用户名: 密码: 验证码:
抑制组织蛋白酶B在心梗后心功能和纤维化中的作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:本研究的目的为阐明一种特异性组织蛋白酶B抑制剂CA-074Me在心肌梗死大鼠后心功能障碍和心室重塑、纤维化中的作用及潜在的机制。
     方法:
     1)大鼠心梗模型的建立
     SD大鼠购自北京维通利华公司。所有动物按照标准条件饲养于我校动物实验中心。采用10周龄的SD大鼠,体重约280-320g,通过结扎大鼠冠状动脉左前降支建立心肌梗死模型。具体的步骤如下:首先采用异氟烷(5%诱导,2%维持)麻醉大鼠,随后给予机械通气。通过观察大鼠的反应是否丧失和肌肉松弛的程度判断麻醉的效果。在第5和第6肋间开胸,打开心包,暴露心脏,冠状动脉位于肺动脉圆锥和左心房边缘交界处下1-2mm,用5.0的丝线自肺动脉圆锥进针自左心房边缘处出针永久性结扎冠状动脉。放置心脏于原位,复张肺部后采用4.0丝线关胸。假手术组为过线不结扎
     2)治疗
     实验分为3组:假手术组(n=10),心肌梗死组(n=15),CA-074Me心肌梗死治疗组(n=15)。采用DMSO二甲基亚砜(Dimethyl sulfoxide或DMSO),溶解组织蛋白酶B抑制剂CA-074Me制备10mg/ml储存液,采用生理盐水按照1:10的体积比稀释,按照10mg/kg的剂量腹腔注射大鼠进行治疗。其中心肌梗死组采用10%的DMSO注射4周;CA-074Me心肌梗死治疗组每天按照10mg/kg的剂量腹腔注射,治疗4周。
     3)组织蛋白酶B活性检测
     组织蛋白酶B的活性检测采用合成荧光底物Z-Arg-Arg-NHMec进行检测。在需要分析的溶液中加入150μlM Z-Arg-Arg-NHMec (pH6.0),随后在激发波长360nm和发射波长465nm,30分钟内每间隔1分钟检测荧光3次。数据表示为相对荧光单位,以均数±标准差表示。重复3次实验。
     4)免疫印迹
     采用组织裂解液(Cell Signaling Technology)制备心脏组织匀浆提取总蛋白,储存于-20℃。采用BCA方法(Pierce).检测蛋白浓度。蛋白煮沸变性,在8-12%的聚丙酰胺凝胶中分离,随后转至PVDF膜,5%脱脂奶粉封闭,采用特异性一抗孵育:anti-NLRP3(1:2000; BD); anti-caspase-1p20(1:2000), anti-pro-IL-1β/IL-1β (1:2000), anti-pro-IL-18/IL-18(1:2000)(Cell Signaling Technology).最后通过化学发光的方法进行检测,蛋白的相对定量通过与看家基因β-actin的光密度校正进行半定量。
     5)免疫酶联吸附
     血清IL-1p和IL-18水平采用美国R&D公司提供的ELISA试剂盒进行测定,具体测定方法严格按照试剂盒说明书操作。
     6)心功能检测
     大鼠的心功能检测采用超声心动图法。具体如下:采用10-12MHz的线状探头(model21380A with HP SONOS5500imaging system; Agilent Technologies).舒张期和收缩期左心室的内径(LVIDD和LVIDS),左心室短轴缩短率(LVFS)在左心室乳头肌平面采用M型超声测得,所有的测量数据采用双盲法测得连续3个心动周期,取平均值。所有数据的获得和分析由单盲的观察者采用EchoPAC (GE Vingmed)程序脱机分析。
     7)心肌梗死面积
     光镜下观察Masson's trichrome染色的切片,采用图像软件(AIS, Analytical imaging Station Version6.0, Ontario, Canada)进行分析.心肌梗死的面积按照心内膜和心外膜瘢痕的平均周长和左心室心内膜和心外膜的平均周长的比值进行计算。
     8)细胞外基质沉积
     光镜下观察Masson's trichrome染色的切片分析细胞外基质沉积的情况。定量非梗死区的基质沉积,具体如下:摄取左心室中部的染色切片的图片,用于电脑分析。分析的时候除去梗死区边缘2mm的区域,以此将非梗死区自梗死区和交界区分开,余下的心肌为非梗死区,采用图像分析软件进行分析(Analytical imaging Station Version6.0, Canada)。全部的非梗死区均用于细胞外基质沉积的分析,以免因为选定区域而造成的偏倚。Masson's trichrome染色切片的蓝色区域代表细胞外基质。对于假手术组大鼠,定量分析方法同上。
     9)组织化学和免疫荧光分析
     4周后采用10%中性福尔马林固定心梗后大鼠心脏1小时,随后用0.1M甘氨酸孵育1小时,在0.6M的蔗糖溶液4℃过夜。采用OCT包埋样本,制成4μm切片,保存于-200C。对于免疫组化实验,大鼠的心脏切片通透和1%BSA封闭后采用a-sarcomeric actin (1:50; Sigma), wheat germ hemagglutinin (WGA)(1:50), and anti-His (1:50)(from Invitrogen)孵育。二抗浓度为1:100,购自Invitrogen公司,室温孵育1小时.DAPI染细胞核.倒置荧光显微镜下观察切片和获取图像(Zeiss)。
     结果
     1. CA-074Me抑制蛋白酶B-NLRP3-IL-1β信号通路的活化
     我们证实了CA-074Me可以抑制组织蛋白酶B的活性。随后我们检测了CA-074Me治疗对血清促炎因子IL-1β和IL-18的影响。结果显示在溶剂治疗组的心肌梗死大鼠血清中上述因子较假手术组大鼠明显增加;而CA-074Me治疗组的大鼠上述因子水平较溶剂治疗组大鼠明显下降。免疫印迹结果证实溶剂治疗的大鼠心脏成熟IL-1p的表达明显上调,假手术组和CA-074Me治疗组的大鼠IL-1β无明显升高。对比假手术组大鼠,溶剂治疗组大鼠心脏NLRP3的蛋白表达水平明显升高,上述效应能被CA-074Me治疗抑制。随着细胞因子的成熟,在溶剂治疗组的心肌梗死大鼠可以观察到caspase-1的活化,p20亚单位的出现证实了caspase-1的活化,而这种效应可以被CA-074Me治疗有效抑制。
     2. CA-074Me治疗改善心功能
     基础状态,3组大鼠的心功能无差异。心肌梗死4周后CA-074Me治疗的心梗大鼠LVIDD, LVIDS, LVFS和射血分数(EF)均明显改善。
     3. CA-074Me治疗减少心肌梗死面积和心肌细胞面积
     对比溶剂治疗组的心梗大鼠,CA-074Me治疗组的心梗大鼠心肌梗死面积明显降低(22±2.8%vs38+5.4%,p<0.01)。采用横截面面积和周长的定量心肌细胞大小的结果显示CA-074Me治疗抑制心室重塑(P<0.01,n=15)。
     4. CA-074Me治疗减少心肌纤维化
     单纯溶剂治疗组的心梗大鼠非梗死区细胞外基质沉积是假手术组大鼠的7倍,CA-074Me治疗明显减少整个非梗死区的基质沉积,并与假手术组大鼠基质沉积的情况类似(0.26±0.07%versus0.19±0.07%)。
     结论
     我们的研究结果证实了抑制组织蛋白酶B可以抑制NLRP3-IL-1β信号通路的活化从而抑制炎症小体活化,抑制促炎因子释放,改善心功能和抑制心脏纤维化。此外,研究证实复杂的信号通路参与了心肌细胞肥大,我们的研究结果显示了抑制组织蛋白酶B可以抑制心肌细胞肥大,从而证实了NLRP3-IL-1β信号通路在心脏收缩和功能的有害作用。
Objective:This study aimed to elucidate the effects of a specific cathepsin B inhibitor CA-074Me on cardiac dysfunction and remodeling as well as fibrosis following myocardial infarction using an MI rat model, and to investigate its potential mechanisms of action.
     Methods:
     1) Induction of Rat MI
     Male Sprague-Dawley rats were purchased from Vital River Laboratories (Beijing, China). Animals were housed and maintained under standard conditions in our experimental animal center. All experiments conformed to the Guide for the Care and Use of Laboratory Animals by our Institute. MI was induced in male10-week old rats (weighing280-320g) by ligating the left anterior descending coronary artery as previously described. Briefly, anaesthesia with isoflurane (5%induction,2%maintenance) preceded intubation and ventilation. Adequacy of anaesthesia was monitored by loss of reflexes, and degree of muscle relaxation. Left-sided thoracotomy was performed between the fifth and sixth ribs. The pericardium was opened, and the heart exteriorized. The coronary artery was localized1-2mm below the junction of the pulmonary conus and the left atrial appendage. A5.0silk suture was used to permanently constrict the artery from the left border of the pulmonary conus to the right border of the left atrial appendage. The heart was returned to the chest, and lungs were re-expanded before closing the chest wall with4.0silk. Sham animals underwent every procedure except coronary artery ligation.
     2) Treatment
     Stock solutions of the cathepsin B inhibitor CA-074Me were made at a concentration of10mg/ml in dimethyl sulfoxide (DMSO). This was diluted1:10in saline and administered at a dose of10mg/kg by intraperitoneal injection according to previously validated protocols. All rats were randomly assigned to3groups. Group I (n=10):sham-operated rats as the normal control; Group II:MI rats with vehicle (10%DMSO)(n=15) for4weeks; Group III:MI rats with CA-074Me treatment at a dosage of10mg/kg/day (n=15) for4weeks.
     3) Cathepsin B activity assay
     Cathepsin B activity was measured using the synthetic fluorometric substrate Z-Arg-Arg-NHMec. Briefly,150μM Z-Arg-Arg-NHMec (pH6.0) was added to the assay buffer and fluorescence was measured in triplicate, at one-minute intervals for30minutes, at an excitation of360nm and an emission of465nm. Data are represented as relative fluorescent units and presented as mean±standard deviation (SD) of three independent experiments.
     4) Western blot
     Total protein extracts were prepared by homogenizing heart tissues in lysis buffer (Cell Signaling Technology) and stored at-20C. The protein content was determined using the bicinchoninic assay method (Pierce). Equal amounts of protein were boiled with SDS buffer, loaded on8-12%denaturing polyacrylamide gels, blotted onto PVDF membrane. After blocking with5%skimmed milk, specific primary antibodies were used as follows:anti-NLRP3(1:2000; BD); anti-caspase-lp20(1:2000), anti-pro-IL-1β/IL-1β (1:2000), anti-pro-IL-18/IL-18(1:2000)(all from Cell Signaling Technology). Immunoblots were visualized by enhanced chemiluminescence, and quantified for specific protein content by densitometry with normalization for housekeeping gene β-actin (1:2000; Cell Signaling Technology).
     5) ELISA
     Serum IL-1β and IL-18levels were determined by ELISA kits (R&D Systems) according to the manufacturer's instructions.
     6) Cardiac function assessed by echocardiography
     Cardiac function of all rats was evaluated by noninvasive echocardiography. Briefly, images were recorded using a10-12MHz phased-array transducer (model21380A with HP SONOS5500imaging system; Agilent Technologies). Diastolic and systolic LV internal dimensions (LVIDD and LVIDS) and LV fractional shortening (LVFS) were measured with M-mode tracings from the short-axis view of the LV at the papillary muscle level. All measurements were performed in a blinded fashion according to the guidelines of the American Society for Echocardiology and averaged over3consecutive cardiac cycles. All data were acquired and analyzed by a single blinded observer using EchoPAC (GE Vingmed) off-line processing.
     7) Infarct size
     The Masson's trichrome-stained slides were examined under light microscopy and digitized, then analyzed using image analysis (AIS, Analytical imaging Station Version6.0, Ontario, Canada). Infarct size was assessed morphologically and calculated as the ratio of scar average circumferences of the endocardium and the epicardium to LV average circumferences of the endocardium and the epicardium.
     8) Extracellular matrix deposition
     Sections were stained with Masson's Trichrome to examine extracellular matrix (ECM) deposition as previously described. All tissues were assessed with the examiner masked to the experimental groups. The accumulation of matrix within the non-infarct zone (NIZ) was then quantified. Briefly, stained sections from the mid left ventricle were digitally captured in their entirety with a standard polarizing filter, and then loaded onto a Pentium III IBM computer. To isolate the NIZ from the infarct and the peri-infarct zone, the infarct and a2mm zone on either side of it were excluded from analysis. The remaining myocardium composed the NIZ, and was analyzed using computer-assisted image analysis using image analysis software (Analytical imaging Station Version6.0, Canada). The whole NIZ was used for quantification of ECM in order to prevent possible bias from using selected fields. An area of blue on a trichrome-stained section, representing ECM, was selected for its color range. For sham animals, the ECM content of the entire LV was quantitated by the same method, as described above.
     9) Histological and immunofluorescence analysis
     Rat hearts were collected at4weeks post-MI fixed with buffered10%PFA for1h, followed by1h incubation in0.1M glycine and overnight incubation at4℃in0.6M sucrose. Samples were embedded in OCT and sections (4μm) were cut and stored in-20℃. Sections for Masson-trichrome were processed as per manufacturer instructions (Sigma).In a separate set of IHC experiments, rat heart sections were permeabilized and blocked for1h in1%BSA and probed with primary polyclonal antibodies to a-sarcomeric actin (1:50; Sigma), wheat germ hemagglutinin (WGA)(1:50), and anti-His (1:50)(both from Invitrogen). Secondary antibodies (1:100; Invitrogen) were used at the recommended dilution and incubated on sections for1h at room temperature. Nuclei counterstained with (DAPI). Images were acquired on an inverted epifluorescent microscope (Zeiss).
     Results:
     1. CA-074Me inhibited activation of cathepsin B-NLRP3-IL-1β pathway
     First of all, we confirmed that cathepsin B activity was inhibited by CA-074Me treatment. Further, we examined whether CA-074Me treatment affected serum levels of the proinflammatory cytokines IL-1β and IL-18by ELISA. A marked increase in serum levels of these cytokines was seen in vehicle-treated rats compared to the low baseline levels observed in sham control rats, and levels in CA-074Me-treated rats were significantly lower than those in vehicle-treated animals.
     As demonstrated by Western blot analysis, increasing amounts of mature IL-1β were observed in lysates of vehicle-treated hearts, but not CA-074Me-treated or sham control hearts. We then measured whether inflammasome activation was suppressed by CA-074Me administration. We then measured NLRP3protein levels in heart tissues using. In vehicle-treated rats, levels of NLRP3protein were significantly increased compared to sham controls and these effects were inhibited by CA-074Me treatment. Consistent with cytokine maturation, caspase-1activation was also seen in vehicle-treated hearts, as demonstrated by the appearance of the p20subunit, and this effect was significantly inhibited by CA-074Me treatment.
     2. Treatment with CA-074Me improves cardiac function
     Echocardiography was used to examine cardiac structure and function in rats. At baseline, no differences between the3groups were observed. CA-074Me treatment for4weeks contributed to significant improvements in LVIDD, LVIDS, LVFS and ejection fraction (EF).
     3. Infarct size and LV cardiomyocyte size were reduced by CA-074Me
     Treatment with CA-074Me significantly reduced the infarct size compared with vehicle-treated MI groups (22±2.8%vs38±5.4%, p<0.01). The cardiomyocyte size was assessed using high magnification microscopy to quantify circumference and the cross-sectional area. These data showed that treatment with CA-074Me prevented cardiac remodeling when compared with vehicle and sham (P<0.01for all comparisons, n=15).
     4. CA-074Me treatment reduced cardiac fibrosis
     The extent of cardiac fibrosis was evaluated by Masson-trichrome staining at4weeks post-MI. On trichrome-stained sections, ECM deposition in the NIZ was more than sevenfold higher in MI animals compared with sham animals that were especially pronounced in the subendocardial region of the NIZ. Treatment with CA-074Me resulted in a reduction in ECM throughout the NIZ to levels similar to those seen in sham animals. Non-infarcted animals treated with CA-074Me had similar levels of ECM compared to the untreated sham-operated animals (0.26±0.07%versus0.19±0.07%, respectively).
     Conclusion:Our study provides additional data that inhibition of cathepsin B induced a significant decrease in NLRP3-IL-1β activation, resulting in improved cardiac function and less fibrosis. In addition, complex signaling pathways are involved in myocyte hypertrophy, and our findings showed that cardiomyocyte size was as also attenuated by such inhibition, which supports an adverse effect of the cathepsin B-NLRP3-IL-1β pathway on cardiac contractility and function.
引文
1. Li XD, Yang YJ, Hao YC, Yang Y, Zhao JL, Dou KF, Gu DF. Effect of pre-procedural statin therapy on myocardial no-reflow following percutaneous coronary intervention:A meta analysis. Chinese medical journal. 2013;126:1755-1760
    2. Bolognese L, Neskovic AN, Parodi G, Cerisano G, Buonamici P, Santoro GM, Antoniucci D. Left ventricular remodeling after primary coronary angioplasty: Patterns of left ventricular dilation and long-term prognostic implications. Circulation.2002; 106:2351-2357
    3. Cleland JG, Gemmell I, Khand A, Boddy A. Is the prognosis of heart failure improving? European journal of heart failure.1999;1:229-241
    4. Babick A, Elimban V, Zieroth S, Dhalla NS. Reversal of cardiac dysfunction and subcellular alterations by metoprolol in heart failure due to myocardial infarction. Journal of cellular physiology.2013
    5. Takahashi M. Role of innate immune system in inflammation and cardiac remodeling after myocardial infarction. Current vascular pharmacology.2013
    6. Halade GV, Jin YF, Lindsey ML. Matrix metalloproteinase (mmp)-9:A proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacology & therapeutics.2013
    7. Anzai T. Post-infarction inflammation and left ventricular remodeling-a double-edged sword. Circulation journal:official journal of the Japanese Circulation Society.2013;77:580-587
    8. Frantz S, Hofmann U, Fraccarollo D, Schafer A, Kranepuhl S, Hagedorn I, Nieswandt B, Nahrendorf M, Wagner H, Bayer B, Pachel C, Schon MP, Kneitz S, Bobinger T, Weidemann F, Ertl G, Bauersachs J. Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB journal:official publication of the Federation of American Societies for Experimental Biology.2013;27:871-881
    9. Dinarello CA. Blocking interleukin-lbeta in acute and chronic autoinflammatory diseases. Journal of internal medicine.2011;269:16-28
    10. Nikolic VN, Jevtovic-Stoimenov T, Stokanovic D, Milovanovic M, Velickovic-Radovanovic R, Pesic S, Stoiljkovic M, Pesic G, Ilic S, Deljanin-Ilic M, Marinkovic D, Stefanovic N, Jankovic SM. An inverse correlation between tnf alpha serum levels and heart rate variability in patients with heart failure. Journal of cardiology.2013
    11. Ma F, Li Y, Jia L, Han Y, Cheng J, Li H, Qi Y, Du J. Macrophage-stimulated cardiac fibroblast production of il-6 is essential for tgf beta/smad activation and cardiac fibrosis induced by angiotensin ii. PloS one.2012;7:e35144
    12. Mallat Z, Heymes C, Corbaz A, Logeart D, Alouani S, Cohen-Solal A, Seidler T, Hasenfuss G, Chvatchko Y, Shah AM, Tedgui A. Evidence for altered interleukin 18 (il)-18 pathway in human heart failure. FASEB journal:official publication of the Federation of American Societies for Experimental Biology. 2004; 18:1752-1754
    13. Artlett CM. The role of the nlrp3 inflammasome in fibrosis. The open rheumatology journal.2012;6:80-86
    14. Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, Hongo M, Noda T, Nakayama J, Sagara J, Taniguchi S, Ikeda U. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 2011; 123:594-604
    15. Zheng F, Xing S, Gong Z, Xing Q. Nlrp3 inflammasomes show high expression in aorta of patients with atherosclerosis. Heart, lung & circulation. 2013
    16. Stienstra R, van Diepen JA, Tack CJ, Zaki MH, van de Veerdonk FL, Perera D, Neale GA, Hooiveld GJ, Hijmans A, Vroegrijk I, van den Berg S, Romijn J, Rensen PC, Joosten LA, Netea MG, Kanneganti TD. Inflammasome is a central player in the induction of obesity and insulin resistance. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:15324-15329
    17. Trinchieri G, Sher A. Cooperation of toll-like receptor signals in innate immune defence. Nature reviews. Immunology.2007;7:179-190
    18. Martinon F, Mayor A, Tschopp J. The inflammasomes:Guardians of the body. Annual review of immunology.2009;27:229-265
    19. Pedra JH, Cassel SL, Sutterwala FS. Sensing pathogens and danger signals by the inflammasome. Current opinion in immunology.2009;21:10-16
    20. Keller M, Ruegg A, Werner S, Beer HD. Active caspase-1 is a regulator of unconventional protein secretion. Cell.2008; 132:818-831
    21. Shao W, Yeretssian G, Doiron K, Hussain SN, Saleh M. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. The Journal of biological chemistry.2007;282:36321-36329
    22. Alnemri ES. Sensing cytoplasmic danger signals by the inflammasome. Journal of clinical immunology.2010;30:512-519
    23. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA. Aim2 recognizes cytosolic dsdna and forms a caspase-1-activating inflammasome with asc. Nature.2009;458:514-518
    24. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. Aim2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009;458:509-513
    25. Byrne BG, Dubuisson JF, Joshi AD, Persson JJ, Swanson MS. Inflammasome components coordinate autophagy and pyroptosis as macrophage responses to infection. mBio.2013;4:e00620-00612
    26. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature immunology. 2010;11:136-140
    27. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, Fitzgerald KA, Ryter SW, Choi AM. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the nalp3 inflammasome. Nature immunology.2011; 12:222-230
    28. Bryant C, Fitzgerald KA. Molecular mechanisms involved in inflammasome activation. Trends in cell biology.2009; 19:455-464
    29. Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM. Cryopyrin activates the inflammasome in response to toxins and atp. Nature.2006;440:228-232
    30. Feldmeyer L, Keller M, Niklaus G, Hohl D, Werner S, Beer HD. The inflammasome mediates uvb-induced activation and secretion of interleukin-lbeta by keratinocytes. Current biology:CB.2007; 17:1140-1145
    31. Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP, Bertin J, Coyle AJ, Galan JE, Askenase PW, Flavell RA. Critical role for nalp3/ciasl/cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity.2006;24:317-327
    32. Kahlenberg JM, Dubyak GR. Differing caspase-1 activation states in monocyte versus macrophage models of il-1beta processing and release. Journal of leukocyte biology.2004;76:676-684
    33. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM. Differential activation of the inflammasome by caspase-1 adaptors asc and ipaf. Nature.2004;430:213-218
    34. Mayor A, Martinon F, De Smedt T, Petrilli V, Tschopp J. A crucial function of sgtl and hsp90 in inflammasome activity links mammalian and plant innate immune responses. Nature immunology.2007;8:497-503
    35. Martinon F, Burns K, Tschopp J. The inflammasome:A molecular platform triggering activation of inflammatory caspases and processing of proil-beta. Molecular cell.2002;10:417-426
    36. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in nlrp3 inflammasome activation. Nature.2011;469:221-225
    37. Usui F, Shirasuna K, Kimura H, Tatsumi K, Kawashima A, Karasawa T, Hida S, Sagara J, Taniguchi S, Takahashi M. Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in western diet-fed apolipoprotein e-deficient mice. Biochemical and biophysical research communications.2012;425:162-168
    38. Pomerantz BJ, Reznikov LL, Harken AH, Dinarello CA. Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of il-18 and il-lbeta. Proceedings of the National Academy of Sciences of the United States of America.2001;98:2871-2876
    39. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nunez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E. Nlrp3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357-1361
    40. Hwang MW, Matsumori A, Furukawa Y, Ono K, Okada M, Iwasaki A, Hara M, Miyamoto T, Touma M, Sasayama S. Neutralization of interleukin-1beta in the acute phase of myocardial infarction promotes the progression of left ventricular remodeling. Journal of the American College of Cardiology. 2001;38:1546-1553
    41. Molto A, Olive A. Anti-il-1 molecules:New comers and new indications. Joint, bone, spine:revue du rhumatisme.2010;77:102-107
    42. Kontzias A, Efthimiou P. The use of canakinumab, a novel il-1beta long-acting inhibitor, in refractory adult-onset still's disease. Seminars in arthritis and rheumatism.2012;42:201-205
    43. Kingsbury SR, Conaghan PG, McDermott MF. The role of the nlrp3 inflammasome in gout. Journal of inflammation research.2011;4:39-49
    44. Burns CM, Wortmann RL. Gout therapeutics:New drugs for an old disease. Lancet.2011;377:165-177
    45. Bracey NA, Beck PL, Muruve DA, Hirota SA, Guo J, Jabagi H, Wright JR, Jr., Macdonald JA, Lees-Miller JP, Roach D, Semeniuk LM, Duff HJ. The nlrp3 inflammasome promotes myocardial dysfunction in structural cardiomyopathy through interleukin-lbeta. Experimental physiology.2013;98:462-472
    46. Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, Kannan HR, Menna AC, Voelkel NF, Abbate A. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proceedings of the National Academy of Sciences of the United States of America.2011;108:19725-19730
    47. Savage CD, Lopez-Castejon G, Denes A, Brough D. Nlrp3-inflammasome activating damps stimulate an inflammatory response in glia in the absence of priming which contributes to brain inflammation after injury. Frontiers in immunology.2012;3:288
    48. Herskowitz A, Choi S, Ansari AA, Wesselingh S. Cytokine mrna expression in postischemic/reperfused myocardium. The American journal of pathology. 1995; 146:419-428
    49. Dewald O, Ren G, Duerr GD, Zoerlein M, Klemm C, Gersch C, Tincey S, Michael LH, Entman ML, Frangogiannis NG Of mice and dogs: Species-specific differences in the inflammatory response following myocardial infarction. The American journal of pathology.2004;164:665-677
    50. Testa M, Yeh M, Lee P, Fanelli R, Loperfido F, Berman JW, LeJemtel TH. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. Journal of the American College of Cardiology. 1996;28:964-971
    51. Abbate A, Bussani R, Amin MS, Vetrovec GW, Baldi A. Acute myocardial infarction and heart failure:Role of apoptosis. The international journal of biochemistry & cell biology.2006;38:1834-1840
    52. Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-lbeta inhibition and the prevention of recurrent cardiovascular events:Rationale and design of the canakinumab anti-inflammatory thrombosis outcomes study (cantos). American heart journal.2011;162:597-605
    53. Magnusson LU, Lundqvist A, Asp J, Synnergren J, Johansson CT, Palmqvist L, Jeppsson A, Hulten LM. High expression of arachidonate 15-lipoxygenase and proinflammatory markers in human ischemic heart tissue. Biochemical and biophysical research communications.2012;424:327-330
    54. Bujak M, Dobaczewski M, Chatila K, Mendoza LH, Li N, Reddy A, Frangogiannis NG. Interleukin-1 receptor type i signaling critically regulates infarct healing and cardiac remodeling. The American journal of pathology. 2008; 173:57-67
    55. Abbate A, Salloum FN, Vecile E, Das A, Hoke NN, Straino S, Biondi-Zoccai GG, Houser JE, Qureshi IZ, Ownby ED, Gustini E, Biasucci LM, Severino A, Capogrossi MC, Vetrovec GW, Crea F, Baldi A, Kukreja RC, Dobrina A. Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation. 2008; 117:2670-2683
    56. Galea J, Armstrong J, Gadsdon P, Holden H, Francis SE, Holt CM. Interleukin-1 beta in coronary arteries of patients with ischemic heart disease. Arteriosclerosis, thrombosis, and vascular biology.1996; 16:1000-1006
    57. Orn S, Ueland T, Manhenke C, Sandanger O, Godang K, Yndestad A, Mollnes TE, Dickstein K, Aukrust P. Increased interleukin-1 beta levels are associated with left ventricular hypertrophy and remodelling following acute st segment elevation myocardial infarction treated by primary percutaneous coronary intervention. Journal of internal medicine.2012;272:267-276
    58. Hartford M, Wiklund O, Hulten LM, Persson A, Karlsson T, Herlitz J, Hulthe J, Caidahl K. Interleukin-18 as a predictor of future events in patients with acute coronary syndromes. Arteriosclerosis, thrombosis, and vascular biology. 2010;30:2039-2046
    59. Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nature reviews. Immunology.2005;5:629-640
    60. Huising MO, Stet RJ, Savelkoul HF, Verburg-van Kemenade BM. The molecular evolution of the interleukin-1 family of cytokines; il-18 in teleost fish. Developmental and comparative immunology.2004;28:395-413
    61. Mantovani A, Locati M, Vecchi A, Sozzani S, Allavena P. Decoy receptors:A strategy to regulate inflammatory cytokines and chemokines. Trends in immunology.2001;22:328-336
    62. Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood.1992;80:2012-2020
    63. Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K, et al. Cloning of a new cytokine that induces ifn-gamma production by t cells. Nature.1995;378:88-91
    64. Ushio S, Namba M, Okura T, Hattori K, Nukada Y, Akita K, Tanabe F, Konishi K, Micallef M, Fujii M, Torigoe K, Tanimoto T, Fukuda S, Ikeda M, Okamura H, Kurimoto M. Cloning of the cdna for human ifn-gamma-inducing factor, expression in escherichia coli, and studies on the biologic activities of the protein. Journal of immunology.1996; 156:4274-4279
    65. Dinarello CA. Interleukin-18 and the pathogenesis of inflammatory diseases. Seminars in nephrology.2007;27:98-114
    66. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87:2095-2147
    67. Dinarello CA. The role of the interleukin-1-receptor antagonist in blocking inflammation mediated by interleukin-1. The New England journal of medicine.2000;343:732-734
    68. Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, bak, and bcl-x. Circulation research.1999;84:21-33
    69. Suzuki K, Murtuza B, Smolenski RT, Sammut IA, Suzuki N, Kaneda Y, Yacoub MH. Overexpression of interleukin-1 receptor antagonist provides cardioprotection against ischemia-reperfusion injury associated with reduction in apoptosis. Circulation.2001; 104:1308-1303
    70. Frangogiannis NG Chemokines in ischemia and reperfusion. Thrombosis and haemostasis.2007;97:738-747
    71. Gurantz D, Cowling RT, Varki N, Frikovsky E, Moore CD, Greenberg BH. Il-1 beta and tnf-alpha upregulate angiotensin ii type 1 (atl) receptors on cardiac fibroblasts and are associated with increased atl density in the post-mi heart. Journal of molecular and cellular cardiology.2005;38:505-515
    72. Mitchell MD, Laird RE, Brown RD, Long CS. Il-1 beta stimulates rat cardiac fibroblast migration via map kinase pathways. American journal of physiology. Heart and circulatory physiology.2007;292:H1139-1147
    73. Siwik DA, Chang DL, Colucci WS. Interleukin-lbeta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circulation research. 2000;86:1259-1265
    74. Berk BC, Fujiwara K, Lehoux S. Ecm remodeling in hypertensive heart disease. The Journal of clinical investigation.2007; 117:568-575
    75. Murtuza B, Suzuki K, Bou-Gharios G, Beauchamp JR, Smolenski RT, Partridge TA, Yacoub MH. Transplantation of skeletal myoblasts secreting an il-1 inhibitor modulates adverse remodeling in infarcted murine myocardium. Proceedings of the National Academy of Sciences of the United States of America.2004; 101:4216-4221
    76. Platis A, Yu Q, Moore D, Khojeini E, Tsau P, Larson D. The effect of daily administration of il-18 on cardiac structure and function. Perfusion. 2008;23:237-242
    77. Xing SS, Tan HW, Bi XP, Zhong M, Zhang Y, Zhang W. Felodipine reduces cardiac expression of il-18 and perivascular fibrosis in fructose-fed rats. Molecular medicine.2008; 14:395-402
    78. Pazar B, Ea HK, Narayan S, Kolly L, Bagnoud N, Chobaz V, Roger T, Liote F, So A, Busso N. Basic calcium phosphate crystals induce monocyte/macrophage il-1 beta secretion through the nlrp3 inflammasome in vitro. Journal of immunology.2011;186:2495-2502
    79. Narayan S, Pazar B, Ea HK, Kolly L, Bagnoud N, Chobaz V, Liote F, Vogl T, Holzinger D, Kai-Lik So A, Busso N. Octacalcium phosphate crystals induce inflammation in vivo through interleukin-1 but independent of the nlrp3 inflammasome in mice. Arthritis and rheumatism.2011;63:422-433
    80. Fix C, Bingham K, Carver W. Effects of interleukin-18 on cardiac fibroblast function and gene expression. Cytokine.2011;53:19-28
    81. Reddy VS, Harskamp RE, van Ginkel MW, Calhoon J, Baisden CE, Kim IS, Valente AJ, Chandrasekar B. Interleukin-18 stimulates fibronectin expression in primary human cardiac fibroblasts via pi3k-akt-dependent nf-kappab activation. Journal of cellular physiology.2008;215:697-707
    82. Yu Q, Vazquez R, Khojeini EV, Patel C, Venkataramani R, Larson DF.I1-18 induction of osteopontin mediates cardiac fibrosis and diastolic dysfunction in mice. American journal of physiology. Heart and circulatory physiology. 2009;297:H76-85
    83. Woldbaek PR, Tonnessen T, Henriksen UL, Florholmen G, Lunde PK, Lyberg T, Christensen G Increased cardiac il-18 mrna, pro-il-18 and plasma il-18 after myocardial infarction in the mouse; a potential role in cardiac dysfunction. Cardiovascular research.2003;59:122-131
    84. Kubota T, Miyagishima M, Frye CS, Alber SM, Bounoutas GS, Kadokami T, Watkins SC, McTiernan CF, Feldman AM. Overexpression of tumor necrosis factor- alpha activates both anti- and pro-apoptotic pathways in the myocardium. Journal of molecular and cellular cardiology. 2001;33:1331-1344
    85. Enari M, Talanian RV, Wong WW, Nagata S. Sequential activation of ice-like and cpp32-like proteases during fas-mediated apoptosis. Nature. 1996;380:723-726
    86. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J. Induction of apoptosis in fibroblasts by il-1 beta-converting enzyme, a mammalian homolog of the c. Elegans cell death gene ced-3. Cell.1993;75:653-660
    87. Wang J, Lenardo MJ. Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies. Journal of cell science.2000; 113 (Pt 5):753-757
    88. Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Molecular cell.2002;9:459-470
    89. Merkle S, Frantz S, Schon MP, Bauersachs J, Buitrago M, Frost RJ, Schmitteckert EM, Lohse MJ, Engelhardt S. A role for caspase-1 in heart failure. Circulation research.2007; 100:645-653
    90. Frantz S, Ducharme A, Sawyer D, Rohde LE, Kobzik L, Fukazawa R, Tracey D, Allen H, Lee RT, Kelly RA. Targeted deletion of caspase-1 reduces early mortality and left ventricular dilatation following myocardial infarction. Journal of molecular and cellular cardiology.2003;35:685-694
    91. Syed FM, Hahn HS, Odley A, Guo Y, Vallejo JQ Lynch RA, Mann DL, Bolli R, Dorn GW,2nd. Proapoptotic effects of caspase-1/interleukin-converting enzyme dominate in myocardial ischemia. Circulation research. 2005;96:1103-1109
    92. Zhu P, Duan L, Chen J, Xiong A, Xu Q, Zhang H, Zheng F, Tan Z, Gong F, Fang M. Gene silencing of nalp3 protects against liver ischemia-reperfusion injury in mice. Human gene therapy.2011;22:853-864
    93. Shigeoka AA, Mueller JL, Kambo A, Mathison JC, King AJ, Hall WF, Correia Jda S, Ulevitch RJ, Hoffman HM, McKay DB. An inflammasome-independent role for epithelial-expressed nlrp3 in renal ischemia-reperfusion injury. Journal of immunology.2010; 185:6277-6285
    94. Ippagunta SK, Malireddi RK, Shaw PJ, Neale GA, Walle LV, Green DR, Fukui Y, Lamkanfi M, Kanneganti TD. The inflammasome adaptor asc regulates the function of adaptive immune cells by controlling dock2-mediated rac activation and actin polymerization. Nature immunology.2011;12:1010-1016
    95. Gieling RG, Wallace K, Han YP. Interleukin-1 participates in the progression from liver injury to fibrosis. American journal of physiology. Gastrointestinal and liver physiology.2009;296:G1324-1331
    96. Calligaris L, Marchetti F, Tommasini A, Ventura A. The efficacy of anakinra in an adolescent with colchicine-resistant familial mediterranean fever. European journal of pediatrics.2008;167:695-696
    97. Goldbach-Mansky R, Dailey NJ, Canna SW, Gelabert A, Jones J, Rubin BI, Kim HJ, Brewer C, Zalewski C, Wiggs E, Hill S, Turner ML, Karp BI, Aksentijevich I, Pucino F, Penzak SR, Haverkamp MH, Stein L, Adams BS, Moore TL, Fuhlbrigge RC, Shaham B, Jarvis JN, O'Neil K, Vehe RK, Beitz LO, Gardner G, Hannan WP, Warren RW, Horn W, Cole JL, Paul SM, Hawkins PN, Pham TH, Snyder C, Wesley RA, Hoffmann SC, Holland SM, Butman JA, Kastner DL. Neonatal-onset multisystem inflammatory disease responsive to interleukin-lbeta inhibition. The New England journal of medicine. 2006;355:581-592
    98. Hoffman HM, Rosengren S, Boyle DL, Cho JY, Nayar J, Mueller JL, Anderson JP, Wanderer AA, Firestein GS. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet.2004;364:1779-1785
    99. Kuijk LM, Govers AM, Frenkel J, Hofhuis WJ. Effective treatment of a colchicine-resistant familial mediterranean fever patient with anakinra. Annals of the rheumatic diseases.2007;66:1545-1546
    100. Malozowski S, Sahlroot JT. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. The New England journal of medicine.2007;357:302-303; author reply 303
    101. Ybarra J, Lehmann TN, Golay A, Juge-Aubry CE, Roux-Lombard P, Dayer JM, Meier CA. Gender-based dimorphic pattern for interleukin-1 receptor antagonist in type 2 diabetes mellitus. Diabetes & metabolism.2008;34:75-81
    102. Akash MS, Shen Q, Rehman K, Chen S. Interleukin-1 receptor antagonist:A new therapy for type 2 diabetes mellitus. Journal of pharmaceutical sciences. 2012;101:1647-1658
    103. Bruchard M, Mignot G, Derangere V, Chalmin F, Chevriaux A, Vegran F, Boireau W, Simon B, Ryffel B, Connat JL, Kanellopoulos J, Martin F, Rebe C, Apetoh L, Ghiringhelli F. Chemotherapy-triggered cathepsin b release in myeloid-derived suppressor cells activates the nlrp3 inflammasome and promotes tumor growth. Nature medicine.2013;19:57-64
    104. Niemi K, Teirila L, Lappalainen J, Rajamaki K, Baumann MH, Oorni K, Wolff H, Kovanen PT, Matikainen S, Eklund KK. Serum amyloid a activates the nlrp3 inflammasome via p2x7 receptor and a cathepsin b-sensitive pathway. Journal of immunology.2011;186:6119-6128
    105. Rajamaki K, Lappalainen J, Oorni K, Valimaki E, Matikainen S, Kovanen PT, Eklund KK. Cholesterol crystals activate the nlrp3 inflammasome in human macrophages:A novel link between cholesterol metabolism and inflammation. PloS one.2010;5:e11765
    106. Duncan JA, Gao X, Huang MT, O'Connor BP, Thomas CE, Willingham SB, Bergstralh DT, Jarvis GA, Sparling PF, Ting JP. Neisseria gonorrhoeae activates the proteinase cathepsin b to mediate the signaling activities of the nlrp3 and asc-containing inflammasome. Journal of immunology. 2009; 182:6460-6469
    107. Cheng XW, Obata K, Kuzuya M, Izawa H, Nakamura K, Asai E, Nagasaka T, Saka M, Kimata T, Noda A, Nagata K, Jin H, Shi GP, Iguchi A, Murohara T, Yokota M. Elastolytic cathepsin induction/activation system exists in myocardium and is upregulated in hypertensive heart failure. Hypertension. 2006;48:979-987
    108. Ge J, Zhao G, Chen R, Li S, Wang S, Zhang X, Zhuang Y, Du J, Yu X, Li G, Yang Y. Enhanced myocardial cathepsin b expression in patients with dilated cardiomyopathy. European journal of heart failure.2006;8:284-289
    109. Kumaran KS, Prince PS. Preventive effect of caffeic acid on lysosomal dysfunction in isoproterenol-induced myocardial infarcted rats. Journal of biochemical and molecular toxicology.2010;24:115-122
    110. Stanely Mainzen Prince P. (-) epicatechin prevents alterations in lysosomal glycohydrolases, cathepsins and reduces myocardial infarct size in isoproterenol-induced myocardial infarcted rats. European journal of pharmacology.2013;706:63-69
    111. Cheng XW, Murohara T, Kuzuya M, Izawa H, Sasaki T, Obata K, Nagata K, Nishizawa T, Kobayashi M, Yamada T, Kim W, Sato K, Shi GP, Okumura K, Yokota M. Superoxide-dependent cathepsin activation is associated with hypertensive myocardial remodeling and represents a target for angiotensin ii type 1 receptor blocker treatment. The American journal of pathology. 2008;173:358-369
    112. Becher PM, Lindner D, Frohlich M, Savvatis K, Westermann D, Tschope C. Assessment of cardiac inflammation and remodeling during the development of streptozotocin-induced diabetic cardiomyopathy in vivo:A time course analysis. International journal of molecular medicine.2013
    113. Shabari FR, George J, Cuchiara MP, Langsner RJ, Heuring JJ, Cohn WE, Hertzog BA, Delgado R. Improved hemodynamics with a novel miniaturized intra-aortic axial flow pump in a porcine model of acute left ventricular dysfunction. ASAIO journal.2013;59:240-245
    114. Januzzi JL, Troughton R. Are serial bnp measurements useful in heart failure management? Serial natriuretic peptide measurements are useful in heart failure management. Circulation.2013;127:500-507; discussion 508
    115. Fiedler J, Thum T. Micrornas in myocardial infarction. Arteriosclerosis, thrombosis, and vascular biology.2013;33:201-205
    116. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Laboratory investigation; a journal of technical methods and pathology.1996;74:86-107
    117. Palojoki E, Saraste A, Eriksson A, Pulkki K, Kallajoki M, Voipio-Pulkki LM, Tikkanen I. Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. American journal of physiology. Heart and circulatory physiology.2001;280:H2726-2731
    118. Itoh G, Tamura J, Suzuki M, Suzuki Y, Ikeda H, Koike M, Nomura M, Jie T, Ito K. DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. The American journal of pathology.1995; 146:1325-1331
    119. Cheng W, Kajstura J, Nitahara JA, Li B, Reiss K, Liu Y, Clark WA, Krajewski S, Reed JC, Olivetti G, Anversa P. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Experimental cell research. 1996;226:316-327
    120. Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y, Kajstura J, Baserga R, Anversa P. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. The Journal of clinical investigation.1997;100:1991-1999
    121. Sam F, Sawyer DB, Xie Z, Chang DL, Ngoy S, Brenner DA, Siwik DA, Singh K, Apstein CS, Colucci WS. Mice lacking inducible nitric oxide synthase have improved left ventricular contractile function and reduced apoptotic cell death late after myocardial infarction. Circulation research.2001;89:351-356
    122. Teiger E, Than VD, Richard L, Wisnewsky C, Tea BS, Gaboury L, Tremblay J, Schwartz K, Hamet P. Apoptosis in pressure overload-induced heart hypertrophy in the rat. The Journal of clinical investigation. 1996;97:2891-2897
    123. Wang M, Markel TA, Meldrum DR. Interleukin 18 in the heart. Shock. 2008;30:3-10
    124. Sun Y, Weber KT. Infarct scar:A dynamic tissue. Cardiovascular research. 2000;46:250-256
    125. Artlett CM, Sassi-Gaha S, Rieger JL, Boesteanu AC, Feghali-Bostwick CA, Katsikis PD. The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis. Arthritis and rheumatism. 2011;63:3563-3574
    126. Xu JF, Washko GR, Nakahira K, Hatabu H, Patel AS, Fernandez IE, Nishino M, Okajima Y, Yamashiro T, Ross JC, Estepar RS, Diaz AA, Li HP, Qu JM, Himes BE, Come CE, D'Aco K, Martinez FJ, Han MK, Lynch DA, Crapo JD, Morse D, Ryter SW, Silverman EK, Rosas IO, Choi AM, Hunninghake GM, Investigators CO. Statins and pulmonary fibrosis:The potential role of nlrp3 inflammasome activation. American journal of respiratory and critical care medicine.2012;185:547-556
    127. Wang W, Wang X, Chun J, Vilaysane A, Clark S, French G, Bracey NA, Trpkov K, Bonni S, Duff HJ, Beck PL, Muruve DA. Inflammasome-independent nlrp3 augments tgf-beta signaling in kidney epithelium. Journal of immunology.2013;190:1239-1249
    128. Dixon LJ, Berk M, Thapaliya S, Papouchado BQ Feldstein AE. Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis. Laboratory investigation; a journal of technical methods and pathology. 2012;92:713-723
    129. Jugdutt BI. Ventricular remodeling after infarction and the extracellular collagen matrix:When is enough enough? Circulation.2003;108:1395-1403
    130. Mazhari R, Omens JH, Covell JW, McCulloch AD. Structural basis of regional dysfunction in acutely ischemic myocardium. Cardiovascular research. 2000;47:284-293

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700