用户名: 密码: 验证码:
东方蜜蜂抗螨相关基因的筛选及初步验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
狄斯瓦螨(Varroa destructor)是对蜜蜂威胁最大的病虫害,几乎对全世界范围内的养蜂业都造成了巨大的损失。本研究基于课题组前期研究所获得的宝贵的蜂螨敏感型群体,采用Illumina Solexa测序技术及iTRAQ技术初步筛选出蜂螨抗性相关的候选基因,通过荧光定量PCR技术验证候选差异基因,并对相关基因编码区序列测定分析。本研究为进一步研究蜜蜂抗螨分子机理奠定基础,同时筛选出来的差异基因可为蜜蜂抗螨育种研究提供基因资源。主要研究结果如下:
     1.本研究选择狄斯瓦螨感染的西方蜜蜂巢脾对抗性群体及敏感性东方蜜蜂群体进行胁迫,采用以下措施降低各群体间的遗传背景:a)受蜂螨胁迫的抗性群体(C+)和受胁迫的敏感性群体(M+)所接受的西方蜜蜂巢脾受狄斯瓦螨蜂螨感染程度相当且具有数量相当的工蜂和雄蜂的封盖蜂房;抗性对照组(C)及敏感性对照组(M)使用未受瓦螨感染的西方蜜蜂巢脾。b)采用10对微卫星引物选择全同胞姐妹用于下一步实验。c)对蜂群受瓦螨胁迫的情况进行连续观察,发现敏感性群体抗螨能力较差,而抗性群体则在遭到蜂螨胁迫后24h时抗螨行为达到高峰,因此确定胁迫24h后进行样本采集。
     2.采用Illumina Solexa转录组测序技术对蜂螨胁迫及未遭蜂螨胁迫的敏感性和抗性东方蜜蜂群体进行哺育蜂头部转录组测序,从头组装获得了91,172个unigenes,对这些unigenes进行功能注释。COG分类中,共有23,790条unigene归类到25类基因功能。GO分类注释了85,577条unigene的生物学途径,其中参与细胞生理过程(14,797)和代谢过程(10,17)的最多;注释了48,194条unigene的细胞学组件,其中细胞及细胞组分最多,都为10,323条;描述了29,301条unigene的分子功能,其中结合功能(11,370)和催化活性(11,042)的最多。39,625条在KEGG数据库中注释到257条通路,定位到代谢通路的unigene数量最多(4793)。
     3.C+VS M+共产生了40,255条差异unigene,其中19,702条在C+下调表达,20,553条在C+上调表达。GO显著富集分析表明蜂螨抗性及敏感性东方蜜蜂在受到蜂螨胁迫时体内发生了不同的应答反应,而这些应答反应很可能伴随转录因子的变化。多条显著富集的pathway涉及病菌感染及抗菌物质的生物合成,说明敏感性蜂群和抗性蜂群对病菌的抵抗力存在差异。
     C VS M共有21,252条差异unigene,其中962条在C下调表达,20,290条在C上调表达。GO显著富集分析说明东方蜜蜂蜂螨抗性群体和敏感群体间存在免疫反应、肌肉发育、学习和记忆方面的差异。有71个DEGs被富集到了嗅觉转导通路中,说明可能两个群体间的嗅觉系统存在差异。
     C+VS C共有36,691条差异unigene,其中17,799条在C+下调表达,18,892条在C+上调表达。GO显著富集分析表明在蜂螨胁迫的情况下,东方蜜蜂产生了一定的应答反应,伴随的可能为转录因子的表达差异。多条显著富集的pathway涉及病菌感染及抗菌物质的生物合成,说明抗性群体在受到蜂螨胁迫时也同时受到了细菌的感染,同时通过自身免疫积极抵抗细菌。
     M+VS M共有24,508条差异unigene,其中21,479条在M+下调表达,3029条在M+上调表达。GO显著富集分析说明蜂螨敏感性蜂群在受到蜂螨胁迫时,其嗅觉功能发生了变化,可能形成了短期记忆,并伴随转录因子的表达差异。多条显著富集的pathway涉及细菌及病毒感染,只有O聚糖生物合成(0.49%)与免疫相关,说明敏感性群体对于细菌病毒的抵抗力低于抗性群体。
     4. Venn分析关注到的差异基因中,在C+中呈现极高表达的DEGss (Log2Ratio≥15)上调的270个,下调的8个,结合所有差异基因的GO及pathway显著富集分析结果进行进一步的分析,发现以下基因与抗螨相关:气味结合蛋白、肌钙蛋白、钙离子运输ATPase、转录因子、免疫相关基因、表皮蛋白、突触蛋白。
     5.以东方蜜蜂转录组数据作为参考序列,对四样本哺育蜂头部蛋白质进行iTRAQ定量分析,共鉴定到1532个蛋白质。GO分析显示与细胞组分相关的表达蛋白最多的是细胞和细胞组分相关蛋白,共占61.02%。结合功能包含的蛋白数量最多(45.30%)。大部分蛋白参与到基本的生物学过程,如细胞进程(20.01%)及代谢进程(19.68%)。pathway分析发现共有1503条蛋白注释到239个通路中,注释到新陈代谢通路的蛋白最多,这与转录组数据一致。
     6. C+VSM+共产生了72个差异蛋白,其中31个在C+下调表达,41个在C+上调表达。GO显著富集分析说明蜂螨抗性及敏感性东方蜜蜂在受到蜂螨胁迫时体内发生了不同的应答反应,这与转录组数据也是相符合的。差异蛋白显著富集的pathway为鞘脂类代谢。
     C VS M共有154个差异蛋白,其中82个在C下调表达,72个在C上调表达。GO显著富集分析说明蜂螨抗性东方蜜蜂和蜂螨敏感性东方蜜蜂的生命活力存在差异。差异蛋白显著富集于17个pathway,最为显著的是代谢途径。
     C+VS C共有202个差异蛋白,其中81个在C+下调表达,121个在C+上调表达。GO显著富集分析说明东方蜜蜂在受到蜂螨胁迫时体内发生了一系列的代谢产能反应及应答反应。差异蛋白显著富集于14个pathway,最为显著的为震颤性麻痹病。
     M+VS M共有161条差异unigene,其中94个在M+下调表达,67个在M+上调表达。GO显著富集分析说明蜂螨敏感性东方蜜蜂在受到蜂螨胁迫时,其生命活动受到了影响,并且体内发生了一定的应答反应。差异表达蛋白显著富集于25个pathway,最为显著的为震颤性麻痹病。
     7.韦恩分析及与转录组关联分析显示endocuticle structural glycoprotein SgAbd-2-like及obp13与抗螨相关。
     8.将基于参考基因得到的蛋白质鉴定结果和转录组结果进行关联,C VSM组中关联性(r)为0.3269;rM+VS M为0.0066;C+VS M+为0.0737;C+VS C为0.0774。结果表明两者间相关性较低。
     9.对嗅觉通路中的3个差异基因及其它与抗螨性状相关的差异基因共15个DEGss进行了qRT-PCR验证,结果显示其表达规律与转录组数据一致,说明转录组测序结果是可靠的。对obp17, obp18及mklb-1编码区进行了克隆测序,获得的obp17,obp18及mklb-1编码区序列长度分别为408bp,399bp,4887bp。将东方蜜蜂obp4, obp17, obpl8及mklb-1的氨基酸序列进行生物信息学分析,结果表明东方蜜蜂四个蛋白与西方蜜蜂高度同源,Obps都有信号肽,mklb-1没有信号肽,四个蛋白都没有跨膜区,都属于α型蛋白。
Varroa destructor became the greatest threat to apiculture almost throughout the world, and a more direct path toward mite resistance is to breed resistant bees by marker-assisted markers and genetic engineering technology. So it is important to identify genes involved with resistance to V. destructor and understand the genetic mechanisms underlying the resistance of honeybee to Varroa mites. In this study, the transcriptomes and proteomes of four Apis cerana colonies were analyzed using the Illumina Solexa sequencing method and iTRAQ technology respectively. Two colonies were highly affected by mites whereas the others displayed strong resistance to V. destructor. We determined differences in gene expression and protein expression in the susceptible colonies and the resistant colonies unchallenged and challenged by V. destructor. The objective of this study was to identify possible genes involved with resistance to V. destructor parasitism, which may provide insights into the genetic mechanisms underlying the resistance of honeybee to Varroa mites and genes for breeding. The main results were as follows:
     1. The A. cerana colonies were challenged by combs from Apis melleferina highly infected by mites varroa mite, and the following measures are employed to decrease the genetic background between the various colonies:a) the challenged resistant colony(C+) and the challenged sensitive colony(M+) accepted combs with similar mite infection degree and similar number of capped cells; the unchallenged resistant colony(C) and the challenged sensitive colony(M) accepted combs with no mite infection and similar number of capped cells. b) full sisters were selected by10microsatellite makers. c) the sensitive colony showed poorer resistance, whereas resistant one showed its highest resistance within24h after challenged, so the samples were collected at24h challenged by mites.
     2. A total of91,172all-unigenes were obtained by de novo sequencing. There were23,790unigenes identified with25COG categories.85,577unigenes were categorized into biological process of GO, and the most participated in cellular process(14,797) and metabolic process(10,317);48,194were in celluar component, and the most were in cell(10,323) and cell part(10,323);29,301were in molecular function, and the most were in binding (11,370) and catalytic activity(11,042). pathway analysis revealed that there are39,625unigenes associated with257pathways, and4793were annotated to metabolic pathway.
     3.40,255unigenes were differentially expressed in C+VS M+, and19,702were down-regulated in C+while20,553up-regulated. GO enrichment analysis suggested that C+and M+responded differently to mite challenge companied with changing of transcript factors. Several significantly enriched pathways involved in virus and bacterial infection and biosynthesis of antibiotic substance, so it suggested that there were different natural resistances between the resistant and the sensitive.
     21,252unigenes were differentially expressed in C VS M, and962were down-regulated in C while20,290up-regulated. GO and pathway enrichment analysis suggested that there were differences in immune response, muscle development, learning, memory and smell sensitivity in the two colony.
     36,691unigenes were differentially expressed in C+VS M+, and17,799were down-regulated in C+while18,892up-regulated. GO enrichment analysis suggested that C+responded to mite challenge companied with changing of transcript factors. Several significantly enriched pathways involved in virus and bacterial infection and biosynthesis of antibiotic substance, and it suggested that C+activated natural resistances when infected by bacteria.
     24,508unigenes were differentially expressed in M+VS M, and21,479were down-regulated in M+while3029up-regulated. GO enrichment analysis suggested that M+changed olfactory function companied with changing of transcript factors. Several significantly enriched pathways involved in virus and bacterial infection, and only one in biosynthesis of antibiotic substance, which suggested that the natural resistance of the resistant was low.
     4.270up-regulated and8down-regulated DEGss had differences greater than15-fold, and the folowing DEGss were associated with varroa resistance, including troponin, calcium-transporting ATPase, obp, transcript factors, genes related to immunity, apidermin and synapsin.
     5. Quantitative protemic analysis by iTRAQ using the A. cerana transcriptome as reference. There were1532proteins identified. Most of proteins(61.02%) were categorized into cell and cell part of celluar component. Binding contained the most proteins (45.30%) in molecular function. Most proteins participated in basic biological process such as cellular process(20.01%) and metabolic process(19.68%). pathway analysis revealed that there are1503proteins associated with239pathways, and the most were annotated to metabolic pathway, the result was same as transcriptome.
     6.72proteins were differentially expressed in C+VS M+, and31were down-regulated in C+while41up-regulated. GO enrichment analysis suggested that C+and M+responded differently to mite challenge companied with changing of transcript factors. There was only one significantly enriched pathway(Sphingolipid metabolism).
     154proteins were differentially expressed in C VS M, and82were down-regulated in C while72up-regulated. GO enrichment analysis suggested that there were differences in vitality. Metabolic pathway was the most significantly enriched among17.
     202unigenes were differentially expressed in C+VS M+, and81were down-regulated in C+while121up-regulated. GO enrichment analysis suggested that C+responded to mite challenge companied with changing of transcript factors. Parkinson's disease was the most significantly enriched pathway among14.
     161unigenes were differentially expressed in M+VS M, and94were down-regulated in M+while67up-regulated. GO enrichment analysis suggested that the basic life of M+affected by mites. Parkinson's disease was the most significantly enriched pathway among25.
     7. According to transcriptomic analysis and Venn analysis, endocuticle structural glycoprotein SgAbd-2-like and obp13were associated with Varro resistance.
     8. The corrections of differential expressed proteins and corresponding transcripts was low (r C+VS M+=0.0737, r C VS M=0.3269, r C+VS C=0.0774, r M+VS M=0.0066).
     9. A total of15DEGs involved in Varro resistance were verified by qRT-PCR, and the result showed that the expression regularity was consistent with transcriptome data, illustrating the transcriptome sequencing results were reliable. The coding sequences of obpl7, obp18and Mklb-1were408bp,399bp and4887bp respectively. Sequence homology, amino acid structure, protein secondary and tertiary structure of obp4, obp17, obp18and mklb-1were analyzed. The ORFs and amino acid constitutions of the4genes in A. cerana had high homology to A. mellifera. The three obps have signal peptides, and no signal peptides were predicted for mklb-1. All of the four genes had have no transmembrane helixes, and were a proteins.
引文
[1]Griffith D. A., Bowman C. E. World distribution of the mites Varroa jacobsoni, a parasite of honeybee[J]. Bee World,1981,62:154-163.
    [2]Rosenkranz P., Aumeier P., Ziegelmann B. Biology and control of Varroa destructor[J]. J Invertebr Pathol,2009,103 Suppl 1:S96-119.
    [3]Martin S. J. Varroa destructor reproduction during the winter in Apis mellifera colonies in UK[J]. Exp Appl Acarol,2001,25(4):321-5.
    [4]Maggi M., Medici S., Quintana S., Ruffinengo S., Marcangeli J., Gimenez Martinez P., Fuselli S., Eguaras M. Genetic structure of Varroa destructor populations infesting Apis mellifera colonies in Argentina[J]. Exp Appl Acarol,2012,56(4):309-18.
    [5]Annoscia D., Del Piccolo F., Nazzi F. How does the mite Varroa destructor kill the honeybee Apis mellifera? Alteration of cuticular hydrcarbons and water loss in infested honeybees[J]. J Insect Physiol,2012,58(12):1548-55.
    [6]Zhou Ting. The biological characteristics and the natural distribution of varroa destructor in China [D]. Beijing:China Agricultural University,2005.
    [7]杜桃柱,姜玉锁.蜜蜂病敌害防治大全[M].北京:中国农业出版社,2003.
    [8]王丽华,杨少婷.大蜂螨(Varroa jacobsoni)繁殖生物学[J].中国养蜂,2000,3:10-13.
    [9]Garrido C., Rosenkranz P. The reproductive program of female Varroa destructor mites is triggered by its host, Apis mellifera[J]. Exp Appl Acarol,2003,31(3-4):269-73.
    [10]黄文诚.大蜂螨的繁殖行为[J].中国蜂养,2000,51(2):30-31.
    [11]Duay P., De Jong D., Engels W. Decreased flight performance and sperm production in drones of the honey bee (Apis mellifera) slightly infested by Varroa destructor mites during pupal development[J]. Genet Mol Res,2002,1(3):227-32.
    [12]Mockel N., Gisder S., Genersch E. Horizontal transmission of deformed wing virus: pathological consequences in adult bees (Apis mellifera) depend on the transmission route[J]. J Gen Virol,2010,92(Pt 2):370-7.
    [13]Prisco G. D., Zhang X., Pennacchio F., Caprio E., Li J., Evans J. D., Degrandi-Hoffman G, Hamilton M., Chen Y. P. Dynamics of persistent and acute deformed wing virus infections in honey bees, Apis mellifera[J]. Viruses,2012,3(12):2425-41.
    [14]Bowen-Walker P. L., Martin S. J., Gunn A. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite varroa jacobsoni Oud[J]. J Invertebr Pathol,1999,73(1):101-6.
    [15]Moore J., Jironkin A., Chandler D., Burroughs N., Evans D. J., Ryabov E. V. Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies[J]. J Gen Virol,2010,92(Pt 1):156-61.
    [16]Chandler D., Sunderl K.D., Ball B.V., Devison G. Prospective Biological Control Agents of varroa destructorn. sp., an Im portant Pest of the European Honeybee, Apis mellifera[J]. Biocontrol Science and Technology,2001,11:429-448.
    [17]van Engelsdorp D., Hayes J., Jr., Underwood R. M., Pettis J. A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008[J]. PLoS One,2008,3(12):e4071.
    [18]VanEngelsdorp D., Speybroeck N., Evans J. D., Nguyen B. K., Mullin C., Frazier M., Frazier J., Cox-Foster D., Chen Y., Tarpy D. R., Haubruge E., Pettis J. S., Saegerman C. Weighing risk factors associated with bee colony collapse disorder by classification and regression tree analysis[J]. J Econ Entomol,2010,103(5):1517-23.
    [19]Highfield A. C., El Nagar A., Mackinder L. C., Noel L. M., Hall M. J., Martin S. J., Schroeder D. C. Deformed wing virus implicated in overwintering honeybee colony losses[J]. Appl Environ Microbiol,2009,75(22):7212-20.
    [20]Cornman R. S., Tarpy D. R., Chen Y., Jeffreys L., Lopez D., Pettis J. S., vanEngelsdorp D., Evans J. D. Pathogen webs in collapsing honey bee colonies[J]. PLoS One,2012,7(8):e43562.
    [21]Williams G. R., Tarpy D. R., vanEngelsdorp D., Chauzat M. P., Cox-Foster D. L., Delaplane K. S., Neumann P., Pettis J. S., Rogers R. E., Shutler D. Colony Collapse Disorder in context[J]. Bioessays,2010,32(10):845-6.
    [22]Oldroyd B. P. Coevolution while you wait:Varroa jacobsoni, a new parasite of western honeybees[J]. Trends Ecol Evol,1999,14(8):312-315.
    [23]Anderson D., East I. J. The latest buzz about colony collapse disorder[J]. Science,2008, 319(5864):724-5; author reply 724-5.
    [24]Behrens D., Huang Q., Gessner C., Rosenkranz P., Frey E., Locke B., Moritz R. F., Kraus F. B. Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor[J]. Ecol Evol,2012,1(4):451-8.
    [25]Boecking O., Genersch E. Varroosis-the ongoing crisis in bee keeping[J]. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit-Journal of Consumer Protection and Food Safety, 2008,3(2):221-228.
    [26]中国农业科学院蜜蜂研究所.养蜂手册[M],ed.第二版.北京:中国农业出版社,2001.
    [27]Floris I., Cabras P., Garau V. L., Minelli E. V., Satta A., Troullier J. Persistence and effectiveness of pyrethroids in plastic strips against Varroa jacobsoni (Acari:Varroidae) and mite resistance in a Mediterranean area[J]. J Econ Entomol,2001,94(4):806-10.
    [28]Ariana A., Ebadi R., Tahmasebi G. Laboratory evaluation of some plant essences to control Varroa destructor (Acari:Varroidae)[J]. Exp Appl Acarol,2002,27(4):319-27.
    [29]Drijfhout F. P., Kochansky J., Lin S., Calderone N. W. Components of honeybee royal jelly as deterrents of the parasitic Varroa mite, Varroa destructor[J]. J Chem Ecol,2005,31(8): 1747-64.
    [30]Dahlgren L., Johnson R. M., Siegfried B. D., Ellis M. D. Comparative toxicity of acaricides to honey bee (Hymenoptera:Apidae) workers and queens[J]. J Econ Entomol,2013,105(6): 1895-902.
    [31]Ana R. Cabrera, Kevin V. Donohue, R.Michael Roe. Regulation of female reproduction in mites:A unifying model for the Acari[J]. Journal of Insect Physiology,2009,55:1079-1090.
    [32]Robyn M. Underwood, Currie Robert W. The effects of temperature and dose of formic acid on treatment efficacy against varroa destructor (Acari:Varroidae), a parasite of Apis mellifera (Hymenoptera:Apidae)[J]. Experimental and Applied Acarology,2003,29:303-313.
    [33]Calderone N. W. Evaluation of Mite-Away-II for fall control of Varroa destructor (Acari: Varroidae) in colonies of the honey bee Apis mellifera (Hymenoptera:Apidae) in the northeastern USA[J]. Exp Appl Acarol,2009,50(2):123-32.
    [34]Ardestani M. M., Ebadi R., Tahmasbi G Regular dorsal dimples and damaged mites of Varroa destructor in some Iranian honey bees (Apis mellifera)[J]. Exp Appl Acarol,2011,54(3): 261-8.
    [35]Eguaras M., Palacio M. A., Faverin C., Basualdo M., Del Hoyo M. L., Velis G, Bedascarrasbure E. Efficacy of formic acid in gel for Varroa control in Apis mellifera L.: importance of the dispenser position inside the hive[J]. Vet Parasitol,2003,111(2-3):241-5.
    [36]Gregorc A., Poklukar J. Rotenone and oxalic acid as alternative acaricidal treatments for Varroa destructor in honeybee colonies[J]. Vet Parasitol,2003,111(4):351-60.
    [37]Johnson R. M., Dahlgren L., Siegfried B. D., Ellis M. D. Acaricide, Fungicide and Drug Interactions in Honey Bees (Apis mellifera)[J]. PLoS One,8(1):e54092.
    [38]黄文诚.蜜蜂的卫生行为和抗病育种[J].蜜蜂杂志,2000,1:21-23.
    [39]Pettis J. S., vanEngelsdorp D., Johnson J., Dively G. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema[J]. Naturwissenschaften,2012,99(2):153-8.
    [40]Elzen P. J., Westervelt D., Lucas R. Formic acid treatment for control of Varroa destructor (Mesostigmata:Varroidae) and safety to Apis mellifera (Hymenoptera:Apidae) under southern United States conditions [J]. J Econ Entomol,2004,97(5):1509-12.
    [41]Chauzat M. P., Martel A. C., Cougoule N., Porta P., Lachaize J., Zeggane S., Aubert M., Carpentier P., Faucon J. P. An assessment of honeybee colony matrices, Apis mellifera (Hymenoptera:Apidae) to monitor pesticide presence in continental France[J]. Environ Toxicol Chem,30(1):103-11.
    [42]Wallner K. Varroacides and their residues in bee products[J]. Apidologie,1999,30:235-248.
    [43]Harris J. W., Harbo J. R. Natural & suppressed reproduction of Varroa[J]. Bee Culture,2001, 129(5):34-38.
    [44]Spivak M., Reuter G. S. Varroa destructor infestation in untreated honey bee (Hymenoptera: Apidae) colonies selected for hygienic behavior[J]. J Econ Entomol,2001,94(2):326-31.
    [45]Ralph B"uchler, Stefan Berg, Yves Le Conte. Breeding for resistance to Varroa destructor in Europe[J]. Apidologie,2010,41393-408.
    [46]Peng Y.S., Fang Y., Xu S., Ge L. The resistance mechanisms of the Asian honey bee, Apis cerana Fabr., to an ectoparasitic miteVarroa jacobsoni[J]. J. Invert. Pathol.,1987,49:54-60.
    [47]Warrit Natapot, Lekprayoon Chariya. Honeybees of Asia [M]. Berlin:Springer Berlin Heidelberg,2011,347-368.
    [48]Thakur R.K., Bienefeld K.,. Keller R. Varroa defense behavior in Apis mellifera carnica[J]. American Bee Journa,1997,137:143-148.
    [49]Pia Aumeier. Bioassay for grooming effectiveness towards Varroa destructor mites in Africanized and Carniolan honey bees[J]. Apidologie,2001,32:81-90.
    [50]Peng Y.S., Fang Y, Xu S., Ge L. The resistance mechanism of the Asian honey bee, Apis cerana fabr. to an ectoparasitic mite[J]. J. Invert. Pathol.,1987,49:54-60.
    [51]Rosenkranz P., Fries I., Boecking O., Sturmer M. Damaged Varroa mites in the debris of honey bee (Apis mellifera L.) colonies with and without hatching brood[J]. Apidologie,1997,28: 427-437.
    [52]Bienefeld K., Zautke F., Pronin D., Mazedd A. Recording the proportion of damaged Varroa jacobsoni in the debris of honey bee colonies (Apis mellifera)[J].Apidologie,1999,30:249-256.
    [53]Rath W., Drescher W. Response of Apis Fabr.towards brood infested with Varroa jacobsoni Outland infestation rate of colonies in Thailand[J]. Apidologie,1990,21:311-321.
    [54]Boecking. Removal behavior of Apis mellifera towards sealed brood cells infested with Varroa jacobsoni:Techniques, extent and efficacity[J]. Apidologie,1992,23:371-373.
    [55]Harris J.W. Effect of brood type on Varroa-sensetive hygiene by worker honey bees[J]. Annal of the Entomological Society of America,2008,101:1137-1144.
    [56]Tan Ken, Yu Yusheng, Zhang Xuewen. Resistance of mites varroa jacobsoni of Apis cerana colonies[J]. Apiculture of China,2002,53(6):10-12.
    [57]Parker R., Guarna M. M., Melathopoulos A. P., Moon K. M. White R., Huxter E., Pernal S. F., Foster L. J. Correlation of proteome-wide changes with social immunity behaviors provides insight into resistance to the parasitic mite, Varroa destructor, in the honey bee (Apis mellifera)[J]. Genome Biol,2012,13(9):R81.
    [58]Peter R. O., Marla S., Oldroyd B. P. Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera)[J].Molecular Ecology,2010,19:1452-1461.
    [59]Navajas M., Migeon A., Alaux C., Martin-Magniette M., Robinson G, Evans J., Cros-Arteil S., Crauser D., Le Conte Y. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection[J]. BMC Genomics,2008,9:301.
    [60]Swanson J. A., Torto B., Kells S. A., Mesce K. A., Tumlinson J. H., Spivak M. Odorants that induce hygienic behavior in honeybees:identification of volatile compounds in chalkbrood-infected honeybee larvae[J]. J Chem Ecol,2009,35(9):1108-16.
    [61]Newton D.C., Ostasiewski N.J. A simplified bioassey for behavioral resistance to American Foulbrood in honey bees (Apis mellifera L.)[J]. Am. Bee J.,1986,126:278-281.
    [62]Guzman-Novoa E., Emsen B., Unger P., Espinosa-Montano L. G., Petukhova T. Genotypic variability and relationships between mite infestation levels, mite damage, grooming intensity, and removal of Varroa destructor mites in selected strains of worker honey bees (Apis mellifera L.)[J]. J Invertebr Pathol,2012,110(3):314-20.
    [63]Morse R.A., Miksa D., Masenheimer J.A. Varroa destructor resistance in the US honey bees[J]. American Bee Journal,1991,131:433-434.
    [64]Kralj J., Brockmann A., Fuchs S., Tautz J. The parasitic mite Varroa destructor affects non-associative learning in honey bee foragers, Apis mellifera L[J]. J Comp Physiol A Neuroethol Sens Neural Behav Physiol,2007,193(3):363-70.
    [65]Martin C, Provost E, Roux M, Bruchou, Crauser DC, Clement JL, Le Conte Y. Resistance of the honey bee, Apis mellifera to the acarian parasite Varroa destructor, behavioural and electroantennographic data[J]. Physiol Entomol 2001,26(4):362-370.
    [66]Buchler R., Drescher W. Variance and heritability of the capped developmental stage in European Apis mellifera L. and its correction with increased Varroa jacobsoni Oud. infestation[J]. J. Apiculture Research,1990,29:172-176.
    [67]Thomas E. Rinderer, Jeffrey W. Harris, Gregory J. Hunt, Lilia I., De Guzman. Breeding for resistance to Varroa destructor in North American[J]. Apidologie,2010,41:409-424.
    [68]Guzman-Novoa E., Vandame R., Arechavaleta M.E. Susceptibility of European an Africanized honeybees(Apis mellifera L.) to Varroa jacobsoni Oud in Mexico[J]. Apidologie, 1999,30:173-182.
    [69]Xing W., Qiang W.', Pingli D., Feng L., Ting Z. The tolerant effect of free amino acid and microelement diversity in haemolymph of honeybee larva to Varroa destructor[J]. Chinese Bull Entomol,2007,44:859-862.
    [70]Nazzi F., Brown S. P., Annoscia D., Del Piccolo F., Di Prisco G., Varricchio P., Della Vedova G, Cattonaro F., Caprio E., Pennacchio F. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies[J]. PLoS Pathog,2012,8(6): e1002735.
    [71]李建科,张兰,郭国富.利用雄蜂选育抗螨蜂种的潜力[J].中国养蜂,2005,56:7-9.
    [72]Giancarlo A., Piccirillo D., De Jong. The influence of brood comb cell size on the reproductive behavivor of the ectoparasitic mite varroa destructor in Africanized honeybee colonies[J]. Genetics and Molecular Research,2003,1:36-42.
    [73]Claudia Garrido, Peter Rosenkranz, Robert J. Paxton, Lionel S. G. Temporal changes in Varroa destructor fertility and haplotype in Brazil[J]. Apidologie,2003,34:535-541.
    [74]Rinderer T. E., Harris J. W., Hunt G J., Guzman L. I. Breeding for resistance to Varroa destructor in North America[J]. Apidologie,2010,41:409-424.
    [75]Oxley P. R., Spivak M., Oldroyd B. P. Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera)[J]. Mol Ecol,2010,19(7):1452-61.
    [76]Rothenbuhler W. C. Behavior Genetics of Nest Cleaning in Honey Bees. Iv. Responses of F1 and Backcross Generations to Disease-Killed Blood[J]. Am Zool,1964,4:111-23.
    [77]Moritz R. F. A reevaluation of the two-locus model hygienic behavior in honey bees, Apis mellifera L[J]. Journal of Heredity,1988,79:257-262.
    [78]Lapidge K. L., Oldroyd B. P., Spivak M.. Seven suggestive quantitativ trait loci influence hygienic behavior of honey bees[J]. Biomedical and Life Sciences,2002,89:565-568.
    [79]Milne C. P. Estimates of the heritabilities of and genetic correlation between two components of honey bee (Hymenoptera:Apidae) hygienic behaviour:uncapping and removing. [J]. Annals of the Entomological Society of America,1985,78:841-844.
    [80]Arathi H. S., Spivak M. Influence of colony genotypic composition on the performance of hygienic behaviour in the honeybee, Apis mellifera L. [J]. Animal Behaviour,2001,62:57-66.
    [81]Bonabeau E., Theraulaz G, Deneubourg J. L. Fixed response thresholds and the regulation of division of labor In insect societies[J]. Bulletin of Mathematical Biology,1998,60:753-807.
    [82]Beshers S. N., Fewell J. H. Models of division of labor in social insects.[J]. Annual Review of Entomology,2001,46:413-440.
    [83]Wilson-Rich N., Spivak M., Fefferman N. H., Starks P. T. Genetic, individual, and group facilitation of disease resistance in insect societies[J]. Annu Rev Entomol,2009,54:405-23.
    [84]Spivak M., Masterman R., Ross R., Mesce K. A. Hygienic behavior in the honey bee(Apis mellifera L.) and the modulatory role of octopamine[J]. Journal of Neurobiology,2003,55: 341-345.
    [85]Boecking O., Spivak M. Behavioral defenses of honeybees against Varroa jacobsoni Oud[J]. Apidologie,1999,30:141-158.
    [86]Harbo J.B., Harris J.W. The number of genes involved in the SMR trait[J]. Am Bee J,2005, 145:430-431.
    [87]Spivak M., Reuter G. S. Varroa jacobsoni infestation in untreated honey bee (Hymenoptera:Apidae) colonies selected for hygienic behavior[J]. J Econ Entomol,2001,94: 326-331.
    [88]Le Conte Y., Alaux C., Martin J. F., Harbo J. R., Harris J. W., Dantec C., Severac D., Cros-Arteil S., Navajas M. Social immunity in honeybees (Apis mellifera):transcriptome analysis of varroa-hygienic behaviour[J]. Insect Mol Biol,2011,20(3):399-408.
    [89]Tsuruda J. M., Harris J. W., Bourgeois L., Danka R. G, Hunt G. J. High-resolution linkage analyses to identify genes that influence varroa sensitive hygiene behavior in honey bees[J]. PLoS One,2012,7(11):e48276.
    [90]Gramacho K. P., Goncalves L. S., Stort A. C., Noronha A. B. Is the number of antennal plate organs (sensilla placodea) greater in hygienic than in non-hygienic Africanized honey bees?[J]. Genet Mol Res,2003,2(3):309-16.
    [91]Schoning C., Gisder S., Geiselhardt S., Kretschmann I., Bienefeld K., Hilker M., Genersch E. Evidence for damage-dependent hygienic behaviour towards Varroa destructor-parasitised brood in the western honey bee, Apis mellifera[J]. J Exp Biol,2011,215(Pt 2):264-71.
    [92]Arechavaleta-Velasco M. E., Alcala-Escamilla K., Robles-Rios C., Tsuruda J. M., Hunt G. J. Fine-scale linkage mapping reveals a small set of candidate genes influencing honey bee grooming behavior in response to varroa mites[J]. PLoS One,2012,7(11):e47269.
    [93]Fries I., Camazine S., Sneyd J. Population dynamics of Varroa jacobsoni:a model and a review[J]. BeeWorld,1994,75:5-28.
    [94]Villa A., Rosenkranz C., Garrido A. Fluoride absorption from disodium and calcium monofluorophosphates from the gastrointestinal tract of rats[J]. Res Commun Chem Pathol Pharmacol,1993,81(1):53-67.
    [95]Locke B., Forsgren E., Fries I., de Miranda J. R. Acaricide treatment affects viral dynamics in Varroa destructor-infested honey bee colonies via both host physiology and mite control[J]. Appl Environ Microbiol,2011,78(1):227-35.
    [96]Solignac M., Mougel F., Vautrin D., Monnerot M., Cornuet J. M. A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map[J]. Genome Biol,2007,8(4):R66.
    [97]Shaibi T., Lattorff H., Moritz R. A microsatellite DNA toolkit for studying population structure in Apis mellifera[J]. Mol Ecol Resour,2008,8(5):1034-6.
    [98]Fuchs S. Preference for drone brood cells by Varroa jacobsoni Oud in colonies of Apis mellifera carnica[J]. Apidologie,1990,21:193-199.
    [99]Boot W. J., J. N. M. Calis, J. Beetsma, D. M. Hai, N. K. Lan, T. V.Toan, L. Q. Trung, N. H. Minh. Natural selection of Varroa jacobsoni explains the different reproductive strategies in colonies of Apis cerana and Apis mellifera[J]. Exp. Appl. Acarol.,1999,23:133-144.
    [100]Nijhout H. F. The control of growth[J]. Development,2003,130(24):5863-7.
    [101]Nijhout H. F. The control of body size in insects[J]. Dev Biol,2003,261(1):1-9.
    [102]Wu Q., Brown M. R. Signaling and function of insulin-like peptides in insects[J]. Annu Rev Entomol,2006,51:1-24.
    [103]Hummel T., Krukkert K., Roos J., Davis G, Klambt C. Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development[J]. Neuron,2000,26(2): 357-70.
    [104]Margulies M., Egholm M., Altman W. E., Attiya S., Bader J. S., Bemben L. A., Berka J., Braverman M. S., Chen Y. J., Chen Z., Dewell S. B., Du L., Fierro J. M., Gomes X. V., Godwin B. C., He W., Helgesen S., Ho C. H., Irzyk G P., Jando S. C., Alenquer M. L., Jarvie T. P., Jirage K. B., Kim J. B., Knight J. R., Lanza J. R., Leamon J. H., Lefkowitz S. M., Lei M., Li J., Lohman K. L., Lu H., Makhijani V. B., McDade K. E., McKenna M. P., Myers E. W., Nickerson E., Nobile J. R., Plant R., Puc B. P., Ronan M. T., Roth G T., Sarkis G J., Simons J. F., Simpson J. W., Srinivasan M., Tartaro K. R., Tomasz A., Vogt K. A., Volkmer G A., Wang S. H., Wang Y, Weiner M. P., Yu P., Begley R. F., Rothberg J. M. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature,2005,437(7057):376-80.
    [105]Mardis E. R. Next-generation DNA sequencing methods[J]. Annu Rev Genomics Hum Genet,2008,9:387-402.
    [106]Schuster S. C. Next-generation sequencing transforms today's biology[J]. Nat Methods, 2008,5(1):16-8.
    [107]Wang E. T., Sandberg R., Luo S., Khrebtukova I., Zhang L., Mayr C., Kingsmore S. F., Schroth G P., Burge C. B. Alternative isoform regulation in human tissue transcriptomes[J]. Nature,2008,456(7221):470-6.
    [108]Samarakoon U., Regier A., Tan A., Desany B. A., Collins B., Tan J. C., Emrich S. J., Ferdig M. T. High-throughput 454 resequencing for allele discovery and recombination mapping in Plasmodium falciparum[J]. BMC Genomics,2011,12:116.
    [109]Dames S., Durtschi J., Geiersbach K., Stephens J., Voelkerding K. V. Comparison of the Illumina Genome Analyzer and Roche 454 GS FLX for resequencing of hypertrophic cardiomyopathy-associated genes[J]. J Biomol Tech,2010,21(2):73-80.
    [110]Valouev A., Ichikawa J., Tonthat T., Stuart J., Ranade S., Peckham H., Zeng K., Malek J. A., Costa G., McKernan K., Sidow A., Fire A., Johnson S. M. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning[J]. Genome Res,2008,18(7):1051-63.
    [111]王立坤RNA-seq数据的处理与应用[D].长春:吉林大学,2012.
    [112]Grabherr M. G., Haas B. J. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology,2011, doi:10.1038/nbt.1883.
    [113]Iseli C., Jongeneel C. V., Bucher P. ESTScan:a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences[J]. Proc Int Conf Intell Syst Mol Biol, 1999, CA:AAAI Press. pp.138-48.
    [114]Mortazavi A., Williams B. A. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nat Methods,2008,5(7):621-628.
    [115]Check E. Priorities for genome sequencing leave macaques out in the cold[J]. Nature,2002, 417(6888):473-4.
    [116]Insights into social insects from the genome of the honeybee Apis mellifera[J]. Nature, 2006,443(7114):931-49.
    [117]Chen X., Hu Y., Zheng H., Cao L., Niu D. Yu D., Sun Y, Hu S., Hu F. L. Transcriptome comparison between honey bee queen-and worker-destined larvae[J]. Insect Biochemistry and Molecular Biology,2012,42:665-673.
    [118]Greenberg J. K., Xia J., Zhou X., Thatcher S. R., Gu X., Ament S. A., Newman T. C., Green P. J., Zhang W., Robinson G E., Ben-Shahar Y. Behavioral plasticity in honey bees is associated with differences in brain microRN A transcriptome [J]. Genes Brain Behav,11(6):660-70.
    [119]Alaux C., Dantec C., Parrinello H., Le Conte Y. Nutrigenomics in honey bees:digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees[J]. BMC Genomics,12:496.
    [120]Rodriguez-Zas S. L., Southey B. R., Shemesh Y, Rubin E. B., Cohen M., Robinson G. E., Bloch G. Microarray analysis of natural socially regulated plasticity in circadian rhythms of honey bees[J]. J Biol Rhythms,27(1):12-24.
    [121]Wang Y, Kocher S. D., Linksvayer T. A., Grozinger C. M., Page R. E., Jr., Amdam G V. Regulation of behaviorally associated gene networks in worker honey bee ovaries[J]. J Exp Biol, 215(Pt 1):124-34.
    [122]Woodard S. H., Fischman B. J., Venkat A., Hudson M. E., Varala K., Cameron S. A., Clark A. G., Robinson G E. Genes involved in convergent evolution of eusociality in bees[J]. Proc Natl Acad Sci U S A,2011,108(18):7472-7.
    [123]Adams H. A., Southey B. R., Robinson G E., Rodriguez-Zas S. L. Meta-analysis of genome-wide expression patterns associated with behavioral maturation in honey bees[J]. BMC Genomics,2008,9:503.
    [124]Sutherland T. D., Campbell P. M., Weisman S., Trueman H. E., Sriskantha A., Wanjura W. J., Haritos V. S. A highly divergent gene cluster in honey bees encodes a novel silk family[J]. Genome Res,2006,16(11):1414-21.
    [125]Francis M. F., Valeria V., Josane F. S., Marco A. V., Daniel G The use of Open Reading frame ESTs (ORESTES) for analysis of the honey bee transcriptome[J]. BMC Genomics,2004, 5:84 doi:10.1186/1471-2164-5-84.
    [126]Shi Y. Y, Wu X. B., Huang Z. Y, Wang Z. L., Yan W. Y, Zeng Z. J. Epigenetic modification of gene expression in honey bees by heterospecific gland secretions[J]. PLoS One, 2012,7(8):e43727.
    [127]Wang Z. L., Liu T. T., Huang Z. Y., Wu X. B., Yan W. Y, Zeng Z. J. Transcriptome analysis of the Asian honey bee Apis cerana cerana[J]. PLoS One,2012,7(10):e47954.
    [128]Li Z. G, Liu F., Li W. F., Zhang S., Niu D., Xu H. S., Hong Q. H., Chen S. L., Su S. K. Differential transcriptome profiles of heads from foragers:comparison between Apis mellifera ligustica and Apis cerana cerana[J]. Apidologie,2012,43:487-500.
    [129]Vogt A., Fuerholzner B., Kinkl N., Boldt K., Ueffing M. ICPL-IP:A novel approach for quantitative protein complex analysis from native tissue[J]. Mol Cell Proteomics,2012.
    [130]Ong S. E., Blagoev B., Kratchmarova I., Kristensen D. B., Steen H., Pandey A., Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics [J]. Mol Cell Proteomics,2002,1(5):376-86.
    [131]Tannu N., Hemby S. E. Quantitation in two-dimensional fluorescence difference gel electrophoresis:effect of protein fixation[J]. Electrophoresis,2006,27(10):2011-5.
    [132]Ross P. L., Huang Y. N., Marchese J. N., Williamson B., Parker K., Hattan S., Khainovski N., Pillai S., Dey S., Daniels S., Purkayastha S., Juhasz P., Martin S., Bartlet-Jones M., He F., Jacobson A., Pappin D. J. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents[J]. Mol Cell Proteomics,2004,3(12):1154-69.
    [133]Josselin N. Methods in Quantitative Proteomics:Setting iTRAQ on the Right Track[J]. Current Proteomics,2011,8:17-30.
    [134]Kaplan N., Linial M. ProtoBee:hierarchical classification and annotation of the honey bee proteome[J]. Genome Res,2006,16(11):1431-8.
    [135]Zheng A., Li J., Begna D., Fang Y, Feng M., Song F. Proteomic analysis of honeybee (Apis mellifera L.) pupae head development[J]. PLoS One,2011,6(5):e20428.
    [136]Jianke L., Mao F., Begna D., Yu F., Aijuan Z. Proteome comparison of hypopharyngeal gland development between Italian and royal jelly producing worker honeybees(Apis mellifera L.)[J]. J Proteome Res,2010,9(12):6578-94.
    [137]Fujita T., Kozuka-Hata H., Uno Y, Nishikori K., Morioka M., Oyama M., Kubo T. Functional analysis of the honeybee (Apis mellifera L.) salivary system using proteomics [J]. Biochem Biophys Res Commun,397(4):740-4.
    [138]Yu F. and LI J. K. Analysis of Developmental Proteome at Egg Stage of Drone Honeybees (A. m. ligustica)[J]. Agricultural Sciences in China,2010,9(3):392-400.
    [139]Chen J., Li J. K. Comparative Analyses of Proteome Complement Between Worker Bee Larvae of High Royal Jelly Producing Bees (A. m. ligustica) and Carniolian Bees (A. m. carnica)[J].Agricultural Sciences in China,2009,8(10):1219-1227.
    [140]Garcia L., Saraiva Garcia C. H., Calabria L. K., Costa Nunes da Cruz G., Sanchez Puentes A., Bao S. N., Fontes W., Ricart C. A., Salmen Espindola F., Valle de Sousa M. Proteomic analysis of honey bee brain upon ontogenetic and behavioral development[J]. J Proteome Res, 2009,8(3):1464-73.
    [141]Wolschin F., Amdam G. V. Plasticity and robustness of protein patterns during reversible development in the honey bee (Apis mellifera)[J]. Anal Bioanal Chem,2007,389(4):1095-100.
    [142]Baker N., Wolschin F., Amdam G. V. Age-related learning deficits can be reversible in honeybees Apis mellifera[J]. Exp Gerontol,2012,47(10):764-72.
    [143]Begna D., Fang Y., Feng M., Li J. Mitochondrial proteins differential expression during honeybee (Apis mellifera L.) queen and worker larvae caste determination[J]. J Proteome Res, 2011,10(9):4263-80.
    [144]Begna D., Han B., Feng M., Fang Y., Li J. Differential expressions of nuclear proteomes between honeybee (Apis mellifera L.) Queen and Worker Larvae:a deep insight into caste pathway decisions[J]. J Proteome Res,2011,11(2):1317-29.
    [145]Fang Y, Song F., Zhang L., Aleku D. W., Han B., Feng M., Li J. Differential antennal proteome comparison of adult honeybee drone, worker and queen (Apis mellifera L.)[J]. J Proteomics,2011,75(3):756-73.
    [146]Feng M., Song F., Aleku D. W., Han B., Fang Y, Li J. Antennal proteome comparison of sexually mature drone and forager honeybees[J]. J Proteome Res,2011,10(7):3246-60.
    [147]Woltedji D., Song F., Zhang L., Gala A., Han B., Feng M., Fang Y, Li J. Western honeybee drones and workers (Apis mellifera ligustica) have different olfactory mechanisms than eastern honeybees (Apis cerana cerana)[J]. J Proteome Res,2012,11(9):4526-40.
    [148]Cardoen D., Ernst U. R., Boerjan B., Bogaerts A., Formesyn E., de Graaf D. C., Wenseleers T., Schoofs L., Verleyen P. Worker honeybee sterility:a proteomic analysis of suppressed ovary activation[J]. J Proteome Res,2012,11(5):2838-50.
    [149]Hernandez L. G, Lu B., da Cruz G C., Calabria L. K., Martins N. F., Togawa R., Espindola F. S., Yates J. R., Cunha R. B., de Sousa M. V. Worker honeybee brain proteome[J]. J Proteome Res,2011,11(3):1485-93.
    [150]Di Girolamo F., D'Amato A., Righetti P. G. Assessment of the floral origin of honey via proteomic tools[J]. J Proteomics,2012,75(12):3688-93.
    [151]Baer B., Heazlewood J. L., Taylor N. L., Eubel H., Millar A. H. The seminal fluid proteome of the honeybee Apis mellifera[J]. Proteomics,2009,9(8):2085-97.
    [152]Schonleben S., Sickmann A., Mueller M. J., Reinders J. Proteome analysis of Apis mellifera royal jelly[J]. Anal Bioanal Chem,2007,389(4):1087-93.
    [153]Han B., Li C., Zhang L., Fang Y, Feng M., Li J. Novel royal jelly proteins identified by gel-based and gel-free proteomics[J]. J Agric Food Chem,2011,59(18):10346-55.
    [154]Zhang L., Fang Y, Li R., Feng M., Han B., Zhou T., Li J. Towards posttranslational modification proteome of royal jelly [J]. J Proteomics,2012,75(17):5327-41.
    [155]Li J., Chen J., Zhang Z., Pan Y. Proteome analysis of tea pollen (Camellia sinensis) under different storage conditions[J]. J Agric Food Chem,2008,56(16):7535-44.
    [156]Peiren N., de Graaf D. C., Vanrobaeys F., Danneels E. L., Devreese B., Van Beeumen J., Jacobs F. J. Proteomic analysis of the honey bee worker venom gland focusing on the mechanisms of protection against tissue damage[J]. Toxicon,2008,52(1):72-83.
    [157]黄双修周婷,姚军,黄智勇.对中华蜜蜂寄生瓦螨生物学和分类地位及中蜂抗螨机制的新认识(一)[J].蜜蜂杂志,2003(1):10-11.
    [158]黄双修,黄智勇,周婷,姚军.蜜蜂瓦瞒研究的最新发现及其对探索瓦瞒防治新途径的启示[J].中国养蜂,2003,54(I):4-5.
    [159]Ibbrahim A., Spivak M. The relationship between hygienic behavior and suppression of mite reproduction as honey bee (Apis mellifera) mechanisms of resistance to Varroa destructor[J].Apidologie 2006,37:31-40.
    [160]邓学梅李俊英,李宁,等.基于F22群体的鸡重要生长性状遗传分析[J].遗传学报,2001,28:801-807.
    [161]刘俊峰吴小波,颜伟玉,田柳青.饲粮蛋白水平对中华蜜蜂春繁性能及幼虫抗氧化性能的影响[J].江西农业大学学报,2011,33(5):0960-0964.
    [162]殷玲.基于微卫星标记及线粒体基因序列的云南省6个东方蜜蜂(Apis cerena)群体遗传多样性及遗传分化研究[D].扬州:扬州大学,2009.
    [163]Winston M. L. The biology of the honey bee[M]. Boston:Harvard University Press,1987.
    [164]Franck P., Coussy H., Le Conte Y., Solignac M., Garnery L., Cornuet J. M. Microsatellite analysis of sperm mixture in honeybee[J]. Insect Mol Biol 1999,8:419-421.
    [165]Paar J., Oldroyd B. P., Huettinger E., Kastberger G. Genetic structure of an Apis dorsata population:the significance of migration and colony aggregation[J]. J Hered,2004,95(2): 119-26.
    [166]殷玲.基于微卫星标记及线粒体基因序列的云南省6个东方蜜蜂(Apis cerana)群体遗传多样性及遗传分化研究[D].扬州:扬州大学,2009.
    [167]谭垦,余玉生,张学文.东方蜜蜂抗螨的试验研究[J].中国蜂养,2002,53(6):10-12.
    [168]Zhang Y., Liu X., Zhang W., Han R. Differential gene expression of the honey bees Apis mellifera and A. cerana induced by Varroa destructor infection[J]. J Insect Physiol,2010,56(9): 1207-18.
    [169]Wu X. B., Zeng Z. J. Interspecific brood introduction into Apis cerana and Apis mellifera colonies[J]. Indian Bee Journal,2007,69(14):94-96.
    [170]Audic S., Claverie J. M. The significance of digital gene expression profiles[J]. Genome Res,1997,7(10):986-95.
    [171]Kanehisa M., Araki M. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Res,2008,36(Database issue):D480-4.
    [172]Ye J., Fang L., Zheng H., Zhang Y., Chen J., Zhang Z., Wang J., Li S., Li R., Bolund L. WEGO:a web tool for plotting GO annotations[J]. Nucleic Acids Res,2006,34(Web Server issue):W293-7.
    [173]Gibbons J. G, Janson E. M., Hittinger C. T., Johnston M., Abbot P., Rokas A. Benchmarking next-generation transcriptome sequencing for functional and evolutionary genomics[J]. Mol Biol Evol,2009,26(12):2731-44.
    [174]Chen M. X., Ai L., Xu M. J., Chen S. H., Zhang Y. N., Guo J., Cai Y. C., Tian L. G, Zhang L. L., Zhu X. Q., Chen J. X. Identification and characterization of microRNAs in Trichinella spiralis by comparison with Brugia malayi and Caenorhabditis elegans[J]. Parasitol Res,2011, 109(3):553-8.
    [175]陈盛禄.中国养蜂学[M].北京:中国农业出版社,2001.
    [176]Chandrasekaran S., Ament S. A., Eddy J. A., Rodriguez-Zas S. L., Schatz B. R., Price N. D., Robinson G E. Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states[J]. Proc Natl Acad Sci U S A,2011,108(44):18020-5.
    [177]Di Prisco G, Pennacchio F., Caprio E., Boncristiani H. F., Jr., Evans J. D., Chen Y. Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera[J]. J Gen Virol,2010,92(Pt 1):151-5.
    [178]Kanbar G, Engels W. Ultrastructure and bacterial infection of wounds in honey bee (Apis mellifera) pupae punctured by Varroa mites[J]. Parasitol Res,2003,90(5):349-54.
    [179]O'Connell K., Gannon J., Doran P., Ohlendieck K. Reduced expression of sarcalumenin and related Ca2+-regulatory proteins in aged rat skeletal muscle[J]. Exp Gerontol,2008,43(10): 958-61.
    [180]Hadad N., Meyer H. E., Varsanyi M., Fleischer S., Shoshan-Barmatz V. Cardiac sarcalumenin:phosphorylation, comparison with the skeletal muscle sarcalumenin and modulation of ryanodine receptor[J]. J Membr Biol,1999,170(1):39-49.
    [181]Herranz Raul, Mateos Jesus, Mas Jose A., Garci'a-ZaragozaElena, Cervera Margarita, Marco Roberto The Coevolution of Insect Muscle TpnT and TpnI Gene Isoforms[J]. Molecular Biology and Evolution,2005,22(11):2231-2242.
    [182]Herranz R., Mateos J., Marco R. Diversification and Independent Evolution of Troponin C Genes in Insects[J]. J Mol Evol,2005,60:31-44.
    [183]Schippers M. P., Dukas R., McClelland G. B. Lifetime-and caste-specific changes in flight metabolic rate and muscle biochemistry of honeybees, Apis mellifera[J].J Comp Physiol B,2009, 180(1):45-55.
    [184]Toyoshima C., Nomura H. Structural changes in the calcium pump accompanying the dissociation of calcium[J]. Nature,2002,418(6898):605-11.
    [185]Sorensen T. L., Moller J. V., Nissen P. Phosphoryl transfer and calcium ion occlusion in the calcium pump[J]. Science,2004,304(5677):1672-5.
    [186]ARECHAVALETA-VELASCO Miguel E., GUZMAN-NOVOA Ernesto Relative effect of four characteristics that restrain the population growth of the mite Varroa destructor in honey bee (Apis mellifera) colonies[J]. Apidologie,2001,32:157-174.
    [187]Papachristoforou A., Kagiava A., Papaefthimiou C, Termentzi A., Fokialakis N., Skaltsounis A. L., Watkins M., Arnold G, Theophilidis G. The bite of the honeybee:2-heptanone secreted from honeybee mandibles during a bite acts as a local anaesthetic in insects and mammals[J]. PLoS One,2013,7(10):e47432.
    [188]Rothenbuhler W. C. Behaviour genetics of nest cleaning in honey bees[J]. Anim Behav, 1964,5:578-583.
    [189]Pelosi P. Perireceptor events in olfaction[J]. J Neurobiol,1996,30(1):3-19.
    [190]Deyu Z., Leal W. Conformational isomers of insect odorant-binding proteins[J]. Arch. Biochem. Biophys,2002,397:99-105.
    [191]Leal W. S. Odorant reception in insects:roles of receptors, binding proteins, and degrading enzymes[J]. Annu Rev Entomol,2012,58:373-91.
    [192]Foret S., Maleszka R. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera)[J]. Genome Res,2006, 16(11):1404-13.
    [193]Hummel T, Vasconcelos M, Clemens J, Fishilevich Y, Vosshall L, Zipursky S:. Axonal Targeting of Olfactory Receptor Neurons in Drosophila Is Controlled by Dscam[J]. Neuron, 2001,37:221-231.
    [194]Katia P. Gramacho, Spivak Marla. Differences in olfactory sensitivity and behavioral responses among honey bees bred for hygienic behavior[J]. Behav Ecol Sociobiol 2003,54: 472-479.
    [195]Park J. M., Kunieda T., Kubo T. The activity of Mblk-1, a mushroom body-selective transcription factor from the honeybee, is modulated by the ras/MAPK pathway [J]. J Biol Chem, 2003,278(20):18689-94.
    [196]Takeuchi H., Kage E., Sawata M., Kamikouchi A., Ohashi K., Ohara M., Fujiyuki T., Kunieda T., Sekimizu K., Natori S., Kubo T. Identification of a novel gene, Mblk-1, that encodes a putative transcription factor expressed preferentially in the large-type Kenyon cells of the honeybee brain[J]. Insect Mol Biol,2001,10(5):487-94.
    [197]Schurmann F. W. Structure of the mushroom bodies of the insect brain. I. Synapses in the peduncle[J]. Z Zellforsch Mikrosk Anat,1970,103(3):365-81.
    [198]Groh C., Ahrens D., Rossler W. Environment-and age-dependent plasticity of synaptic complexes in the mushroom bodies of honeybee queens[J]. Brain Behav Evol,2006,68(1):1-14.
    [199]Blenau W., Erber J. Behavioural pharmacology of dopamine, serotonin and putative aminergic ligands in the mushroom bodies of the honeybee (Apis mellifera)[J]. Behav Brain Res, 1998,96(1-2):115-24.
    [200]McQuillan H. J., Nakagawa S., Mercer A. R. Mushroom bodies of the honeybee brain show cell population-specific plasticity in expression of amine-receptor genes[J]. Learn Mem,2012, 19(4):151-8.
    [201]Bourtchuladze R., Frenguelli B., Blendy J., Cioffi D., Schutz G, Silva A. J. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein[J]. Cell,1994,79(1):59-68.
    [202]Warburton E. C., Glover C. P., Massey P. V., Wan H., Johnson B., Bienemann A., Deuschle U., Kew J. N., Aggleton J. P., Bashir Z. I., Uney J., Brown M. W. cAMP responsive element-binding protein phosphorylation is necessary for perirhinal long-term potentiation and recognition memory[J]. J Neurosci,2005,25(27):6296-303.
    [203]Chen C. C., Wu J. K., Lin H. W., Pai T. P., Fu T. F., Wu C. L., Tully T., Chiang A. S. Visualizing long-term memory formation in two neurons of the Drosophila brain[J]. Science, 2012,335(6069):678-85.
    [204]Belvin M. P., Yin J. C. Drosophila learning and memory:recent progress and new approaches[J]. Bioessays,1997,19(12):1083-9.
    [205]Dupuis J., Louis T., Gauthier M., Raymond V. Insights from honeybee (Apis mellifera) and fly (Drosophila melanogaster) nicotinic acetylcholine receptors:from genes to behavioral functions[J]. Neurosci Biobehav Rev,2012,36(6):1553-64.
    [206]Decourtye A., Devillers J., Genecque E., Le Menach K., Budzinski H., Cluzeau S., Pham-Delegue M. H. Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera[J]. Arch Environ Contam Toxicol,2005,48(2): 242-50.
    [207]Diegelmann S., Klagges B., Michels B., Schleyer M., Gerber B. Maggot learning and Synapsin function[J]. J Exp Biol,2013,216(Pt 6):939-51.
    [208]Robinson G. E. Genomics. Beyond nature and nurture[J]. Science,2004,304(5669):397-9.
    [209]Cornman R. S., Boncristiani H., Dainat B., Chen Y., Vanengelsdorp D., Weaver D., Evans J. D. Population-genomic variation within RNA viruses of the Western honey bee, Apis mellifera, inferred from deep sequencing[J]. BMC Genomics,2013,14:154.
    [210]Bull J. C., Ryabov E. V., Prince G, Mead A., Zhang C., Baxter L. A., Pell J. K., Osborne J. L., Chandler D. A strong immune response in young adult honeybees masks their increased susceptibility to infection compared to older bees[J]. PLoS Pathog,2013,8(12):e1003083.
    [211]Sun L. X., Huang Z. Y, Zheng H. J., Ge Q. X., Gong L. P., Huai Y. C. Characterization of three new members of the apidermin (apd) gene family from honeybees and sequence analysis of the insect APD family[J]. Acta Entomologica Sinica,2012,55(1):12-23.
    [212]Francis R. M., Nielsen S. L., Kryger P. Varroa-virus interaction in collapsing honey bee colonies[J]. PLoS One,2013,8(3):e57540.
    [213]Greenbaum D., Colangelo C., Williams K., Gerstein M. Comparing Protein abundanee and mRNA expression levels on a genomic scale[J]. Gel.Biol.,2003,4:117-124.
    [214]Oberg A. L., Mahoney D. W. Statistical methods for quantitative mass spectrometry proteomic experiments with labeling[J]. BMC Bioinformatics,2012,13 Suppl 16:S7.
    [215]郑君芳,孙超渊,孙丽翠,杨晓梅,王小柱,艳黄,洋李,贺俊崎.空间记忆相关蛋白的蛋白质组学研究[J].化学学报,2010,68(10):996-1002.
    [216]Amdam G V., Ihle K. E., Page R. E. Regulation of honeybee worker(Apis mellifera) life histories by vitellogenin[J]. Brain and Behavior,2009,2(29):1003-1025.
    [217]Iovinella I., Dani F. R., Niccolini A., Sagona S., Michelucci E., Gazzano A., Turillazzi S., Felicioli A., Pelosi P. Differential expression of odorant-binding proteins in the mandibular glands of the honey bee according to caste and age[J]. J Proteome Res,2011,10(8):3439-49.
    [218]Dani F. R., Iovinella I., Felicioli A., Niccolini A., Calvello M. A., Carucci M. G, Qiao H., Pieraccini G, Turillazzi S., Moneti G, Pelosi P. Mapping the expression of soluble olfactory proteins in the honeybee[J]. J Proteome Res,2010,9(4):1822-33.
    [219]吴松锋,朱云平,贺福初.转录组与蛋白质组比较研究进展[J].生物化学与生物物理进展,2005,32(2):99-105.
    [220]Ning K., Fermin D., Nesvizhskii A. I. Comparative analysis of different label-free mass spectrometry based protein abundance estimates and their correlation with RNA-Seq gene expression data[J]. J Proteome Res,2012,11(4):2261-71.
    [221]Ideker T., Thorsson V., Ranish J. A., Christmas R., Buhler J., Eng J. K., Bumgarner R., Goodlett D. R., Aebersold R., Hood L. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network[J]. Science,2001,292(5518):929-34.
    [222]Griffin T. J., Gygi S. P., Ideker T., Rist B., Eng J., Hood L., Aebersold R. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae[J]. Mol Cell Proteomics,2002,1(4):323-33.
    [223]姜义仁.柞蚕微孢子虫检测及感染柞蚕中肠转录组及蛋白质组学研究[D].沈阳:沈阳农业大学,2012.
    [224]赵丽娟.小黑杨花粉功能基因组和蛋白质组研究[D].东北林业大学,2011.
    [225]Brazas M. D., Yamada J. T., Ouellette B. F. Providing web servers and training in Bioinformatics:2010 update on the Bioinformatics Links Directory[J]. Nucleic Acids Res,2010, 38(Web Server issue):W3-6.
    [226]Brazas M. D., Yamada J. T., Ouellette B. F. Evolution in bioinformatic resources:2009 update on the Bioinformatics Links Directory [J]. Nucleic Acids Res,2009,37(Web Server issue): W3-5.
    [227]刘敏.三个意蜂品系MRJP1基因多态、基因表达和含量的相关性分析[D].扬州大学,2010.
    [228]Livak K J, T D Schmitthen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) Method[J]. Methods,2001,25(4):402-408.
    [229]Petersen TN., Brunak S., von Heijne G, H. Nielsen. SignalP 4.0:discriminating signal peptides from transmembrane regions[J]. Nature Methods,2011,8:785-786.
    [230]Carcaud J., Hill T., Giurfa M., Sandoz J. C. Differential coding by two olfactory subsystems in the honeybee brain[J]. J Neurophysiol,2012,108(4):1106-21.
    [231]Yang E. C., Chang H. C., Wu W. Y., Chen Y. W. Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage[J]. PLoS One,2012, 7(11):e49472.
    [232]Qiao H., He X., Schymura D., Ban L., Field L., Dani F.R., Michelucci E., Caputo B., Torre A.D, Iatrou K., Zhou J.J., Krieger J., Pelosi P. Cooperative interactions between odorant-binding proteins of Anopheles gambiae.[J]. Cellular and Molecular Life Sciences,2011,68:1799-1813.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700