of anew antithrombogenic cardiac wall substitute. ASAIO Trans1989;35:391-5.
    [25] Moore MA. Stabilization of pericardial tissue by dye mediated photooxidation. J Biomed Res1994;611-8.
    [26] Girardot JM, Girardot MN. Amide cross-linking: an alternative to glutaraldehyde fixation. J HeartValve Dis1996;5:518-25.
    [27] Webb CL, Schoen FJ, Levy RJ. Covalent binding of amin-opropanehydroxydiphosphonate toglutaraldehyde resi-dues in pericardial bioprosthetic tissue: stability and calci-fication inhibitionstudies. Exp Mol Pathol1989;50:291–302.
    [28] Webb CL, Benedict JJ, Schoen FJ, Linden JA, Levy RJ. Inhibition of bioprosthetic heart valvecalcification with aminodiphosphonate covalently bound to residual alde-hyde groups. Ann ThoracSurg1988;46:309–16.
    [29] Johnston TP, Webb CL, Schoen FJ, Levy RJ. Site-specific delivery of ethanehydroxydiphosphonate from refillable polyurethane reservoirs to inhibit bioprosthetic tissue cal-cification. JControl Release1993;25:227–40.
    [30] Fyfe B, Schoen FJ. Pathological analysis of nonstented Freestyle aortic root bioprostheses treatedwith amino oleic acid. Semin Thorac Cardiovasc Surg1999;11:151–6.
    [31] Fradet G, Bleese N, Busse E, et al. The Mosaic valve clinical performance at seven years: resultsfrom a multicenter prospective clinical trial. J Heart Valve Dis2004;13:239–47.
    [32] Bottio T, Thiene G, Pettenazzo E, et al. Hancock II biopros-theses: a glance at the microscope inmid-long-term ex-plants. J Thorac Cardiovasc Surg2003;126:99–105.
    [33] David TE, Armstrong S, Sun Z. The Hancock II bioprosthe-sis at12years. Ann Thorac Surg1998;66:S95–S98.
    [34] Schryer PJ, Tomasek ER, Starr A, Wright JT. Anticalcification effect of glutaraldehyde preservedvalve tissue stored for increas-ing time in glutaraldehyde: In: Bodnar A, Yacoub M, editors.Proceedings of the Third International Symposium on Biologic and Bioprosthetic Valves. New York:Yorke Medical Books;1986, p.471-2.
    [35]Zilla P, Weissenstein C, Bracher M, Zhang Y, Koen W, Human P, et al. High glutaraldehydeconcentrations reduce rather than increase the calcification of aortic wall tissue. J Heart Valve Dis1997;6:502-9.
    [36]Schoen FJ, Levy RJ. Tissue heart valves: current challenges and future research perspectives. JBiomed Mater Res1999;47:439–65
    [37]Levy RJ, Schoen RJ, Levy JT, Nelson AC, Howard SL, Oshry LJ. Biologic determinants ofdystrophic calcification and osteocalcin deposition in glutaraldehyde-preserved por-cine aortic valveleaflets implanted subcutaneously in rats. Am J Pathol1983;113:142–55.
    [38]Schoen FJ, Tsao JW, Levy RJ. Calcification of bovine peri-cardium used in cardiac valvebioprostheses. Implications for mechanisms of bioprosthetic tissue mineralization. Am J Pathol1986;23:143–54.
    [39]Bailey MT, Pillarisetti S, Xiao H, Vyavahare NR. Role of elastin in pathologic calcification ofxenograft heart valves. J Biomed Mater Res2003;66:93–102.
    [40]Levy RJ, Schoen FJ, Sherman FS, Nichols J, Hawley MA, Lund SA. Calcification ofsubcutaneously implanted type I collagen sponges: effects of glutaraldehyde and formalde-hydepretreatments. Am J Pathol1986;122:71–82.
    [41]Vyavahare N, Ogle M, Schoen FJ, Levy RJ. Elastin calcifi-cation and its prevention with aluminumchloride pretreat-ment. Am J Pathol1999;155:973–82.
    [42] Strom TB, Roy-Chaudhury P, Manfro R, Zheng XX, Nickerson PW, Wood K, Bushell A. The Th1/Th2paradigm and the allograft response. Curr Opin Immunol1996;8:688–93.[PubMed:8902395]
    [43] Zhai Y, Ghobrial RM, Busuttil RW, Kupiec-Weglinski JW. Th1and Th2cytokines in organtransplantation: paradigm lost? Crit Rev Immunol1999;19:155–72.[PubMed:10352902]
    [44] Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature1996;383:787–93.[PubMed:8893001]
    [45]Matsumiya G, Shirakura R, Miyagawa S, Izutani H, Nakata S, Matsuda H. Assessment of T-cellsubsets involved in antibody production and cell-mediated cytotoxicity in rat-to-mouse cardiacxenotransplantation. Transplant Proc1994;26:1214–6.[PubMed:8029892]
    [46] Chen N, Gao Q, Field EH. Prevention of Th1response is critical for tolerance. Transplantation1996;61:1076–83.[PubMed:8623189]
    [47]Feili-Hariri M, Falkner DH, Morel PA. Polarization of naive T cells into Th1or Th2by distinctcytokine-driven murine dendritic cell populations: implications for immunotherapy. J Leukoc Biol2005;78:656–64.[PubMed:15961574]
    [48]Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2macrophages and the Th1/Th2paradigm. J Immunol2000;164:6166–73.[PubMed:10843666]
    [1]欧阳晨曦,李沁.小口径人工血管血液相容性.中国组织工程与临床康复,2008,12:1119-1123
    [2] John D. Kakisis, Christos D. Liapis, Christopher Breuer, Bauer E. Artificial blood vessel: The holygrail of peripheral vascular surgery. Journal of Vascular Surgery,2005,41(2):349-354.
    [3] Dieter Klemm, Dieter Schumann, Ulrike Udhardt, Silvia Marsch. Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Progress in Polymer Science,2001,26(9):1561-1603.
    [4] Seung-Woo Cho, Sang Hyun Lim, II-Kwon Kim, Yoo Sun Hong, Sang-Soo Kim, Kyung Jong Yoo,Hyun-Young Park, Yangsoo Jang, Byung Chul Chang, Cha Yong Choi, Ki-Chul Hwang, andByung-Soo Kim. Small-Diameter Blood Vessels Engineered With Bone Marrow–Derived Cells. Annalsof Surgery,2005,241(3):506-515.
    [5] Daniel D. Swartz, James A. Russell, and Stelios T. Andreadis. Engineering of fibrin-basedfunctional and implantable small-diameter blood vessels. American Journal of Physiology: Heart andCirculatory Physiology,2005,288(3):1451-1460.
    [6] Brett C. Isenberg, Chrysanthi Williams, Robert T. Tranquillo. Small-diameter artificial arteriesengineered in vitro. Circulation Research,2006,98:25-35.
    [7] Craig K. Hashi, Nikita Derugin, Randall Raphael R. Janairo, Randall Lee, David Schultz, JeffreyLotz, Song Li. Antithrombogenic modification of small-diameter microfibrous vascular grafts.Arteriosclerosis, Thrombosis, and Vascular Biology,2010;30:1621-1627.
    [8] Buddy D. Ratner. The blood compatibility catastrophe. Journal of Biomedical Materials Research,1993,27(3):283–287.
    [9] Huang Nana, Yang Ping, Cheng Xuan, Leng Yongxang, Zheng Xiaolan, Cai Guangjun, ZhenZihong, Zhang Feng, Chen Yuanru, Liu Xianghuai, Xi Tingfei. Blood compatibility of amorphoustitanium oxide films synthesized by ion beam enhanced deposition. Biomaterials,1998,19(7–9):771–776.
    [10] Shigehiro Hirano, Yasuharu Noishiki. The blood compatibility of chitosan and N-acylchitosans.Journal of Biomedical Materials Research,1985,19(4):413–417.
    [11] Young Jin Kim, Inn-Kyu Kang, Man Woo Huh, Sung-Chul Yoon. Surface characterization and invitro blood compatibility of poly(ethylene terephthalate) immobilized with insulin and/or heparin usingplasma glow discharge. Biomaterials,2000,21(2):121–130.
    [12] Taolei Sun, Hong Tan, Dong Han, Qiang Fu, Lei Jiang. No platelet can adhere—largely improvedblood compatibility on nanostructured superhydrophobic surfaces. Small,2005,1(10):959–963.
    [13] Nicolas L'heureux, Stéphanie Paquet, Raymond Labbé, Lucie Germain and Fran ois A. Auger. Acompletely biological tissue-engineered human blood vessel. The FASEB Journal,1998,12(1):47-56.
    [14]Jian Yang, Delara Motlagh, Antonio R. Webb, and Guillermo A. Ameer. Novel BiphasicElastomeric Scaffold for Small-Diameter Blood Vessel Tissue Engineering. Tissue Engineering,2006,11(11-12):1876-1886.
    [15]Love C,Zelenovic T,Dahl T,Breznock E,Lirtzman R.Rapid intraoperative construction ofautologous small caliber blood vessels.ASAIO J,1998,44(5):M648-52
    [16]Choong-Hun Suh,Martin K.Oaks,David C.Kress.A Rat Model for the Evaluation of Small-CaliberVascular Grafts.Journal of investigative surgery,1997,10:115-118
    [17]罗新锦,吴清玉.小口径人工血管的研究进展.中国胸心血管外科临床杂志,2001,8:193-195
    [18]唐朝君,王贵学.小口径人工血管研究的进展.Chinese Journal of Medical Instrumentation,2005,29:439-442
    [19]施德兵,符伟国.小口径人工血管内皮化临床研究现状.国际外科学杂志,2007,34:796-798
    [20]张文波,何红兵.内皮化小口径人工血管的研究.中华实验外科杂志,2010,27:556-557
    [21]蔡巍巍,陈勇兵.肝素包被对异种脱细胞血管移植后内膜增生得影响.上海交通大学学报,2008,11:1420-1424
    [22]胡波,何延政.人工血管内皮化进展.中国组织工程研究与临床康复,2007,11:1923-1926
    [23]Yamanami M, Yamamoto A, Iida H, Watanabe T, Kanda K, Yaku H, Nakayama Y.3-Teslamagnetic resonance angiographic assessment of a tissue-engineered small-caliber vascular graftimplanted in a rat.J Biomed Mater Res B Appl Biomater.2010;92(1):156-60
    [24]0,&52&70YJRaM ',7MPPe-&,0Vó[c^]ńWOM:, de9aPeRce6,0SRXeX;,0PPeV0,:aPTSXK%+.Experimental noninferiority trial of synthetic small-caliber biodegradable versus stable vascular grafts.JThorac Cardiovasc Surg.2012Oct22.
    [25]Ishii Y, Sakamoto S, Kronengold RT, Virmani R, Rivera EA, Goldman SM, Prechtel EJ, Hill JG,Damiano RJ Jr. A novel bioengineered small-caliber vascular graft incorporating heparin and sirolimus:excellent6-month patency. J Thorac Cardiovasc Surg.2008Jun;135(6):1237-45;
    [1]Roger VL, Go AS, Lloyd-Jones DM et al.;American Heart Association Statistics Committee and StrokeStatisticsSubcommittee. Heart disease and stroke statistics–2012update: a report from the American Heart Association.Circulation125(1), e2–e220(2012).
    [2]Saha SP, Muluk S, Schenk W3rd et al. Use of fibrin sealant as a hemostatic agent in expanded polytetrafluoroethylenegraft placement surgery. Ann. Vasc. Surg.25(6),813–822(2011).
    [3]Wang S, Gupta AS, Sagnella S, Barendt PM, Kottke-Marchant K, Marchant RE. Biomimetic fluorocarbon surfactantpolymers reduce platelet adhesion on PTFE/ePTFE surfaces. J. Biomater. Sci.Polym. Ed.20(5–6),619–635(2009).
    [4]Yashiro B, Shoda M, Tomizawa Y, Manaka T, Hagiwara N. Long-term results of a cardiovascular implantableelectronic device wrapped with an expanded polytetrafluoroethylene sheet. J. Artif. Organsdoi:10.1007/s10047-012-0634-8(2012)(Epub ahead of print).
    [5]Barozzi/,%VM^aVd&3,*aPaXM-&,.SRWXaRXMRSZ,(,%SKYXa/, d’8deOeQ <.6Mde-to-side aorto-GoreTex central shuntwarrants central shunt patency and pulmonary arteries growth. Ann. Thorac.Surg.92(4),1476–1482(2011).
    [6]Verbelen TO, Famaey N, Gewillig M, Rega FR, Meyns B. Off-label use of stretchable polytetrafluoroethylene:overexpansion of synthetic shunts. Int. J. Artif. Organs33(5),263–270(2010).
    [7] Doble M, Makadia N, Pavithran S, Kumar RS. Analysis of explanted ePTFE cardiovascular grafts (modified BTshunt). Biomed. Mater.3(3),034118(2008).
    [8] Oda T, Hoashi T, Kagisaki K, Shiraishi I,Yagihara T, Ichikawa H. Alternative to pulmonary allograft forreconstruction of right ventricular outflow tract in small patients undergoing the Ross procedure. Eur. J. Cardiothorac.Surg.42(2),226–232(2012).
    [9] Miyazaki T, Yamagishi M, Nakashima A et al. Expanded polytetrafluoroethylene valved conduit and patch withbulging sinuses in right ventricular outflow tract reconstruction. J. Thorac. Cardiovasc. Surg.134(2),327–332(2007).
    [10] Miyazaki T, Yamagishi M, Maeda Y et al. Expanded polytetrafluoroethylene conduits and patches with bulgingsinuses and fan-shaped valves in right ventricular outflow tract reconstruction: multicenter study in Japan. J. Thorac.Cardiovasc. Surg.142(5),1122–1129(2011).
    [11] Ando M, Takahashi Y. Ten-year experience with handmade trileaflet polytetrafluoroethylene valved conduit usedfor pulmonary reconstruction. J. Thorac.Cardiovasc. Surg.137(1),124–131(2009).
    [12] Nagano N, Cartier R, Zigras T, Mongrain R, Leask RL. Mechanical properties andmicroscopic findings of a Dacron graft explanted27years after coarctation repair. J. Thorac. Cardiovasc. Surg.134(6),1577–1578(2007).
    [13] Shayani V, Newman KD, Dichek DA.Optimization of recombinant t-PA secretion from seeded vascular grafts.J.Surg. Res.57(4),495–504(1994).
    [14] Jensen N, Lindblad B, Bergqvist D. Endothelial cell seeded dacron aortobifurcated grafts: platelet deposition andlong-term follow-up. J. Cardiovasc. Surg.(Torino)35(5),425–429(1994).
    [15] Roll S, Müller-Nordhorn J, Keil T et al. Dacron vs. PTFE as bypass materials in peripheral vascular surgery–systematic review and meta-analysis. BMC Surg.8,22(2008).
    [16] Maya ID, Weatherspoon J, Young CJ, Barker J, Allon M. Increased risk of infection associated with polyurethanedialysis grafts. Semin. Dial.20(6),616–620(2007).
    [17] Kütting M, Roggenkamp J, Urban U, Schmitz-Rode T, Steinseifer U. Polyurethane heart valves: past, present andfuture. Expert Rev. Med. Devices8(2),227–233(2011).
    [18] Silvetti MS, Drago F, RavàL. Long-term outcome of transvenous bipolar atrial leads implanted in children andyoung adults with congenital heart disease. Europace14(7),1002–1007(2012).
    [19] Johnson WB, Braly A, Cobian K et al. Effect of insulation material in aging pacing leads: comparison of impedanceand other electricals: time-dependent pacemaker insulation changes. Pacing Clin. Electrophysiol.35(1),51–57(2012).
    [20] Stachelek SJ, Alferiev I, Fulmer J,Ischiropoulos H, Levy RJ. Biological stability of polyurethane modified withcovalent attachment of di-tert-butyl-phenol. J. Biomed. Mater. Res. A82(4),1004–1011(2007).
    [21] Koh AS, Choi LM, Sim LL et al. omparing the use of cobalt chromium tents to tainless steel stents in primaryercutaneous coronary intervention for cute yocardial infarction: a prospective egistry. Acute Card. Care13(4),219–222(2011).
    [22]2’%VMeR%-,6XMRWSR-6,/aVWeR65,(TTMKMQeV0-,&aVVSPP:0.$TPaXMRYQcKVSQMYQ WXeeP fSV caVdMSZaWcYPaVstents.Biomaterials31(14),3755–3761(2010).
    [23] Rigatelli G, Cardaioli P, Giordan M et al.Nickel allergy in interatrial shunt evice-based closure patients. Congenit.eart Dis.2(6),416–420(2007).
    [24] van Putte BP, Ozturk S, Siddiqi S,Schepens MA, Heijmen RH, Morshuis WJ. arly and late outcome after aortic rooteplacement with a mechanical valve rosthesis in a series of528patients. Ann.Thorac. Surg.93(2),503–509(2012).
    [25] Akhtar RP, Abid AR, Zafar H, Khan JS. nticoagulation in patients following prosthetic heart valve replacement. Ann.horac. Cardiovasc. Surg.15(1),10–17(2009).
    [26] Dalmau MJ, González-Santos JM, lázquez JA et al. Hemodynamic erformance of the Medtronic Mosaic anderimount Magna aortic bioprostheses: ive-year results of a prospectively andomized study. Eur. J. Cardiothorac.Surg.39(6),844–852; iscussion852(2011).
    [27] Hodges AM, Lyster H, McDermott A et al.Late antibody-mediated rejection after eart transplantation following theevelopment of de novo donor-specific human leukocyte antigen antibody. Transplantation93(6),650–656(2012).
    [28] Byrne GW, McGregor CG. Cardiac xenotransplantation: progress and challenges. Curr. Opin. OrganTransplant.17(2),148–154(2012).
    [29] Badylak S, Obermiller J, Geddes L, Matheny R. Extracellular matrix for myocardial repair. Heart Surg. Forum6(2),e20–e26(2003).
    [30] Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials28(25),3587–3593(2007).
    [31] Boyd WD, Johnson WE3rd, Sultan PK,Deering TF, Matheny RG. Pericardial reconstruction using an extracellularmatrix implant correlates with reduced risk of postoperative atrial fibrillation in coronary artery bypass surgery patients.Heart.Surg.Forum13(5), e311–e316(2010).
    [32] Fallon A, Goodchild T, Wang R, Matheny RG. Remodeling of extracellular matrix patch used for carotid arteryrepair. J. Surg.Res.175(1), e25–e34(2012).
    [33] Zhao ZQ, Puskas JD, Xu D et al.Improvement in cardiac function with small intestine extracellular matrix isassociated with recruitment of c-Kit cells, myofibroblasts, and macrophages after myocardial infarction. J. Am. Coll.Cardiol.55(12),1250–1261(2010).
    [34] Crapo PM, Wang Y. Small intestinal submucosa gel as a potential scaffolding material for cardiac tissueengineering.Acta Biomater.6(6),2091–2096(2010).
    [35]Tan MY, Zhi W, Wei RQ et al. Repair of infarcted myocardium using mesenchymalstem cell seeded small intestinal submucosa in rabbits. Biomaterials30(19),3234–3240(2009).
    [36] Inoue H, Iguro Y, Matsumoto H, Ueno M, Higashi A, Sakata R. Right hemireconstruction of the left atrium usingtwo equine pericardial patches for recurrent malignant fibrous histiocytoma: report of a case. Surg. Today39(8),710–712(2009).
    [37] Shinn SH, Sung K, Park PW et al. Results of annular reconstruction with a pericardial patch in active infectiveendoarditis.J. Heart Valve Dis.18(3),315–320(2009).
    [38] ASM International. Materials and Coatings for Medical Devices: Cardiovascular. ASM International, OH, USA,12–18(2009).
    [39] Goissis G, Giglioti Ade F, Braile DM. Preparation and characterization of an acellular bovine pericardium intendedfor manufacture of valve bioprostheses. Artif. Organs35(5),484–489(2011).
    [40]Braile MC, Carnevalli NC, Goissis G,Ramirez VA, Braile DM. In vitro properties and performance ofglutaraldehyde-crosslinked bovine pericardial bioprostheses treated with glutamic acid. Artif. Organs35(5),497–501(2011).
    [41] Sinha P, Zurakowski D, Kumar TK, He D,Rossi C, Jonas RA. Effects of glutaraldehyde concentration, pretreatmenttime, and type of tissue (porcine versus bovine) on postimplantation calcification.J. Thorac. Cardiovasc. Surg.143(1),224–227(2012).
    [42] Guldner NW, Bastian F, Weigel G et al. Nanocoating with titanium reduces iC3b-and granulocyte-activatingimmune response against glutaraldehyde-fixed bovine pericardium: a new technique to improve biologic heart valveprosthesis durability? J. Thorac. Cardiovasc. Surg.143(5),1152–1159(2012).
    [43] Eikelboom JW, Hart RG. Antithrombotic therapy for stroke prevention in atrial fibrillation and mechanical heartvalves.Am. J. Hematol.87(Suppl.1), S100–S107(2012).
    [44] McGregor CG, Carpentier A, Lila N, Logan JS, Byrne GW. Cardiac xenotransplantation technology providesmaterials for improved bioprosthetic heart valves. J. Thorac.Cardiovasc. Surg.141(1),269–275(2011).
    [45] Law KB, Phillips KR, Butany J. Pulmonary valve-in-valve implants: how long do they prolong reintervention andwhat causesthem to fail? Cardiovasc. Pathol.doi:10.1016/j.carpath.2012.02.010(2012)(Epub ahead of print).
    [46] Weber A, Noureddine H, Englberger L et al. Ten-year comparison of pericardial tissue valves versus mechanicalprostheses for aortic valve replacement in patients younger than60years of age. J. Thorac. Cardiovasc.Surg.doi:10.1016/j.jtcvs.2012.01.024(2012)(Epub ahead of print).
    [47] Segers VF, Lee RT. Biomaterials to enhance stem cell function in the heart. Circ. Res.109(8),910–922(2011).
    [48] Rane AA, Christman KL. Biomaterials for the treatment of myocardial infarction:a5-year update. J. Am. Coll.Cardiol.58(25),2615–2629(2011).
    [49] Venugopal JR, Prabhakaran MP,Mukherjee S, Ravichandran R, Dan K, Ramakrishna S. Biomaterial strategies foralleviation of myocardial infarction.J. R. Soc. Interface9(66),1–19(2012).
    [50] Ruvinov E, Harel-Adar T, Cohen S. Bioengineering the infarcted heart by applying bio-inspired materials. J.Cardiovasc. Transl. Res.4(5),559–574(2011).
    [51] Leor J, Tuvia S, Guetta V et al.Intracoronary injection of in situ forming alginate hydrogel reverses left ventricularremodeling after myocardial infarction in Swine. J. Am. Coll. Cardiol.54(11),1014–1023(2009).
    [52] Kin H, Nakajima T, Okabayashi H. Experimental study on effective application of fibrin glue. Gen. Thorac.Cardiovasc.Surg.60(3),140–144(2012).
    [53] Wu X, Ren J, Li J. Fibrin glue as the cell-delivery vehicle for mesenchymal stromal cells in regenerative medicine.Cytotherapy14(5),555–562(2012).
    [54] Liu Y, Cheng XJ, Dang QF et al. Preparation and evaluation of oleoyl–carboxymethy–chitosan (OCMCS)nanoparticles as oral protein carriers.J. Mater. Sci. Mater. Med.23(2),375–384(2012).
    [55] Liu Z, Wang H, Wang Y et al. The influence of chitosan hydrogel on stem cell engraftment, survival and homing inthe ischemic myocardial microenvironment.Biomaterials33(11),3093–3106(2012).
    [56] Gupta V, Werdenberg JA, Blevins TL,Grande-Allen KJ. Synthesis of glycosaminoglycans in differently loadedregions of collagen gels seeded with valvular interstitial cells. Tissue Eng.13(1),41–49(2007).
    [57] Frederick JR, Fitzpatrick JR3rd,McCormick RC et al. Stromal cell-derived factor-1α activation of tissue-engineeredendothelial progenitor cell matrix enhances ventricular function after myocardial infarction by inducingneovasculogenesis Circulation122(Suppl.11), S107–S117(2010).
    [58] Hughes CS, Postovit LM, Lajoie GA.Matrigel: a complex protein mixture required for optimal growth of cellculture.Proteomics10(9),1886–1890(2010).
    [59] Apte SS, Paul A, Prakash S, Shum-Tim D. Current developments in the tissue engineering of autologous heartvalves:moving towards clinical use. Future Cardiol.7(1),77–97(2011).
    [60] Sacks MS, Schoen FJ, Mayer JE. Bioengineering challenges for heart valve tissue engineering. Annu. Rev. Biomed.Eng.11,289–313(2009).
    [61] Dainese L, Guarino A, Burba I et al. Heart valve engineering: decellularized aortic homograft seeded with humancardiac stromal cells. J. Heart Valve Dis.21(1),125–134(2012).
    [62] Cigliano A, Gandaglia A, Lepedda AJ et al.Fine structure of glycosaminoglycans from fresh and decellularizedporcine cardiac valves and pericardium. Biochem. Res. Int.2012,979351(2012).
    [63] Robinson PS, Johnson SL, Evans MC, Barocas VH, Tranquillo RT. Functional tissue-engineered valves fromcell-remodeledfibrin with commissural alignment of cell-produced collagen. Tissue Eng. Part A14(1),83–95(2008).
    [64] Perri G, Polito A, Esposito C et al. Early and late failure of tissue-engineered pulmonary valve conduits used forright ventricular outflow tract reconstruction in patients with congenital heart disease. Eur.J. Cardiothorac. Surg.41(6),1320–1325(2012).
    [65] Dohmen PM, Lembcke A, Holinski S,Pruss A, Konertz W. Ten years of clinical Lam&Wuresults with atissue-engineered pulmonary valve. Ann. Thorac. Surg.92(4),1308–1314(2011).
    [66] Konertz W, Angeli E, Tarusinov G et al.Right ventricular outflow tract reconstruction with decellularized porcinexenografts in patients with congenital heart disease. J. Heart Valve Dis.20(3),341–347(2011).
    [67] Lam MT, Wu JC, Biomaterial applications in cardiovascular tissue repair and regeneration. J. Expert RevCardiovasc Ther.10(8),1039–49(2012).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700