用户名: 密码: 验证码:
生物样品中五肽PEP801代谢分析及临床前药代动力学和毒代动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
五肽PEP801(Met-Gln-Cys-Asn-Ser)是一种合成的小分子五肽,它是首次在痢疾阿米巴中提取产生,并被发现具有抗炎活性的的小分子五肽。在体内能够抑制人体单核吞噬细胞的活动,具有抗炎活性。近来有研究证明,五肽PEP801(Met-Gln-Cys-Asn-Ser)能够保护脑缺血损伤,对脑缺血中风具有治疗意义。目前尚处于临床前研究阶段,国内、外未见有关五肽PEP801(Met-Gln-Cys-Asn-Ser)药代动力学研究的报道。本文的工作旨在对其临床前药代动力学和毒代动力学作一整体评价,以支持人体药代动力学研究并为临床用药及剂型开发提供参考依据。一、五肽PEP801代谢和稳定性研究
     五肽PEP801(Met-Gln-Cys-Asn-Ser)含有甲硫氨酸和半胱氨酸,这两个氨基酸残基容易发生氧化,尤其是半胱氨酸含有巯基,容易发生金属催化的氧化反应。同时生物基质中广泛存在的各种蛋白水解酶容易使多肽类化合物快速降解,导致极短的半衰期。因此本研究在实验之初,用液相-质谱联用技术详细进行了五肽PEP801(Met-Gln-Cys-Asn-Ser)的代谢稳定性研究。在溶液稳定性考察中发现,酸性体系和有机相体系可以稳定PEP801。但是在全血稳定性中发现,抗氧剂、低温和蛋白酶抑制剂均不能有效抑制PEP801的降解。而直接快速甲醇沉淀蛋白可以阻止PEP801的降解。同时通过PEP801在大鼠全血、肝匀浆和肾匀浆体外温孵实验中发现,全血和肝脏可能是PEP801代谢主要场所。而PEP801在不同种属SD大鼠、比格犬和人全血和肝微粒中代谢稳定性研究发现,PEP801的降解速度:SD大鼠>比格犬>人。
     因此通过AB公司Q-Trap四极杆-线性离子阱串联质谱仪和Agilent6200高效液相色谱‐高分辨飞行时间质谱联用系统两种仪器对五肽PEP801在SD大鼠、比格犬以及人全血和肝微粒体体外温孵样本的主要代谢产物进行了鉴别。实验结果表明:PEP801(Met-Gln-Cys-Asn-Ser)在生物基质中主要发生了肽链的断裂,以及可能是肽链断裂后进一步脱氢反应。在生物基质中总共发现四个主要代谢产物和两个微量代谢产物。四个主要代谢产物为M1(Asn-Ser)、 M2(Gln-Cys)、M3(Cys-Asn)和M4(Met-Gln-Cys-Asn);两个微量代谢产物为M5(Gln-Cys-Asn),而M6可能为M3(Cys-Asn)进一步脱氢的代谢产物。大鼠、比格犬与人全血、肝微粒体体外温孵代谢物分布基本类似,因此大鼠和比格犬可以作为毒性研究的种属。
     通过固相合成四个主要主要代谢产物M1(Asn-Ser)、 M2(Gln-Cys)、M3(Cys-Asn)和M4(Met-Gln-Cys-Asn),用液质联用方法对大鼠体内全血样本进行定量、定性分析。发现二肽M1(Asn-Ser)为相对稳定和降解较慢的主要代谢产物。考虑到五肽PEP801极短的半衰期,同时测定二肽M1(Asn-Ser)在全血中的浓度,可以表征五肽PEP801(Met-Gln-Cys-Asn-Ser)在体内的药代和毒代动力学过程。
     二、SD大鼠、比格犬全血中PEP801和代谢产物二肽(ASN-SER)分析方法的建立
     用液相-质谱联用技术进行五肽PEP801(Met-Gln-Cys-Asn-Ser)和二肽(Asn-Ser)在SD大鼠、比格犬全血中浓度的方法学研究。PEP801在全血中极不稳定,直接用含有0.2%甲酸的甲醇立刻进行蛋白沉淀,可阻止蛋白酶对PEP801的降解,并进一步进行蛋白沉淀前处理。同时根据快速定量取血要求,在大鼠取血时用100μl的定量毛细管在眼眶定量取血方式;而比格犬采用0.5ml的定量胰岛素注射器准确取血100μl方式进行快速定量取血。取血完毕后立刻置于先前加有0.2%甲酸的甲醇中进行样本前处理。
     在液质联用方法建立过程中,考虑到五肽PEP801(Met-Gln-Cys-Asn-Ser)和其主要代谢产物二肽M1(Asn-Ser)不同的化学属性,用不同的液相分离条件分别测定PEP801和二肽(Asn-Ser)在大鼠、比格犬全血中的浓度,并同时对其进行了系统的方法学验证。经验证,方法的准确度、精密度、灵敏度、专属性及定量线性等均符合生物样品的分析要求,可用于SD大鼠、比格犬药代动力学和毒代动力学研究。
     三、PEP801在动物体内的药代动力学研究
     利用建立的液质联用方法进行了大鼠静脉给药0.5mg/kg、1mg/kg、2mg/kg三个剂量以及比格犬静脉推注0.2mg/kg、0.4mg/kg、0.6mg/kg三个剂量的药代动力学研究。
     SD大鼠静脉注射PEP8010.5mg/kg、1mg/kg、2mg/kg三个剂量后体内半衰期极短,降解快速。PEP801和代谢物二肽(Asn-Ser)的药时曲线的末端相消除半衰期(t1/2)分别为0.24±0.02min、0.24±0.01min、0.28±0.03min以及1.94±0.04min、2.93±0.23min、2.81±0.06min; PEP801和二肽(Asn-Ser)的AUC0-τ分别为65.46±3.17ng min/mL、154.51±6.90ng min/ml、355.19±15.43ng min/ml和1133.28±32.70ng min/ml、2385.88±83.26ng min/ml、4263.99±74.85ng min/ml。 PEP801(Met-Gln-Cys-Asn-Ser)和二肽(Asn-Ser)的AUC0-τ与给药剂量基本呈正相关,相关系数分别为r2=0.9936和r2=0.9921。可认为在该剂量水平下,SD大鼠体内药代动力学行为是线性的。鉴于其较短的半衰期,血药浓度维持时间极短。临床中建议采用静脉滴注给药。
     而比格犬模拟临床用药采用静脉推注给药方式,静脉推注PEP801(Met-Gln-Cys-Asn-Ser)0.2mg/kg、0.4mg/kg、0.6mg/kg三个剂量给药后体内半衰期极短,降解快速。PEP801和二肽(Asn-Ser)的药时曲线的末端相消除半衰期(t1/2)分别为0.47±0.05min、0.40±0.05min、0.56±0.06min以及8.55±0.47min、12.50±1.42min、13.06±1.20min; PEP801和代谢物二肽(Asn-Ser)的AUC0-τ分别为1546.09±65.50ng min/ml、2675.17±54.4ng min/ml、6666.53±151.43ng min/ml和1258.04±102.95ng min/ml、2771.37±103.71ng min/ml、5117.49±352.76ng min/ml。 PEP801和代谢物二肽(Asn-Ser)的AUC0-τ与给药剂量基本呈正相关,相关系数分别为r2=0.9763和r2=0.9833。可认为在该三个剂量水平下,比格犬内药代动力学行为是线性的。四、PEP801在动物体内的毒代动力学研究
     利用建立的液质联用方法进行SD大鼠和比格犬28天多剂量静脉慢推给药15mg/kg、30mg/kg、60mg/kg三个剂量组的毒代动力学研究。具体分析与综合比较毒代动力学研究给药首日和给药末期相应的SD大鼠体内PEP801(Met-Gln-Cys-Asn-Ser)及其代谢产物二肽(Asn-Ser)实验数据。
     SD大鼠28天长期毒性条件下,考虑动物个体差异,低剂量、中剂量、高剂量组对应的SD大鼠体内PEP801(Met-Gln-Cys-Asn-Ser)及其代谢产物二肽(Asn-Ser)的最大血药浓度(C0)、各自单位剂量的药时曲线下面积AUC0~τ/Dose以及血药全身清除率(Cl)随多剂量给药次数与时间的推移无明显变化(p>0.05)。因此,从体内PEP801及其代谢产物二肽(Asn-Ser)主要毒代动力学参数角度,提示在低剂量、中剂量及高剂量三个剂量组28天长期、多剂量静脉慢推给药过程中,药物对机体没有明显损伤,并未造成药代、毒代属性的明显变化。
     比格犬28天长期毒性条件下,考虑动物个体差异,低剂量、中剂量、高剂量组对应的比格犬体内PEP801及其代谢产物(Asn-Ser)的静脉推注给药完毕后即刻血药浓度(C0)、各自单位剂量的药时曲线下面积AUC0~τ/Dose以及血药全身清除率(Cl)随多剂量给药次数与时间的推移无明显变化(p>0.05)。因此,从体内PEP801(Met-Gln-Cys-Asn-Ser)及其代谢产物(Asn-Ser)主要毒代动力学参数角度,提示在低剂量、中剂量及高剂量三个剂量组28天长期、多剂量静脉慢推给药过程中,药物对机体没有明显损伤,并未造成药代、毒代属性的明显变化。
PEP801(Met-Gln-Cys-Asn-Ser), a synthetic pentapeptide produced by Entamoebahistolytic in axenic culture, was found to be an anti-inflammatory functional peptide.In vivostudies have suggested that it can inhibit the locomotion of human monocytes. Latestresearches demonstrated PEP801can protect the brain from ischemic injury. Up to now,PEP801is in the stage of preclinical-study. The pre-clinical pharmacokinetic research data ofPEP801has not been reported in recent years. This study was designed to evaluate the pre-clinical pharmacokinetics of PEP801in animals to support the pharmacokinetics study inhuman, clinical dosage and dosage form development.1. Preliminary investigation on the stability and metabolism of PEP801in animals
     PEP801(Met-Gln-Cys-Asn-Ser) has Cys and Met which easily undergo oxidation,especially for Cys which contains thiol. In addition, in biological matrix, peptides oftenundergo rapid degradation in presence of different metabolic enzymes to obtain extreme shorthalf-life time. Therefore, a preliminary investigation on stabiliity and metabolism of PEP801(Met-Gln-Cys-Asn-Ser) using LC-MS/MS was performed.Through basic acid/base/organicsolvent stability test, PEP801was found to be more stable in acid enviroment and organicsolvent. However, remarkable degradation was found in blood. Low temperature, antioxidantand enzyme inhibitors could not prevent its rapid degradation in blood. However, directmethonal addition could stabilize PEP801in blood, which was selected as the samplepretreatment. The main degradation site might be blood and liver vial rat blood and tissuehomogenate incubaton stability tests. In addition, the metabolic stability of PEP801in bloodand liver microsome of different species such as SD rat, beagle dog and human demonstratedthe labile of PEP801: SD rat> beagle dog> human.
     Thus, in vitro metabolites in rat blood and liver microsome have been indentified usingQ-Trap and Q-TOF. The main metabolism pathway was the cleavage of amide acid bone andpotential dehydrogenation after amide acid bone cleavage. Four main metabolits, tetrapeptide(Gln-Cys-Asn-Ser), dipeptide (Met-Gln, Gln-Cys, Asn-Ser) have been indentified andsynthesized. Meanwhile from preliminary determination of in vivo metabolites study,dipeptide (Asn-Ser) was relatively dominant and stable, which was selected as acharacterization of main metabolites and monitored with PEP801(Met-Gln-Cys-Asn-Ser), inorder to acknowledge the comprehensive pharmacokinetic and toxicokinetics of PEP801(Met- 2. Methods establishment of PEP801and metabolite, dipeptide (Asn-Ser) in biologicalmatrix
     Methods of determination of PEP801(Met-Gln-Cys-Asn-Ser) and metabolite, dipeptide(Asn-Ser) in rat and beagle dog blood by LC-MS/MS were developed. PEP801(Met-Gln-Cys-Asn-Ser) was very unstable in blood. Therefore, direct deactivate enzyme by methanolcontaining0.2%FA was used, which was followed by simple protein precipitation.Considering different chemical behavior of PEP801and metabolite dipeptide (Asn-Ser),different LC conditions were used to determine PEP801and metabolite dipeptide (Asn-Ser) inrat and dog blood. After methods validation, the intra-and inter-day precision and accuracy,sensitivity, specificity and linear range met the acceptance criteria, which can be applied forthe pre-clinical pharmacokinetic and toxicokinetics studies of PEP801in rat and dog.3. Pharmacokinetic study of PEP801in animals
     The validated methods were successfully applied in measuring levels of PEP801(Met-Gln-Cys-Asn-Ser) and metabolite, dipeptide (Asn-Ser) in blood following intravenousinfusion of low, middle and high doses of pentapeptide in rats and dogs, respectively.Pharmacokinetic parameters were calculated using non-compartment alanalysis method.
     The blood concentration-time profile demonstrated that the concentrations of PEP801(Met-Gln-Cys-Asn-Ser) and dipeptide (Asn-Ser) in rat blood were reduced quickly followingintravenous injection administration of PEP801at0.5,1,2mg/kg. The estimated eliminationhalf-life (T1/2) of PEP801and dipeptide (Asn-Ser) was0.24±0.02min,0.24±0.01min,0.28±0.03min and1.94±0.04min,2.93±0.23min,2.81±0.06min, respectively.Thearea under curve (AUC0-τ) of PEP801and dipeptide (Asn-Ser) was65.46±3.17ng min/ml,154.51±6.90ng min/ml,355.19±15.43ng min/ml and1133.28±32.70ng min/ml,2385.88±83.26ng min/ml,4263.99±74.85ng min/ml, erspectively. AUC0-τofPEP801and metabolite dipeptide (Asn-Ser) were positively correlated with the doses and thecorrelation coefficients which were r2=0.9936and r2=0.9921, respectively. Considering theshort half-life time, intravenous drip was recommended for clinical usage.
     It was also shown by the blood concentration-time data that the concentrations ofPEP801and dipeptide (Asn-Ser) in dog blood were reduced quickly following intravenousinjection administration of PEP801at0.2,0.4,0.8mg/kg by syringe pumps. The estimatedelimination half-life (T1/2) of PEP801and dipeptide (Asn-Ser) was0.47±0.05min,0.40±0.05 min,0.56±0.06min;8.55±0.47min,12.50±1.42min,13.06±1.20min, respectively.The areaunder curve (AUC0-τ) of PEP801and dipeptide (Asn-Ser) was1546.09±65.50ng min/ml,2675.17±54.4ng min/ml,6666.53±151.43ng min/ml and1258.04±102.95ng min/ml,2771.37±103.71ng min/ml,5117.49±352.76ng min/ml, erspectively. AUC0-τofPEP801and metabolite, dipeptide (Asn-Ser) were positively correlated with the doses and thecorrelation coefficients which were r2=0.9763and r2=0.9833, respectively. Considering theshort half-life time, intravenous drip was recommended for clinical usage.4. Toxicokinetics study of PEP801in animals
     PEP801(Met-Gln-Cys-Asn-Ser) and metabolite, dipeptide (Asn-Ser) levels weredetermined in rat and dog blood following28days of repeat-dose intravenous infusion of15mg/kg,30mg/kg, and60mg/kg doses of PEP801. Toxicokinetics parameters were calculatedusing non-compartment alanalysis method.
     Comparing the blood concentration-time data in rat and blood of the first day and the28thday, no distinctish differences of the maximum concentration (Cmax), clearance (Cl) andAUC0~τwere found as admister time was prolonged, which indicated no significantmetabolism damage was observed under28days of repeating intravenous infusion amongthree levels for rat and dog species.
引文
1. M. Werle, A. Bernkop-Schnu¨rch2, Strategies to improve plasma half life time of peptideand protein drugs. Amino Acids,30(2006)351-367.
    2.许亚平,曹华.多肽药物的研究及应用进展.广东药学院学报,26(2010)653-657.
    3.李伟.多肽药物-医药市场的亮点.上海医药情报研究,72(2004)14-16.
    4.李鹏,梁洪,张竞.2-氯三苯甲基氯树脂的制备及其在多肽固相合成中的应用.过程工程学报,9(2009)558-562.
    5.李永振,贺继东,彭政等.多肽的合成与应用进展.化学与生物工程,27(2010)9-14.
    6.多肽类药物前景灿烂.第十二届中国国际多肽学术会议, http://www.cps-international.cn.
    7.陈贯虹,迟建国,邱维忠,王加宁,孙元军.多肽药物的研究进展.山东科学,27(2008)42-47.
    8.梁文权主编.生物药剂学与药代动力学.北京:人民卫生出版社,155(2003).
    9.樊蓉,张纯,高申.蛋白多肽类药物的药代动力学研究概况.药学实践杂志,24(2006)135-138.
    10.韩国柱,何巍,任开环.蛋白多肽类药物的药动学特点及其影响因素.医药导报,22(2003)9-11.
    11.张琪,王广基.蛋白多肽类药物的药代动力学研究进展.中国新药杂志.10(2001)884-
    887.
    12. T. Katsila, A.P. Siskos, C.Tamvakopoulos, Peptide and protein drugs: the study of theirmetabolism and catabolism by mass spectrometry. Mass. Spectrom. Rev,31(2012)110-
    133.
    13. M.Werle, A. Bernkop-Schnürch, Strategies to improve plasma half life time of peptideand protein drugs. Amino Acids,30(2006)351-367.
    14. P.D. Gambus, T.W. Schnider, C.F. Minto, E.J. Young, V. Billard,Brose, W.G. Hochhaus,S.L. Shafe, Pharmacokinetics of intravenous dynorphin A(1-13) in opioid-na ve andopioid-treated human volunteers. Clin. Pharmacol. Ther,64(1998)27-38.
    15. S. Muller, B. Ho, P. Gambus, W. Millard, G. Hochhaus, An HPLC/RIA method fordynorphin A1-13and its main metabolites in human blood. J. Pharm. Biomed. Anal,16(1997)101-109.
    16. W.C. Duckworth, R.G. Bennet, F.G. Hamel. The significance of intracellular insulin toinsulin action. J. Invest. Med,45(1997)20-27.
    17. W.C. Duckworth, R.G. Bennet, F.G. Hamel. Insulin degradation: Progress and potential.Endocr. Rev,19(1998)608-624.
    18. S. Liao, J.K. Qie, M. Xue, Z.Q. Zhang, K.L. Liu, J.X. Ruan. Metabolic stability of humanparathyroid hormone peptide hPTH (1-34) in rat tissue homogenates: kinetics andproducts of proteolytic degradation. Amino Acids,38(2010)1595-1605.
    19. E. Baralla, M. Nieddu, G. Boatto, M.V. Varoni, D. Palomba, M.P. Demontis, V.Pasciu, V.Anania. Quantitative assay for bradykinin in rat plasma by liquid chromatography coupledto tandem mass spectrometry. J. Pharm. Biomed. Anal,54(2011)557-561.
    20.陈锦华.2003年~2005年我院血管紧张素转换酶抑制剂用药情况分析.中国医院用药评价与分析,7(2007)202.
    21. B. Hartmann, M.B. Harr, P.B. Jeppesen, M. Wojdemann, C.F. Deacon, P.B. Mortensen,J.J. Holst, In vivo and in vitro degradation of glucagon-like peptide-2in humans. J. Clin.Endocrinol. Metab,85(2000)2884-2885.
    22. V.Vergote, S. Van Dorpe, K. Peremans, C. Burvenich, B. De Spiegeleer. In vitrometabolic stability of obestatin: kinetics and identification of cleavage products. Peptides,29(2008)1740-1748.
    23. C. Fonseca, P. Dominques, A. Reis, M.R. Domingues, Identification of leucine-enkephalin radical oxidation products by liquid chromatography tandem massspectrometry, Biomed. Chromatogr.22(2008)947–959.
    24. S. Liao, Z.Q. Zhang, J.X. Ruan, J.K. Qi, K.L. Liu. Degradation of salmon calcitonin in ratkidney and liver homogenates. Pharmazie,63(2008)743-747.
    25. L.A. Savoy, R.M.L. Jones, S. Pochon, J.G. Davies, A.V. Muir, R.E. Offord, K.Rose.Identification by fast atom bombardment mass spectrometry of insulin fragmentsproduced by insulin proteinase. Biochem. J.249(1988)215–222.
    26. D. Chang, S.J. Kolis, K.H. Linderholm, T.F. Julian, R. Nachi, A.M. Dzerk, P.P. Lin, J.W.Lee, S.K. Bansal. Bioanalytical method development and validation for a large peptideHIV fusion inhibitor (Enfuvirtide, T-20) and its metabolite in human plasma using LC-MS/MS. J. Pharm. Biomed. Anal,38(2005)487–496.
    27.马清钧.主编《生物技术药物》化学工业出版社,50(2002).
    28.高德民,刘金锋,王凤山.多肽类药物结构稳定性的研究进展.中国医药生物技术,10(2007)380-382.
    29. D.E. Baker, Pegylated interferon plus ribavirin for the treatment of chronic hepatitis C.Rev. Gastroenterol. Disord,3(2003)93-109.
    30. M.C. Woodle, M.S. Newman, J.A. Cohen, Sterically stabilized liposomes: physical andbiological properties. J. Drug. Target,2(1994)397-403.
    31. J, Yang, J.L. Cleland. Factors affecting the in vitro release of recombinant humaninterferon-gamma (rhIFN-gamma) from PLGA microspheres. J. Pharm. Sci,86(1997)908-914.
    32. C. Damgé, D. Hillaire-Buys, M. Koenig, R. Gross, A. Hoeltzel, J. Chapal, G. Balboni, J.Borg, G. Ribes, Effect of n-hexacosanol on insulin secretion in the rat, Eur. J. Pharmacol,274(1995)133-139.
    33. Pan W, Tu H, Kastin AJ. Differential BBB interactions of three ingestive peptides:obestatin, ghrelin, and adiponectin. Peptides,27(2006)911–916.
    34. K. Fredholt, C. Adrian, L. Just, D. Hoj Larsen, S. Weng, B. Moss, F.G. Juel, Chemicaland enzymatic stability as well as transport properties of a Leu-enkephalin analogue andester prodrugs thereof. J. Control. Rel,63(2000)261-273.
    35. M.F. Powell, T. Stewart, L.J. Otvos, L. Urge, F.C. Gaeta, A. Sette, T. D. Arrhenius,Thomson K, Soda, S.M. Colon, Peptide stability in drug development. II. Effect of singleamino acid substitution and glycosylation on peptide reactivity in human serum. Pharm.Res,10(1993)1268–1273.
    36.孙会仙,蛋白多肽类药物的药代动力学分析方法的研究进展.国外医学药学分册,33(2006)63-66.
    37.孔爱英,张振清,阮金秀.活性小肽类药物药代动力学分析方法研究进展.解放军药学学报,24(2008)57-61.
    38.陈淑珍,汤仲明,甄永芳.用生物检定法研究力达霉素在小鼠和犬的药代动力学.药学学报,39(2004)700-704.
    39. M. Ye, S. Hu, W.W. Quigley, N.J..Dovichi, Post-column fluorescence derivatization ofproteins and peptides in capillary electrophoresis with a sheath flow reactor and488nmargon ion laser excitation. J. Chromatogr. A,1022(2004)201-206.
    40.程秋雁,蛋白质和多肽的放射性标记方法研究进展.实用临床医药杂志.实用临床医药杂志.14(2010)165-167.
    41. E.M. Nakashima, A. Kudo, Y. Iwaihara, M. Tanaka, K. Matsumoto, T. Matsui.Application of13C stable isotope labeling liquid chromatography-multiple reactionmonitoring-tandem mass spectrometry method for determining intact absorption ofbioactive dipeptides in rats, Anal. Biochem,414(2011)109-116.
    42. R.J,Pease, G.D. Smith, T.J. Peters, Degradation of endocytosed insulin in rat liver ismediated by low-density vesicles. Biochem J,228(1985)137-146.
    43. M. Ohlin, U. Alkner, Development of an immunoassay for glypressin, an N-terminalextended vasopressin analogue, J. Immunoassay,9(1988)19-36.
    44. A.S. Yuan, D. Cylc, J.Y. Hsieh, B.K. Matuszewski, Determination of an echinocandin,MK-0991, in mammalian plasma by radioimmunoassay. J. Pharm. Biomed. Anal,25(2001)811-820.
    45. G. Wu, S. Wang, X. Wang, X. Li, X. Deng, Z. Shen, T. Xi, Determination of a newantibacterial peptide S-thanatin in dog plasma by an in directed-ELISA, Peptides,32(2011)1484–1487.
    46.徐雄良,张志荣.生物样品中蛋白质和肽类药物测定方法的研究进展.药物分析杂志,25(2005)364-368.
    47.叶晓霞,俞雄.多肽药物分析方法研究进展.中国医药工业杂志,34(2003)357-361.
    48. A.L. Fisher, E. DePuy, A. Jayaraj, C. Raab, M. Braun, M. Ellis-Hutchings, J. Zhang, J.D.Rogers, D.G. Musson, LC/MS/MS plasma assay for the peptidomimetic VLA4antagonistI and its major active metabolite II: for treatment of asthma by inhalation, J. Pharm.Biomed. Anal,27(2002)57-71.
    49. C. Mc Martin, Pharmacokinetics of peptides and proteins. Opportunities and challenges.Adv. Drug. Res,22(1992)39-106.
    50. S.Toon, The relevance of pharmacokinetics in the development of biotechnology products.Eur. J. Drug. Metab. Pharmacokinet,21(1996)93-103.
    51.王静,关勇彪.多肽类药物体内分析方法.中国临床药理学与治疗学,13(2008)1309-
    1314.
    52. D.T. Rossi, M.W. Sinz. Mass spectrometry in drug discovery. Marcel Dekker, Inc.
    53. L.A. Savoy, R.M.L. Jones, S. Pochon, J.G. Davies, A.V. Muir, R.E. Offord, K. Rose.Identification by fast atom bombardment mass spectrometry of insulin fragmentsproduced by insulin proteinase. Biochem. J,249(1988)215-222.
    54. B. Domon, R. Aebersold. Mass spectrometry and protein analysis. Science,312(2006)212–217.
    55.王晓楠,陈硕,蔡耘,钱小红.生物质谱在蛋白质药物分析研究中的应用.现代科学仪器,10(2011)23-28.
    56. S.F. Wilson, H. Li, M.J. Rose, J. Xiao, J.R. Holder, C.A. James, Development andvalidation of a method for the determination of a therapeutic peptide with affinity for thehuman B1receptor in human plasma using HPLC-MS/MS, J. Chromatogr. B. Analyt.Technol. Biomed. Life. Sci,878(2010)749-757
    57. L. Prokai, H.S. Kim, A. Zharikova, J. Roboz, L. Ma, L. Deng, W.J. Jr. Simonsick, Electrospray ionization mass spectrometric and liquid chromatographic-mass spectrometricstudies on the metabolism of synthetic dynorphin A peptides in brain tissue in vitro and invivo, J. Chromatogr. A,800(1998)59-68.
    58. H. Wan, D.M. Desiderio, Quantification of DALDA in ovine plasma by on-line liquidchromatography/quadruple time-of-flight mass spectrometry, Rapid. Commun. MassSpectrom,17(2003)538-546.
    59. G. Pan, X. Wang, Y. Huang, X. Gao, Y. Wang, Development and validation of a LC-MS/MS method for determination of bivalirudin in human plasma: Application to aclinical pharmacokinetic study, J. Pharm. Biomed. Anal,52(2010)105-109.
    60. C.X. Zhang, B.V. Weber, J, Thammavong, T.A. Grover, D.S. Wells. Identification ofcarboxyl-terminal peptide fragments of parathyroid hormone in human plasma at lowpicomolar levels by mass spectrometry. Anal. Chem,78(2006)1636–1643.
    61. Z.D. Sofianos, T. Katsila, N. Kostomitsopoulos, V. Balafas, J. Matsoukas, T. Tselios, C.Tamvakopoulos. In vivo evaluation and in vitro metabolism of leu prolide in mice—Massspectrometry based biomarker measurement for efficacy and toxicity. J. Mass. Spectrom,43(2008)1381-1392.
    62. B. Bujak-Gizycka, J. Madej, P.P. Wolkow, R. Olszanecki, L. Drabik, J. Rutowski, R.Korbut. Measurement of angiotensin metabolites in organ bath and cell cultureexperiments by liquid chromatography-electrospray ionisation-mass spectrometry (LC-ESI-MS). J. Physiol.Pharmacol,58(2007)529-540.
    63.廖沙,阮金秀,张振清,刘克良.生物样品中多肽药物质谱定量分析方法研究进展.军事医学科学院院刊,32(2008)489-494.
    64. M. Ewles, L. Goodwin, Bioanalytical approaches to analyzing peptides and proteins byLC-MS/MS, Bioanalysis,3(2011)1379-1397.
    65. I. van den Broek, R.W. Sparidans, J.H. Schellens, J.H. Beijnen, Quantitative bioanalysisof peptides by liquid chromatography coupled to (tandem) mass spectrometry, J.Chromatogr. B. Analyt. Technol. Biomed. Life.Sci,872(2008)1–22.
    66. H. John, M. Walden, S. Sch fer, S. Genz, W.G. Forssmann, Analytical procedures forquantification of peptides in pharmaceutical research by liquid chromatography-massspectrometry, Anal. Bioanal.Chem,378(2004)883-897.
    67. C. Tamvakopoulos, Mass spectrometry for the quantification of bioactive peptides inbiological fluids, Mass. Spectrom. Rev,26(2007)389-402.
    68. H. Grohganz, M. Rischer, M. Brandl, Losses of the cyanobacterial toxin microcystin‐LRfrom aqueous solution by adsorption during laboratory manipulations. Eur. J. Pharm. Sci.21(2004)191-196.
    69. P.Hyenstrand, J.S. Metcalf, K.A. Beattie, G.A. Codd, Losses of the cyanobacterial toxinmicrocystin-LR from aqueous solution by adsorption during laboratory manipulations.Toxicon,39(2001)589-594.
    70. S.L.Law, C.L. Shih, Adsorption of calcitonin to glass. Drug. Dev. Ind. Pharm,25(1999)253-256.
    71. H. Grohganz, M. Rischer, M. Brandl. Adsorption of the decapeptide Cetrorelix dependsboth on the composition of dissolution medium and the type of solid surface. Eur. J.Pharm. Sci,21(2004)191-196.
    72. C.J. van Platerink, H.M. Janssen, R. Horsten, J. Haverkamp. Quantification of ACEinhibiting peptides in human plasma using high performance liquid chromatography-massspectrometry. J. Chromatogr. B,830(2006)151-157.
    73. J.J. Haynes, H. Jones, D. Gibson, G.T. Clark, Bioanalytical determination of unstableendogenous small peptides: RFRP3and its metabolites in rat blood. Bioanalysis,3(2011)763-778.
    74. G. Fanciulli, E.Azara, T.D. Wood, G.Delitala, M. Marchetti,Liquid chromatography-massspectrometry assay for quantification of Gluten Exorphin B5in cerebrospinal fluid. J.Chromatogr. B. Analyt. Technol. Biomed. Life. Sci,852(2007)485-490.
    75. G. Fanciulli, E. Azara, T.D. Wood, A. Dettori, G.Delitala, M.Marchetti, Quantification ofGluten Exorphin A5in cerebrospinal fluid by liquid chromatography-mass spectrometry.J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci,833(2006)204-209.
    76. E. Baralla, M. Nieddu, G. Boatto, M.V. Varoni, D. Palomba, M.P. Demontis, V. Pasciu, V.Anania, Quantitative assay for bradykinin in rat plasma by liquid chromatography coupledto tandem mass spectrometry. J. Pharm. Biomed. Anal,54(2011)557-561.
    77. J. Yin, P. Aviles, W. Lee, C. Ly, M.J. Guillen, P. Calvo, I. Manzanares, G. Faircloth, Validation of a sensitive assay for thiocoraline in mouse plasma using liquidchromatography–tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed.Life Sci,794(2003)89-98.
    78. D. Chang, S.J. Kolis, K.H. Linderholm et al. Bioanalytical method development andvalidation for a large peptide HIV fusion inhibitor (Enfuvirtide, T-20) and its metabolitein human plasma using LC–MS/MS. J. Pharm. Anal.38(2005)487-496
    79. G.S. Gorman, L.U. Coward, L. Freeman, P.E. Noker, C.W. Beattie, L. Jia. A novel andrapid LC–MS/MS assay for bioanalysis of azurin p28in serum and its pharmacokineticsin mice. J. Pharm. Biomed. Anal,53(2010)991-996.
    80. C. Cheng, S. Liu, D. Xiao et al. LC-MS/MS method development and validation for thedetermination of polymyxins and vancomycin in rat plasma. J. Chromatogr. B,878(2010)2831-2838.
    81. C.T. Mant, T.W. Lorne Burke, R.S. Hodges. Optimization of peptide separations inreversed-phase HPLC: isocratic versus gradient elution. Chromatographia,24(1987)565–
    572.
    82. M.C. Garcia. The effect of the mobile phase additives on sensitivity in the analysis ofpeptides and proteins by high-performance liquid chromatography-electrospray massspectrometry. J. Chromatogr. B,825(2005)111–123.
    83. K. Yamaguchi, M. Takashima, T. Uchimura, S. Kobayashi, Development of a sensitiveliquid chromatography-electrospray ionization mass spectrometry method for themeasurement of KW-5139in rat plasma. Biomed. Chromatogr.14(2000)77-81.
    84. C.W. Tuthill, A. Rudolph, Y. Li, B. Tan, T.J. Fitzgerald, S.R. Beck, Y.X. Li, Quantitativeanalysis of thymosin alpha1in human serum by LC-MS/MS. AAPS Pharm. Sci. Tech,1(2000) E11.
    85. N.B. Cech, C.G. Enke, Relating electrospray ionization response to nonpolar character ofsmall peptides. Anal. Chem,72(2000)2717-2723.
    86. M.F. Ewles, P.E. Turpin, L. Goodwin, D.M. Bakes. Validation of a bioanalytical methodfor the quantification of a therapeutic peptide, ramoplanin, in human dried blood spotsusing LC–MS/MS. Biomed Chromatogr,25(2011)995-1002.
    87. R. Kretschmer, M.L. Collado, M.G. Pacheco, M.C. Salinas, M. López-Osuna, M. Lecuona,E.M. Castro, J. Arellano, Inhibition of human monocyte locomotion by products ofaxenically grown E. histolytica, Parasite. Immunol,7(1985)527-543.
    88. S. Godina-Gonzalez, J. Furuzawa-Carballeda, D. Utrera-Barillas, J. Alcocer-Varela, L.M.Teran, M. Vazquez-del Mercado, Y.A. Leal, I. Alvarado-Cabrero, J.R. Velazquez,Amebic monocyte locomotion inhibitory factor peptide ameliorates inflammation in CIAmouse model by downregulation of cell adhesion, inflammation/chemotaxis, and matrixmetalloproteinases genes. Inflamm. Res,59(2010)1041-1051.
    89. J.R. Velazque, The monocyte locomotion inhibitory factor an anti-inflammatory peptide;therapeutics originating from amebic abscess of the liver, Recent. Pat. Endocr. Metab.Immune. Drug. Discov,5(2011)7-12.
    90. R. Silva-García, I. Estrada-García, R. Ramos-Payán, A. Torres-Salazar, M.E. Morales-Martínez, D. Arenas-Aranda, J.A. Giménez-Scherer, F. Blanco-Favela, M.G. Rico-Rosillo,The effect of an anti-inflammatory pentapeptide produced by Entamoebahistolytica on gene expression in the U-937monocytic cell line. Inflamm. Res,57(2008)145-150.
    91. S. Rojas-Dotor, J. Pérez-Ramos, J.A. Giménez-Scherer, F. Blanco-Favela, G. Rico-Rosillo, Effect of the monocyte locomotion inhibitory factor (MLIF) produced by E.histolityca on cytokines and chemokine receptors in T CD4+lymphocytes. Biol. Res,42(2009)415-425.
    92. G. Rico, E. Leandro, S. Rojas, J. Giménez, R. Kretschmer,The effect of the monocytelocomotion inhibitory factor (MLIF) produced by Entamoeba histolytica upon nitric oxideproduction by human leukocytes. Arch. Med. Res,31(2000) S90-S91.
    93. J.A. Giménez-Scherer, E. Arenas, L. Díaz, G. Rico, J. Fernández, R. Kretschmer, Effectof the monocyte locomotion inhibitory factor (MLIF) produced by Entamoeba histolyticaon the expression of cell adhesion molecules (CAMs) in the skin of guinea pigs. Arch.Med. Res,31(2000) S92-S93
    94. P. Yang, Y. Rui, Y. Zhang, Patent (China)(2008) ZL200810200610.0.
    95. J. Yao, Y. Xu, F. Ji, C. Wang, Y. Zhang, J. Ni, Protective effects of MLIF analogs oncerebral ischemia-reperfusion injury in rats. Peptides,32(2011)1047-1054.
    96. Y. Zhang, J. Chen, F. Li, D. Li, Q. Xiong, Y. Lin, D. Zhang, X.F. Wang, P.Yang, Y.C.Rui, A pentapeptide monocyte locomotion inhibitory factor protects brain ischemia injuryby targeting the eEF1A1/endothelial nitric oxide synthase pathway. Stroke,43(2012)2764-2773.
    97. R. Kretschmer, M.L. Collado, M.G. Pacheco, M.C. Salinas, M. López-Osuna, M. Lecuona,E.M. Castro, J. Arellano, Inhibition of human monocyte locomotion by products ofaxenically grown E. histolytica, Parasite. Immunol,7(1985)527-543.
    98. J.L. Reubsaet, J.H. Beijnen, A. Bult, R.J. van Maanen, J.A. Marchal, W.J. Underberg,Analytical techniques used to study the degradation of proteins and peptides: physicalinstability. J. Pharm. Biomed. Anal,17(1998)955-978.
    99. M.C. Manning, K. Patel, R.T. Borchardt, Stability of protein pharmaceuticals. Pharm.Res,6(1989)903-918.
    100.E.R.Stadtman, Oxidation of free amino acids and amino acid residues in proteins byradiolysis and by metal-catalyzed reactions, Annu. Rev. Biochem,62(1993)797-821.
    101.P. Monostori, G. Wittmann, E. Karg, S. Túri, Determination of glutathione andglutathione disulfide in biological samples: an in-depth review. J. Chromatogr. B. Analyt.Technol. Biomed. Life. Sci,877(2009)3331-3346.
    102.孙迎基,于华玲,韦静,丁文锋.蛋白酶抑制剂对酪丝亮肽代谢及药代动力学的影响.药物生物技术,17(2010)76~78.
    103.Naidu A, Quon D, Cordell B, beta-Amyloid peptide produced in vitro is degraded byproteinases released by cultured cells. J. Biol. Chem,270(1995)1369-1374.
    104.H. John, K.D. Huynh, C. Hedtmann, M. Walden, A. Schulz, F.B. Anspach, W.G.Forssmann, In vitro degradation of the antimicrobial human peptide HEM-gamma130-146in plasma analyzed by a validated quantitative LC-MS/MS procedure. Anal. Biochem,341(2005)173-186.
    105.T. Uchiyama, A. Kotani, T. Kishida, H. Tatsumi, A. Okamoto, T. Fujita, M. Murakami, S.Muranishi, A. Yamamoto. Effects of various protease inhibitors on the stability andpermeability of [D-Ala2, D-Leu5] enkephalin in the rat intestine: comparison with leucineenkephalin. J. Pharm. Sci,87(1998)448-452.
    106.A.Yamamoto, T. Taniguchi, K. Rikyuu, T. Tsuji, T. Fujita, M. Murakami, S. Muranishi,Effects of various protease inhibitors on the intestinal absorption and degradation ofinsulin in rats. Pharm. Res,11(1994)1496-1500.
    107.T. Okagawa, T. Fujita, M. Murakami, A. Yamamoto, T. Shimura, S. Tabata, S.Kondo, S.Muranishi, Susceptibility of ebiratide to proteolysis in rat intestinal fluid and homogenatesand its protection by various protease inhibitors. Life Sci,55(1994)677-683.
    108.B. Brugos, G. Hochhaus. Metabolism of dynorphin A (1-13). Pharmazie,59(2004)339-343.
    109.M.F. Powell, H. Grey, F. Gaeta, A. Sette, S. Colón. Peptide stability in drug development:A comparison of peptide reactivity in different biological media. J. Pharm. Sci,81(1992)731-735.
    110. A. Rostami-Hodjegan, G.T. Tucker. Simulation and prediction of in vivo drugmetabolism in human populations from in vitro data. Nat. Rev. Drug. Discov,6(2007)140-148.
    111.S. Müller, G. Hochhaus. Metabolism of dynorphin A1-13in human blood and plasma.Pharm. Res,12(1995)1165-1170.
    112.S. Muller, B. Ho, P. Gambus, W. Millard, G. Hochhaus, An HPLC/RIA method fordynorphin A1-13and its main metabolites in human blood. J. Pharm. Biomed. Anal,16(1997)101-109.
    113.C. Adessi, C. Soto, Converting a peptide into a drug: strategies to improve stability andbioavailability. Curr. Med. Chem,9(2002)963-978.
    114.F. Cuyckens, L. Dillen, W. Cools, M. Bockx, L. Vereyken, R. de Vries, R.J. Mortishire-Smith. Identifying metabolite ions of peptide drugs in the presence of an in vivo matrixbackground. Bioanalysis,4(2012)595-604.
    115.L. Prokai, H.S. Kim, A. Zharikova, J. Roboz, L. Ma, L. Deng, W.J.Jr Simonsick.Electrospray ionization mass spectrometric and liquid chromatographic-massspectrometric studies on the metabolism of synthetic dynorphin A peptides in brain tissuein vitro and in vivo. J. Chromatogr. A,800(1998)59-68.
    116. T.Yoshida, Peptide separation by Hydrophilic-Interaction Chromatography: a review. J.Biochem. Biophys. Methods,60(2004)265-280.
    117.X. Zhang, K. Nieforth, J.M. Lang, R. Rouzier-Panis, J. Reynes, A. Dorr, S. Kolis, M.R.Stiles, T. Kinchelow, I.H. Patel. Pharmacokinetics of plasma enfuvirtide aftersubcutaneous administration to patients with human immunodeficiency virus: InverseGaussian density absorption and2-compartment disposition, Clin. Pharmacol. Ther,72(2002)10-19.
    118. J. Carstens, K.T. Jensen, P. Ivarsen, L.M. Rasmussen, E.B. Pedersen. Development of aurodilatin-specific antibody and radioimmunoassay for urodilatin in human urine. ClinChem,43(1997)638-643.
    119. P.J.Taylor, Matrix effects: the Achilles heel of quantitative high-performance liquidchromatography-electrospray-tandem mass spectrometry. Clin. Biochem,38(2005)328-
    334.
    120. E. Chambers, D.M. Wagrowski-Diehl, Z. Lu, J.R. Mazzeo, Systematic andcomprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J. Chromatogr.B. Analyt. Technol. Biomed. Life. Sci,852(2007)22-34.
    121.吴民淑,王广基.国外相伴毒代动力学研究进展.药学进展,23(1999)321.
    122.刘昌孝.临床前药物安全性评价研究中的药物毒代动力学问题.中国临床药理学与治疗学杂志,4(1999)157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700