用户名: 密码: 验证码:
纳米银骨水泥预防关节置换术后感染的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     关节感染是关节置换术后的一个灾难性并发症,对此采取了多种措施,其中抗生素骨水泥能有效预防感染,但同时却出现了越来越多感染对抗生素耐药,对这些病例,骨水泥中的抗生素不能起到保护作用。因此,需要考虑新的抗菌剂。
     银作为抗菌剂自远古以来就开始使用,现在已用于医学的不同领域,如心血管植入物,隐形眼镜,尿管和创口护理。纳米技术把银变成纳米大小从而有更高的比表面积,与微生物有更好的接触,具有良好的抗菌、抗病毒性能。
     骨水泥是固定人工关节的金标准,如果纳米银加入骨水泥中同样具有抗菌性,那么使用纳米银骨水泥对预防关节置换术后感染、提高关节感染翻修成功率的临床应用提供初步依据。
     第一部分纳米银骨水泥机械性能的检测
     目的:检测骨水泥中加入少剂量的纳米银对骨水泥的机械性能会否产生不良影响。方法:纳米银粉末和骨水泥粉末混合后再与骨水泥单体混合真空搅拌,制成浓度为0.1%、0.5%、1.0%的纳米银骨水泥,以普通骨水泥作为对照组,根据机械性能测量要求制成相应形状的试件,用万能材料试验机和气动疲劳试验机测量各种骨水泥的抗压性能、抗弯曲强度、抗疲劳性能。结果:0.1%、0.5%、1.0%纳米银骨水泥的抗压性能、抗弯曲强度、抗疲劳性能与普通骨水泥相比无显著性差异(P>0.05)。结论:骨水泥中加入少剂量纳米银制成浓度低于1.0%对骨水泥的机械性能无不良影响。
     第二部分纳米银骨水泥的体外抗菌性能及细胞毒性
     目的:评估纳米银骨水泥有无抗菌活动及细胞毒性。
     方法:以普通骨水泥和2%庆大霉素骨水泥分别作为阴性对照组和阳性对照组,浓度分别为0.1%、0.5%、1%的纳米银骨水泥作为实验组,采用体外杀菌实验的活菌计数法测试各组骨水泥对表皮葡萄球机、耐甲氧西林表皮葡萄球菌的抗菌活性。以有毒的1%聚乙二醇辛基苯基醚(Triton X-100)和无毒的细胞培养液作为对照组,1%纳米银骨水泥培养后的提取液作为实验组,各组加入小鼠成纤维细胞并培养,检测乳酸脱氢酶释放量和蛋白质含量以测试体外细胞毒性。
     结果:1%纳米银骨水泥和2%庆大霉素骨水泥完全抑制了表皮葡萄球菌的增殖,有较强的杀菌作用。1%纳米银骨水泥完全抑制了耐甲氧西林表皮葡萄球菌的增殖,有较强的杀菌作用,而庆大霉素骨水泥对耐甲氧西林表皮葡萄球菌没有抑菌作用。纳米银骨水泥组和无毒对照组间乳酸脱氢酶释放无显著性差异(P>0.05),而有毒Triton组和银骨水泥组间乳酸脱氢酶释放有显著性差异(P<0.01),有毒的Triton组和无毒的细胞培养组间也有显著性差异(P<0.01)。纳米银骨水泥提取液中总蛋白含量和无毒的细胞培养液中总蛋白含量无显著性差异(P>0.05);有毒的对照组和纳米银银骨水泥之间及有毒对照组和无毒的细胞培养液间有显著性差异(P<0.01)。
     结论:1%纳米银骨水泥对表皮葡萄球菌和耐甲氧西林表皮葡萄球菌都有良好的抗菌活性。2%庆大霉素骨水泥对表皮葡萄球菌有良好的抗菌活性,但对耐甲氧西林表皮葡萄球菌没有抗菌活性。1%纳米银骨水泥体外实验没有细胞毒性。
     第三部分纳米银骨水泥预防膝关节置换术后感染的实验研究
     目的:检验纳米银骨水泥对生物膜形成的影响及对感染是否有预防作用。
     方法:在兔子左股骨髁间凹内沿股骨髓腔方向植入一长约3cm克氏针,外露1mm并用普通骨水泥固定模拟关节置换术。于皮肤缝合好后往关节腔内注射0.5ml不同浓度的表皮葡萄球菌,术前、术后检测血沉、C反应蛋白,术后两周取关节内组织作细菌培养,确定合适浓度的表皮葡萄球菌制作感染模型。
     然后把36只兔子随机分为三组,每组12只,以普通骨水泥作为阴性对照组,2%庆大霉素骨水泥作为阳性对照组,以1%纳米银骨水泥作为实验组。根据分组,用不同的骨水泥固定假体,然后关节腔内注射合适浓度的表皮葡萄球菌0.5ml,术后定期检测各组血沉、C反应蛋白,术后2周对假体表面行扫描电镜观察及取关节腔内组织作细菌培养。
     结果:0.5ml1×10~6CFU/ml和1×10~8CFU/ml的表皮葡萄球菌均能制成感染模型。选择1×10~6CFU/ml作为预防感染时接种菌浓度。在预防感染的实验中,1%纳米银骨水泥组和2%庆大霉素骨水泥组的血沉和C反应蛋白较普通骨水泥组明显低(P<0.01),纳米银骨水泥组和庆大霉素骨水泥组间血沉和C反应蛋白无明显差异(P>0.05);细菌培养阳性率示普通骨水泥组10~0%(12/12),庆大霉素骨水泥组0%(0/12),纳米银骨水泥组0%(0/12),纳米银骨水泥、庆大霉素骨水泥组与普通骨水泥组之间有显著性差异(P<0.01),庆大霉素骨水泥组与纳米银骨水泥组间无显著性差异(P>0.05);扫描电镜观察到普通骨水泥组假体表面细菌聚集并成簇,形成生物膜,纳米银组和庆大霉素组假体表面细菌孤立,没有簇形成。
     结论:1%纳米银骨水泥能抑制兔膝关节置换术后生物膜的形成,能起到有效预防感染作用。
Background
     Infection after joint replacement is a catastrophic complication. Many measures havebeen taken to prevent infection. Among them, antibiotics impregnated in bone cement is aneffective one, but at the same time it has given rise to an increasing number ofmicroorganisms resistant to antibiotics. Antibiotics in the bone cement can not play apreventive role for these microorganisms. There is a need to find a new antimicrobialagent.
     Silver has a strong antimicrobial potential, which has been used since the ancient times.Now it is used in different areas of medicine, such as cardiovascular implants, contactlenses, catheter and wound care. Nanotechnology changes silver into the nano-size andthus it has a better contact with the microorganisms, owing to high surface-area-to-volumeratio..Nano-silver has proved to have good antibacterial and antiviral properties.
     The gold standard for fixation of artificial joints is bone cement. If nanoparticles silveradded to the bone cement has antibacterial properties, it will provide a preliminary basisfor prevention arthroplasty infections and improvement of success rate for infectedarthroplasty.
     Part One
     Objective: To detect wether the addition of a small dose of.nano-silver to bone cementwill have adversely effect on the mechanical properties of bone cement.
     Methods: Nano-silver powder and bone cement polymer powder were mixed, then thebone cement monomer was added and stirred under vacuum.0.1%,0.5%,1.0%nano-silverbone cement were measured as study groups, while polymethylmetacrylate(PMMA) ascontrol group. Compressive properties, bending strength and fatigue properties were testedfor every group.
     Results: There was no significant difference between0.1%,0.5%,1.0%nano-silver bonecement and ordinary bone cemen when mechanical properties such as compressiveproperties, bending strength and fatigue properties were compared (P>0.05).Conclusion: The addition of a dose less than1.0%nano-silver to bone cement had noadverse effects.on the mechanical properties of bone cement.
     Part Two
     Objective: To assess whether nano-silver bone cement have antimicrobial activity andcytotoxicity.in vitro.
     Methods: Experiments were divided into five groups: ordinary bone cement was used asnegative control group and2%gentamicin bone cement was used as positive control group,0.1%,0.5%,1%nano-silver bone cement were studied as experimental group. Viable cellscount of in vitro bactericidal test was tested to measure the antibacterial activity of everygroup of bone cement to Staphylococcus epidermidis and methicillin-resistantStaphylococcus epidermidis. In vitro cytotoxicity testing was measured by release oflactate dehydrogenase and protein content of the incubated mouse fibroblasts. Experimentsfor in vitro cytotoxicity testing were divided into three groups: extraction medium after1%nano-silver bone incubated was studied as experimental group,while1%toxic TritonX-100as postive control group and non-toxic cell culture medium as a negative controlgroup.
     Results:1%nano-silver bone cement and gentamicin bone cement completely inhibittedthe proliferation of Staphylococcus epidermidis, showing strong bactericidal effect.1%nano silver bone cement completely inhibitted the proliferation of methicillin-resistantStaphylococcus epidermidis (MRSE), while2%gentamicin bone cement had no inhibitoryeffect on MRSE. There was no significant difference in LDH release of1%nano-silverbone cement when compared with that of non-toxic control group (P>0.05). There wassignificant difference in LDH release of1%nano-silver bone cement when compared withthat of toxic Triton X-100(P<0.01). There was no significant difference in the amount of
     total protein between extraction liquid from nano-silver bone cement and that of non-toxiccell culture medium (P>0.05). There was significant difference in the amount of totalprotein between extraction liquid from nano-silver bone cement and that of toxic TritonX-100(P<0.01). There was significant difference in the amount of total protein betweennon-toxic cell culture medium and that of toxic Triton X-100(P<0.01).
     Conclusion:1%nano-silver bone cement had strong antibacterial activity againstStaphylococcus epidermidis and MRSE. Gentamicin bone cement had strong antibacterialactivity against Staphylococcus epidermidis, but had no effect on MRSE.1%nano-silverbone cement was free of in vitro cytotoxicity.
     Part Three
     Objective: To evaluate the effect of1%nano-silver bone cement on the formation ofbiofilm and preventing infection.
     Methods: Implant of a Kirschne about3cm long in concave of rabbit femoral condylesimulated arthroplasty, with1mm expsosed in articular space. The Kirschne was fixed withordinary bone cement. After skin closure,0.5ml different concentrations of Staphylococcusepidermidis were injected into knee. Erythrocyte sedimentation rate and C-reactive proteinwere measured preoperatively and postoperatively. Tissues in the knee were cultured forbacterial two weeks postoperatively. Then appropriate concentration of Staphylococcusepidermidis was choosed to establish infection model.
     36rabbits were randomly divided into three groups, each group consisted of12rabbits:ordinary bone cement was treated as a negative control group,2%gentamicin bone cementwas treated as a positive control group, and1%nano-silver bone cement was treated asexperimental group. According to group, different bone cement was used to fixe prosthesis.Then0.5ml suitable concentration of Staphylococcus epidermidis was injected into knee.Erythrocyte sedimentation rate and C-reactive protein were measured regularly aftersurgery. Biofilm on the surface of prosthesis was detected by scanning electron microscope(SEM) and tissue in the knee were cultured for bacterial two weekspostoperatively.
     Results:0.5ml1×10~6and1×10~8S. epidermidis could successfully lead to infection and1×10~6was choosed for next step experiment. In experiment of preventing infection,erythrocyte sedimentation rate and C-reactive protein was significantly lower innano-silver bone cement group and gentamicin bone cement group than that of ordinarybone cement group (P <0.01). There was no significant difference between nano-silverbone cement group and gentamicin bone group in erythrocyte sedimentation rate andC-reactive protein (P>0.05). Positive rate of bacterial culture for ordinary bone cementgroup, gentamicin bone cement group and nano-silver bone cement group was10~0%(12/12),0%(0/12) and0%(0/12) respectively; there was significant difference betweennano-silver bone cement group and ordinary bone cement group (P <0.01), there wassignificant difference between gentamicin bone cement group and ordinary bone cementgroup (P <0.01), no significant difference existed betwwen nano-silver bone cement groupand gentamicin bone cement group (P>0.05). SEM showed that bacteria on the surface ofthe prosthesis gathered and clusters,forming biofilm in ordinary bone cement group;andthat the bacteria isolated, no cluster formation in nano-silver group and gentamicin group.Conclusion:1%nano-silver bone cement inhibitted biofilm formation and preventedinfection in knee replacement of rabbit.
引文
1. Dunne, N.J., et al., The relationship between porosity and fatigue characteristics of bonecements. Biomaterials,2003.24(2): p.239-45.
    2. Vigneshwaran, N., et al., Functional finishing of cotton fabrics using silver nanoparticles. JNanosci Nanotechnol,2007.7(6): p.1893-7.
    3. Tolaymat, T.M., et al., An evidence-based environmental perspective of manufactured silvernanoparticle in syntheses and applications: a systematic review and critical appraisal ofpeer-reviewed scientific papers. Sci Total Environ,2010.408(5): p.999-1006.
    4. Moghimi, S.M., A.C. Hunter, and J.C. Murray, Long-circulating and target-specificnanoparticles: theory to practice. Pharmacol Rev,2001.53(2): p.283-318.
    5. Panyam, J. and V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery tocells and tissue. Adv Drug Deliv Rev,2003.55(3): p.329-47.
    6. Elechiguerra, J.L., et al., Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology,2005.3: p.6.
    7. Atiyeh, B.S., et al., Effect of silver on burn wound infection control and healing: review of theliterature. Burns,2007.33(2): p.139-48.
    8. Baker, C., et al., Synthesis and antibacterial properties of silver nanoparticles. J NanosciNanotechnol,2005.5(2): p.244-9.
    9. Webb, J.C. and R.F. Spencer, The role of polymethylmethacrylate bone cement in modernorthopaedic surgery. J Bone Joint Surg Br,2007.89(7): p.851-7.
    10. Hendriks, J.G., et al., Backgrounds of antibiotic-loaded bone cement and prosthesis-relatedinfection. Biomaterials,2004.25(3): p.545-56.
    11. Lautenschlager, E.P., et al., Mechanical properties of bone cements containing large doses ofantibiotic powders. J Biomed Mater Res,1976.10(6): p.929-38.
    12. Nelson, R.C., R.O. Hoffman, and T.A. Burton, The effect of antibiotic additions on themechanical properties of acrylic cement. J Biomed Mater Res,1978.12(4): p.473-90.
    13. He, Y., et al., Effect of antibiotics on the properties of poly(methylmethacrylate)-based bonecement. J Biomed Mater Res,2002.63(6): p.800-6.
    14. Davies, J.P., et al., Influence of antibiotic impregnation on the fatigue life of Simplex P andPalacos R acrylic bone cements, with and without centrifugation. J Biomed Mater Res,1989.23(4): p.379-97.
    15. Marks, K.E., C.L. Nelson, and E.P. Lautenschlager, Antibiotic-impregnated acrylic bonecement. J Bone Joint Surg Am,1976.58(3): p.358-64.
    16. Dunne, N., et al., In vitro study of the efficacy of acrylic bone cement loaded withsupplementary amounts of gentamicin: effect on mechanical properties, antibiotic release, andbiofilm formation. Acta Orthop,2007.78(6): p.774-85.
    17. Bozic, K.J. and M.D. Ries, The impact of infection after total hip arthroplasty on hospital andsurgeon resource utilization. J Bone Joint Surg Am,2005.87(8): p.1746-51.
    18. Kurtz, S.M., et al., Infection burden for hip and knee arthroplasty in the United States. JArthroplasty,2008.23(7): p.984-91.
    19. Incidence and risk factors for deep surgical site infection after primary total hip arthroplasty: asystematic review.2010.25(8): p.1216-22e1-3.
    20. Bozic, K.J., et al., The epidemiology of revision total knee arthroplasty in the United States.Clin Orthop Relat Res,2010.468(1): p.45-51.
    21. Bozic, K.J., et al., The epidemiology of revision total hip arthroplasty in the United States. JBone Joint Surg Am,2009.91(1): p.128-33.
    22. Fulkerson, E., et al., Antibiotic susceptibility of bacteria infecting total joint arthroplasty sites. JBone Joint Surg Am,2006.88(6): p.1231-7.
    23. Salgado, C.D., et al., Higher risk of failure of methicillin-resistant Staphylococcus aureusprosthetic joint infections. Clin Orthop Relat Res,2007.461: p.48-53.
    24. Walls, R.J., et al., Surgical site infection with methicillin-resistant Staphylococcus aureus afterprimary total hip replacement. J Bone Joint Surg Br,2008.90(3): p.292-8.
    25. Choi, O., et al., The inhibitory effects of silver nanoparticles, silver ions, and silver chloridecolloids on microbial growth. Water Res,2008.42(12): p.3066-74.
    26. Hirakawa, K., et al., Results of2-stage reimplantation for infected total knee arthroplasty. JArthroplasty,1998.13(1): p.22-8.
    27. James, P.J., et al., Methicillin-resistant Staphylococcus epidermidis in infection of hiparthroplasties. J Bone Joint Surg Br,1994.76(5): p.725-7.
    28. Kilgus, D.J., D.J. Howe, and A. Strang, Results of periprosthetic hip and knee infections causedby resistant bacteria. Clin Orthop Relat Res,2002(404): p.116-24.
    29. Josefsson, G. and L. Kolmert, Prophylaxis with systematic antibiotics versus gentamicin bonecement in total hip arthroplasty. A ten-year survey of1,688hips. Clin Orthop Relat Res,1993(292): p.210-4.
    30. Thomes, B., P. Murray, and D. Bouchier-Hayes, Development of resistant strains ofStaphylococcus epidermidis on gentamicin-loaded bone cement in vivo. J Bone Joint Surg Br,2002.84(5): p.758-60.
    31. von Eiff, C., et al.,[Development of gentamicin-resistant Small Colony Variants of S. aureusafter implantation of gentamicin chains in osteomyelitis as a possible cause of recurrence]. ZOrthop Ihre Grenzgeb,1998.136(3): p.268-71.
    32. Bechert, T., et al., The Erlanger silver catheter: in vitro results for antimicrobial activity.Infection,1999.27Suppl1: p. S24-9.
    33. Dueland, R., J.A. Spadaro, and B.A. Rahn, Silver antibacterial bone cement. Comparison withgentamicin in experimental osteomyelitis. Clin Orthop Relat Res,1982(169): p.264-8.
    34. DiVincenzo, G.D., C.J. Giordano, and L.S. Schriever, Biologic monitoring of workers exposedto silver. Int Arch Occup Environ Health,1985.56(3): p.207-15.
    35. Vik, H., et al., Neuropathy caused by silver absorption from arthroplasty cement. Lancet,1985.1(8433): p.872.
    36. Sudmann, E., et al., Systemic and local silver accumulation after total hip replacement usingsilver-impregnated bone cement. Med Prog Technol,1994.20(3-4): p.179-84.
    37. Sondi, I. and B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E.coli as a model for Gram-negative bacteria. J Colloid Interface Sci,2004.275(1): p.177-82.
    38. Morones, J.R., et al., The bactericidal effect of silver nanoparticles. Nanotechnology,2005.16(10): p.2346-53.
    39. Davies, J. and G.D. Wright, Bacterial resistance to aminoglycoside antibiotics. TrendsMicrobiol,1997.5(6): p.234-40.
    40. Gupta, A., et al., Diversity of silver resistance genes in IncH incompatibility group plasmids.Microbiology,2001.147(Pt12): p.3393-402.
    41. Belmatoug, N., et al., A new model of experimental prosthetic joint infection due tomethicillin-resistant Staphylococcus aureus: a microbiologic, histopathologic, and magneticresonance imaging characterization. J Infect Dis,1996.174(2): p.414-7.
    42. Southwood, R.T., et al., Infection in experimental hip arthroplasties. J Bone Joint Surg Br,1985.67(2): p.229-31.
    43. Sheehan, E., et al., Adhesion of Staphylococcus to orthopaedic metals, an in vivo study. JOrthop Res,2004.22(1): p.39-43.
    44. An, Y.H., et al., The prevention of prosthetic infection using a cross-linked albumin coating in arabbit model. J Bone Joint Surg Br,1997.79(5): p.816-9.
    45. Hoiby, N., Recent advances in the treatment of Pseudomonas aeruginosa infections in cysticfibrosis. BMC Med,2011.9: p.32.
    46. Hoiby, N., et al., The clinical impact of bacterial biofilms. Int J Oral Sci,2011.3(2): p.55-65.
    47. Fuqua, C., M.R. Parsek, and E.P. Greenberg, Regulation of gene expression by cell-to-cellcommunication: acyl-homoserine lactone quorum sensing. Annu Rev Genet,2001.35: p.439-68.
    48. El-Azizi, M.A., S.E. Starks, and N. Khardori, Interactions of Candida albicans with otherCandida spp. and bacteria in the biofilms. J Appl Microbiol,2004.96(5): p.1067-73.
    49. Pierce, G.E., Pseudomonas aeruginosa, Candida albicans, and device-related nosocomialinfections: implications, trends, and potential approaches for control. J Ind MicrobiolBiotechnol,2005.32(7): p.309-18.
    50. Bjarnsholt, T. and M. Givskov, The role of quorum sensing in the pathogenicity of the cunningaggressor Pseudomonas aeruginosa. Anal Bioanal Chem,2007.387(2): p.409-14.
    51. Costerton, J.W., et al., Microbial biofilms. Annu Rev Microbiol,1995.49: p.711-45.
    52. Lewis, K., Persister cells. Annu Rev Microbiol,2010.64: p.357-72.
    53. Hoiby, N., et al., Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents,2010.35(4): p.322-32.
    54. Zimmerli, W., P.D. Lew, and F.A. Waldvogel, Pathogenesis of foreign body infection. Evidencefor a local granulocyte defect. J Clin Invest,1984.73(4): p.1191-200.
    55. Zimmerli, W. and P. Sendi, Pathogenesis of implant-associated infection: the role of the host.Semin Immunopathol,2011.33(3): p.295-306.
    56. Zimmerli, W., et al., Pathogenesis of foreign body infection: description and characteristics ofan animal model. J Infect Dis,1982.146(4): p.487-97.
    57. Burmolle, M., et al., Biofilms in chronic infections-a matter of opportunity-monospeciesbiofilms in multispecies infections. FEMS Immunol Med Microbiol,2010.59(3): p.324-36.
    58. Sendi, P., et al., Staphylococcus aureus small colony variants in prosthetic joint infection. ClinInfect Dis,2006.43(8): p.961-7.
    59. Gristina, A.G., Implant failure and the immuno-incompetent fibro-inflammatory zone. ClinOrthop Relat Res,1994(298): p.106-18.
    60. Oliveira, M., et al., Biofilm-forming ability profiling of Staphylococcus aureus andStaphylococcus epidermidis mastitis isolates. Vet Microbiol,2006.118(1-2): p.133-40.
    61. Peersman, G., et al., Infection in total knee replacement: a retrospective review of6489totalknee replacements. Clin Orthop Relat Res,2001(392): p.15-23.
    62. Vuong, C. and M. Otto, Staphylococcus epidermidis infections. Microbes Infect,2002.4(4): p.481-9.
    63. Lee, B., et al., Mucoid Pseudomonas aeruginosa isolates maintain the biofilm formationcapacity and the gene expression profiles during the chronic lung infection of CF patients.APMIS,2011.119(4-5): p.263-74.
    64. Anderson, G.G., et al., Intracellular bacterial biofilm-like pods in urinary tract infections.Science,2003.301(5629): p.105-7.
    65. Rosen, D.A., et al., Detection of intracellular bacterial communities in human urinary tractinfection. PLoS Med,2007.4(12): p. e329.
    66. Parsek, M.R. and P.K. Singh, Bacterial biofilms: an emerging link to disease pathogenesis.Annu Rev Microbiol,2003.57: p.677-701.
    67. Snygg-Martin, U., et al., Cerebrovascular complications in patients with left-sided infectiveendocarditis are common: a prospective study using magnetic resonance imaging andneurochemical brain damage markers. Clin Infect Dis,2008.47(1): p.23-30.
    68. Jensen, P.O., et al., The immune system vs. Pseudomonas aeruginosa biofilms. FEMS ImmunolMed Microbiol,2010.59(3): p.292-305.
    69. Linden, A. and M. Adachi, Neutrophilic airway inflammation and IL-17. Allergy,2002.57(9): p.769-75.
    70. Trampuz, A., et al., Synovial fluid leukocyte count and differential for the diagnosis ofprosthetic knee infection. Am J Med,2004.117(8): p.556-62.
    71. Parvizi, J., et al., New definition for periprosthetic joint infection: from the Workgroup of theMusculoskeletal Infection Society. Clin Orthop Relat Res,2011.469(11): p.2992-4.
    72. Zimmerli, W., A. Trampuz, and P.E. Ochsner, Prosthetic-joint infections. N Engl J Med,2004.351(16): p.1645-54.
    73. Osmon, D.R. and E.F. Berbari, Outpatient intravenous antimicrobial therapy for the practicingorthopaedic surgeon. Clin Orthop Relat Res,2002(403): p.80-6.
    74. Sendi, P., et al., Clinical comparison between exogenous and haematogenous periprostheticjoint infections caused by Staphylococcus aureus. Clin Microbiol Infect,2011.17(7): p.1098-100.
    75. Sendi, P. and W. Zimmerli, Challenges in periprosthetic knee-joint infection. Int J Artif Organs,2011.34(9): p.947-56.
    76. Elek, S.D. and P.E. Conen, The virulence of Staphylococcus pyogenes for man; a study of theproblems of wound infection. Br J Exp Pathol,1957.38(6): p.573-86.
    77. Zimmerli, W., O. Zak, and K. Vosbeck, Experimental hematogenous infection ofsubcutaneously implanted foreign bodies. Scand J Infect Dis,1985.17(3): p.303-10.
    78. Murdoch, D.R., et al., Infection of orthopedic prostheses after Staphylococcus aureusbacteremia. Clin Infect Dis,2001.32(4): p.647-9.
    79. Sendi, P., et al., Periprosthetic joint infection following Staphylococcus aureus bacteremia. JInfect,2011.63(1): p.17-22.
    80. Maderazo, E.G., S. Judson, and H. Pasternak, Late infections of total joint prostheses. A reviewand recommendations for prevention. Clin Orthop Relat Res,1988(229): p.131-42.
    81. Berbari, E.F., et al., Dental procedures as risk factors for prosthetic hip or knee infection: ahospital-based prospective case-control study. Clin Infect Dis,2010.50(1): p.8-16.
    82. Zimmerli, W. and P. Sendi, Antibiotics for prevention of periprosthetic joint infection followingdentistry: time to focus on data. Clin Infect Dis,2010.50(1): p.17-9.
    83. Pandey, R., A.R. Berendt, and N.A. Athanasou, Histological and microbiological findings innon-infected and infected revision arthroplasty tissues. The OSIRIS Collaborative Study Group.Oxford Skeletal Infection Research and Intervention Service. Arch Orthop Trauma Surg,2000.120(10): p.570-4.
    84. Anwar, H. and J.W. Costerton, Enhanced activity of combination of tobramycin andpiperacillin for eradication of sessile biofilm cells of Pseudomonas aeruginosa. AntimicrobAgents Chemother,1990.34(9): p.1666-71.
    85. Moskowitz, S.M., et al., Clinically feasible biofilm susceptibility assay for isolates ofPseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol,2004.42(5): p.1915-22.
    86. Furustrand Tafin, U., et al., Gentamicin improves the activities of daptomycin and vancomycinagainst Enterococcus faecalis in vitro and in an experimental foreign-body infection model.Antimicrob Agents Chemother,2011.55(10): p.4821-7.
    87. Hengzhuang, W., et al., Pharmacokinetics/pharmacodynamics of colistin and imipenem onmucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother,2011.55(9): p.4469-74.
    88. Ciofu, O., N. Bagge, and N. Hoiby, Antibodies against beta-lactamase can improve ceftazidimetreatment of lung infection with beta-lactam-resistant Pseudomonas aeruginosa in a rat modelof chronic lung infection. APMIS,2002.110(12): p.881-91.
    89. John, A.K., et al., Efficacy of daptomycin in implant-associated infection due tomethicillin-resistant Staphylococcus aureus: importance of combination with rifampin.Antimicrob Agents Chemother,2009.53(7): p.2719-24.
    90. Widmer, A.F., et al., Correlation between in vivo and in vitro efficacy of antimicrobial agentsagainst foreign body infections. J Infect Dis,1990.162(1): p.96-102.
    91. Zimmerli, W., et al., Microbiological tests to predict treatment outcome in experimentaldevice-related infections due to Staphylococcus aureus. J Antimicrob Chemother,1994.33(5):p.959-67.
    92. Baldoni, D., et al., Linezolid alone or combined with rifampin against methicillin-resistantStaphylococcus aureus in experimental foreign-body infection. Antimicrob Agents Chemother,2009.53(3): p.1142-8.
    93. Widmer, A.F., et al., Salmonella infection in total hip replacement: tests to predict the outcomeof antimicrobial therapy. Scand J Infect Dis,1990.22(5): p.611-8.
    94. Furustrand Tafin, U., et al., Role of rifampin against Propionibacterium acnes biofilm in vitroand in an experimental foreign-body infection model. Antimicrob Agents Chemother,2012.56(4): p.1885-91.
    95. Trampuz, A., et al., Efficacy of a novel rifamycin derivative, ABI-0043, against Staphylococcusaureus in an experimental model of foreign-body infection. Antimicrob Agents Chemother,2007.51(7): p.2540-5.
    96. Zimmerli, W., et al., Role of rifampin for treatment of orthopedic implant-relatedstaphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) StudyGroup. JAMA,1998.279(19): p.1537-41.
    97. Widmer, A.F., et al., Killing of nongrowing and adherent Escherichia coli determines drugefficacy in device-related infections. Antimicrob Agents Chemother,1991.35(4): p.741-6.
    98. Widmer, A.F., et al., Antimicrobial treatment of orthopedic implant-related infections withrifampin combinations. Clin Infect Dis,1992.14(6): p.1251-3.
    99. Giulieri, S.G., et al., Management of infection associated with total hip arthroplasty accordingto a treatment algorithm. Infection,2004.32(4): p.222-8.
    100. Laffer, R.R., et al., Outcome of prosthetic knee-associated infection: evaluation of40consecutive episodes at a single centre. Clin Microbiol Infect,2006.12(5): p.433-9.
    101. Brandt, C.M., et al., Staphylococcus aureus prosthetic joint infection treated with debridementand prosthesis retention. Clin Infect Dis,1997.24(5): p.914-9.
    102. Deirmengian, C., et al., Limited success with open debridement and retention of components inthe treatment of acute Staphylococcus aureus infections after total knee arthroplasty. JArthroplasty,2003.18(7Suppl1): p.22-6.
    103. Marculescu, C.E., et al., Outcome of prosthetic joint infections treated with debridement andretention of components. Clin Infect Dis,2006.42(4): p.471-8.
    104. Barberan, J., et al., Conservative treatment of staphylococcal prosthetic joint infections inelderly patients. Am J Med,2006.119(11): p.993e7-10.
    105. El Helou, O.C., et al., Efficacy and safety of rifampin containing regimen for staphylococcalprosthetic joint infections treated with debridement and retention. Eur J Clin Microbiol InfectDis,2010.29(8): p.961-7.
    106. Bernard, L., et al., Six weeks of antibiotic treatment is sufficient following surgery for septicarthroplasty. J Infect,2010.61(2): p.125-32.
    107. Trampuz, A. and W. Zimmerli, Prosthetic joint infections: update in diagnosis and treatment.Swiss Med Wkly,2005.135(17-18): p.243-51.
    108. Byren, I., et al., One hundred and twelve infected arthroplasties treated with 'DAIR'(debridement, antibiotics and implant retention): antibiotic duration and outcome. JAntimicrob Chemother,2009.63(6): p.1264-71.
    109. Sendi, P., et al., Group B streptococcus in prosthetic hip and knee joint-associated infections. JHosp Infect,2011.79(1): p.64-9.
    110. Achermann, Y., et al., Characteristics and outcome of27elbow periprosthetic joint infections:results from a14-year cohort study of358elbow prostheses. Clin Microbiol Infect,2011.17(3):p.432-8.
    111. De Man, F.H., et al., Infectiological, functional, and radiographic outcome after revision forprosthetic hip infection according to a strict algorithm. Acta Orthop,2011.82(1): p.27-34.
    112. Betsch, B.Y., et al., Treatment of joint prosthesis infection in accordance with currentrecommendations improves outcome. Clin Infect Dis,2008.46(8): p.1221-6.
    113. Francolini, I. and G. Donelli, Prevention and control of biofilm-based medical-device-relatedinfections. FEMS Immunol Med Microbiol,2010.59(3): p.227-38.
    114. Stensballe, J., et al., Infection risk with nitrofurazone-impregnated urinary catheters in traumapatients: a randomized trial. Ann Intern Med,2007.147(5): p.285-93.
    115. Kollef, M.H., et al., Silver-coated endotracheal tubes and incidence of ventilator-associatedpneumonia: the NASCENT randomized trial. JAMA,2008.300(7): p.805-13.
    116. Darouiche, R.O., et al., A comparison of two antimicrobial-impregnated central venouscatheters. Catheter Study Group. N Engl J Med,1999.340(1): p.1-8.
    117. Simchi, A., et al., Recent progress in inorganic and composite coatings with bactericidalcapability for orthopaedic applications. Nanomedicine,2011.7(1): p.22-39.
    118. Kazemzadeh-Narbat, M., et al., Antimicrobial peptides on calcium phosphate-coated titaniumfor the prevention of implant-associated infections. Biomaterials,2010.31(36): p.9519-26.
    119. Khoo, X., et al., Staphylococcus aureus resistance on titanium coated with multivalentPEGylated-peptides. Biomaterials,2010.31(35): p.9285-92.
    120. Harro, J.M., et al., Vaccine development in Staphylococcus aureus: taking the biofilm phenotypeinto consideration. FEMS Immunol Med Microbiol,2010.59(3): p.306-23.
    121. Anguita-Alonso, P., et al., RNAIII-inhibiting-peptide-loaded polymethylmethacrylate preventsin vivo Staphylococcus aureus biofilm formation. Antimicrob Agents Chemother,2007.51(7): p.2594-6.
    122. Skindersoe, M.E., et al., Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa.Antimicrob Agents Chemother,2008.52(10): p.3648-63.
    123. Tenover, F.C., Mechanisms of antimicrobial resistance in bacteria. Am J Med,2006.119(6Suppl1): p. S3-10; discussion S62-70.
    124. Webb, G.F., et al., A model of antibiotic-resistant bacterial epidemics in hospitals. Proc NatlAcad Sci U S A,2005.102(37): p.13343-8.
    125. Humberto, et al., Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria.World J Microbiol Biotechnol2010(26): p.615–621.
    126. Marcato, P.D. and N. Duran, New aspects of nanopharmaceutical delivery systems. J NanosciNanotechnol,2008.8(5): p.2216-29.
    127. Singh, R. and H.S. Nalwa, Medical applications of nanoparticles in biological imaging, celllabeling, antimicrobial agents, and anticancer nanodrugs. J Biomed Nanotechnol,2011.7(4):p.489-503.
    128. Gemmell, C.G., et al., Guidelines for the prophylaxis and treatment of methicillin-resistantStaphylococcus aureus (MRSA) infections in the UK. J Antimicrob Chemother,2006.57(4): p.589-608.
    129. Klasen, H.J., Historical review of the use of silver in the treatment of burns. I. Early uses.Burns,2000.26(2): p.117-30.
    130. Lansdown, A.B., Silver. I: Its antibacterial properties and mechanism of action. J Wound Care,2002.11(4): p.125-30.
    131. Castellano, J.J., et al., Comparative evaluation of silver-containing antimicrobial dressings anddrugs. Int Wound J,2007.4(2): p.114-22.
    132. Chen, X. and H.J. Schluesener, Nanosilver: a nanoproduct in medical application. Toxicol Lett,2008.176(1): p.1-12.
    133. Moyer, C.A., et al., TREATMENT OF LARGE HUMAN BURNS WITH0.5PER CENT SILVERNITRATE SOLUTION. Arch Surg,1965.90: p.812-67.
    134. Fox, C.L., Jr. and S.M. Modak, Mechanism of silver sulfadiazine action on burn woundinfections. Antimicrob Agents Chemother,1974.5(6): p.582-8.
    135. Chopra, I., The increasing use of silver-based products as antimicrobial agents: a usefuldevelopment or a cause for concern? J Antimicrob Chemother,2007.59(4): p.587-90.
    136. Maple, P.A., J.M. Hamilton-Miller, and W. Brumfitt, Comparison of the in-vitro activities of thetopical antimicrobials azelaic acid, nitrofurazone, silver sulphadiazine and mupirocin againstmethicillin-resistant Staphylococcus aureus. J Antimicrob Chemother,1992.29(6): p.661-8.
    137. McDonnell, G. and A.D. Russell, Antiseptics and disinfectants: activity, action, and resistance.Clin Microbiol Rev,1999.12(1): p.147-79.
    138. Kawahara, K., et al., Antibacterial effect of silver-zeolite on oral bacteria under anaerobicconditions. Dent Mater,2000.16(6): p.452-5.
    139. Matsumura, Y., et al., Mode of bactericidal action of silver zeolite and its comparison with thatof silver nitrate. Appl Environ Microbiol,2003.69(7): p.4278-81.
    140. Feng, Q.L., et al., A mechanistic study of the antibacterial effect of silver ions on Escherichiacoli and Staphylococcus aureus. J Biomed Mater Res,2000.52(4): p.662-8.
    141. Kazachenko, A.S., et al., Synthesis and antimicrobial activity of silver complexes with histidineand tryptophan Pharmaceutical Chemistry Journal2000.34: p.257-258.
    142. Spacciapoli, P., et al., Antimicrobial activity of silver nitrate against periodontal pathogens. JPeriodontal Res,2001.36(2): p.108-13.
    143. Yamanaka, M., K. Hara, and J. Kudo, Bactericidal actions of a silver ion solution onEscherichia coli, studied by energy-filtering transmission electron microscopy and proteomicanalysis. Appl Environ Microbiol,2005.71(11): p.7589-93.
    144. Panacek, A., et al., Silver colloid nanoparticles: synthesis, characterization, and theirantibacterial activity. J Phys Chem B,2006.110(33): p.16248-53.
    145. Leaper, D.J., Silver dressings: their role in wound management. Int Wound J,2006.3(4): p.282-94.
    146. Tian, J., et al., Topical delivery of silver nanoparticles promotes wound healing.ChemMedChem,2007.2(1): p.129-36.
    147. Shahverdi, A.R., et al., Synthesis and effect of silver nanoparticles on the antibacterial activityof different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine,2007.3(2): p.168-71.
    148. Shrivastava, S., Characterization of enhanced antibacterial effects of novel silver nanoparticles.Nanotechnology,2007.18: p.103-12.
    149. Pal, S., Y.K. Tak, and J.M. Song, Does the antibacterial activity of silver nanoparticles dependon the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli.Appl Environ Microbiol,2007.73(6): p.1712-20.
    150. Durán, N., Antibacterial Effect of Silver Nanoparticles Produced by Fungal Process on TextileFabrics and Their Effluent Treatment Journal of Biomedical Nanotechnology,2007.3: p. pp.203-208(6).
    151. Maneerung, T., S. Tokura, and R. Rujiravanit, Impregnation of silvernanoparticles intobacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers,2008.72: p.43-51.
    152. Jun, J., et al., Preparation and Characterization of Antibacterial Silver-containing Nanofibersfor Wound Dressing Applications. J US-China Med Sci,2007: p.52-54.
    153. Kim, J.S., et al., Antimicrobial effects of silver nanoparticles. Nanomedicine,2007.3(1): p.95-101.
    154. Kumar, A., et al., Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil.Nat Mater,2008.7(3): p.236-41.
    155. Ingle, A., et al., Mycosynthesis of Silver Nanoparticles Using the Fungus Fusariumacuminatum and its Activity Against Some Human Pathogenic Bacteria Current Nanoscience,2008.4: p. pp.141-144(4).
    156. Gade, A.K., et al., Exploitation of Aspergillus niger for Synthesis of Silver NanoparticlesJournal of Biobased Materials and Bioenergy,2008.2: p. pp.243-247.
    157. Rosenkranz, H.S. and H.S. Carr, Silver sulfadiazine: effect on the growth and metabolism ofbacteria. Antimicrob Agents Chemother,1972.2(5): p.367-72.
    158. Schreurs, W.J. and H. Rosenberg, Effect of silver ions on transport and retention of phosphateby Escherichia coli. J Bacteriol,1982.152(1): p.7-13.
    159. Haefeli, C., C. Franklin, and K. Hardy, Plasmid-determined silver resistance in Pseudomonasstutzeri isolated from a silver mine. J Bacteriol,1984.158(1): p.389-92.
    160. Liau, S.Y., et al., Interaction of silver nitrate with readily identifiable groups: relationship tothe antibacterial action of silver ions. Lett Appl Microbiol,1997.25(4): p.279-83.
    161. Raimondi, F., et al., Nanoparticles in energy technology: examples from electrochemistry andcatalysis. Angew Chem Int Ed Engl,2005.44(15): p.2190-209.
    162. Braydich-Stolle, L., et al., In vitro cytotoxicity of nanoparticles in mammalian germline stemcells. Toxicol Sci,2005.88(2): p.412-9.
    163. Hussain, S.M., et al., In vitro toxicity of nanoparticles in BRL3A rat liver cells. Toxicol In Vitro,2005.19(7): p.975-83.
    164. Burd, A., et al., A comparative study of the cytotoxicity of silver-based dressings in monolayercell, tissue explant, and animal models. Wound Repair Regen,2007.15(1): p.94-104.
    165. Oberdorster, G., E. Oberdorster, and J. Oberdorster, Nanotoxicology: an emerging disciplineevolving from studies of ultrafine particles. Environ Health Perspect,2005.113(7): p.823-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700