用户名: 密码: 验证码:
环模制粒机成型工艺及关键部件磨损机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环模制粒机是农牧业产品的主要加工设备,也是苜蓿草产业加工中确保高产、优质、高质量草产品的关键设备。我国在苜蓿草产业制粒技术上同发达国家存在较大差距,主要体现在环模制粒机设备的关键部件使用寿命短、制粒质量差、功耗大和生产率低等方面。本文通过对苜蓿草颗粒的制粒成型过程与制粒机关键部件的磨损及减磨等系统研究,取得了如下的成果:
     1、分析了环模制粒机的制粒过程与草颗粒成型机理。通过对环模制粒系统工作区苜蓿草粉物料层的受力分析,阐释了苜蓿草粉形成草颗粒的过程,建立了草粉层厚度与环模转角间的函数关系,推导出一般条件下物料层微分单元的力学方程,得到了环模对草粉层作用力的计算式。
     2、利用正交旋转组合设计对苜蓿草颗粒的成型工艺进行了优化。确定出草颗粒产品的最优工艺参数:挤出力4.47kN、含水率15.96%、草粉粒度5.34mm,即制粒密度为最大值1.241g/cm3。在此基础上,对不同工艺参数下草颗粒的微观结构变化与成型机理进行了分析研究。
     3、系统研究了苜蓿草粉为磨料对45#钢的磨损规律与磨损机理。分析了载荷、转速、草粉粒度和含水率等因素对45#钢磨损的影响。通过对不同磨料、不同金属材料的磨损试验研究,总结了植物磨料对金属材料的磨损机理。
     4、基于数字图像技术,以植物磨料(选择苜蓿草粉作为典型磨料)对不同金属材料磨损表面SEM灰度图像为研究对象,利用分形和小波理论,研究了植物磨料对金属材料的磨损表面形貌特征。
     5、以环模、压辊常用45#钢为基体材料,对其进行激光相变硬化处理,探讨了了不同激光淬火工艺参数对45#钢抗植物磨料磨损性能的影响,并分析了其耐磨机理。利用正交试验设计,得到45#钢抗植物磨料磨损最佳激光相变硬化工艺参数组合:激光功率2050W、扫描速度20mm/s、光斑直径4mm,并进行了试验验证。
     本文通过对制粒过程与制粒工艺、草颗粒产品制粒成型机理的研究,为优化制粒机的结构、提高制粒质量与制粒效率提供理论依据;对制粒机关键部件磨损及减磨的研究、植物磨料对金属材料的磨损规律与磨损机理研究,为农业加工机械设备的设计、制造提供参考。
The hoop standard granulator is the main machine to ensure the high-yield and high-quality of grass product. The wideer gap in the pelletizing technology between China and developed countries is,mainly embodied in the short life of key components, the poorer quality of pelletizing, the higher consumption of power and the lower productivity and so on. In this paper, the pelletizing processes of alfalfa particles and the wear and friction mechanisms for the key components of hoop standard granulator were studied, and the some important results were achieved as follows:
     1. The pelletizing processes of hoop standard granulator and the molding mechanisms of granulated alfalfa were analyzed. Discussed the stress on the work space of material layer and the pelletizing processes of alfalfa particles, the functional relationships were established between the thickness of the material layer and the ring mold corners. Finally, the strain equilibrium equations of differential units were deduced under the normal conditions, and the total forces of ring mold on the material layer were calculated.
     2. Using the orthogonal rotational combining design, the forming processes were optimized and the best parameter combinations were obtained as following:the extrusion force was4.47KN, the material moisture content was16.96%, the size was5.34mm, and the density of the granulation was1.241g/cm3. On this basis, the microstructure changes and the molding mechanisms of the grass particles were analyzed under different processes parameters.
     3. The wear rules and mechanisms for45#steel were systematically studied with the Alfalfa powders as the abrasive. The influence of load, speed, grass powder size and moisture content on the steel wear was analyzed. On this basis, the wear tests were conducted under the different conditions of abrasives and metals, and discussed the wear mechanisms of plant abrasives for metal materials.
     4. Based on the digital image technology, selected the alfalfa powder as a typical abrasive, using the SEM grayscale image of the worn surface on different metal materials, the wear surface characteristics of metal materials were studied according to the fractal and wavelet theory.
     5.45#steel which was commonly used in ring mold pressure rollers, was acted as the test material and treated by laser transformation hardening.The wear-resistant performances and the mechanisms of45#steel were analyzed under the different parameters of the laser quenching processes, By using the quadratic regression orthogonal rotational combining design, the best laser transformation hardening process parameters were obtained as following:laser power2050W, scanning speed of20mm/s, spot diameter4mm. And it was verified with the experiments.
     This paper has provided theoretical bases for optimizing the structure of the pellet mill, increasing the pelleting quality and pelleting efficiency by studying the granulation processes and technologies, as well as grass particles forming mechanisms, which has provided the references for the study of anti-friction of the key components of hoop standard granulator and the wear mechanism and wear process of agricultural machines.
引文
[1]张诚彬.关于饲料制粒[J].粮食与饲料工业,2007(3):33-35
    [2]李忠平.饲料加工工艺与设备研究进展[J].粮食与饮料工,2006(5):28-31
    [3]吴劲锋.制粒环模磨损失效机理研究及优化设计[D].兰州理工大学,2008
    [4]谢友柏.摩擦学科学及工程应用现状与发展战略研究[M],北京:高等教育出版社,2006
    [5]周仲荣.摩擦学发展前沿[M].北京:科学出版社,2006
    [6]徐滨士,朱绍华,刘世参等.材料表面工程[M],哈尔滨:哈尔滨工业大学出版社,2005
    [7]Skalweit H. Krafte und Beanspruchungen in Stohpressen,4 structenr Kursus RKTL[J]. Schrift 88, Berlin,1969
    [8]Mewes E. Verdichyung,GesetzmassigkeiteNach.Presstopfversuchen[J]. Landtechn, 1959,9(3):68-76
    [9]Sachat H O. Der Stand der Forschung anf dem Gebiet der Heuund Strophressen[M]. Landtechn,1964
    [10]Osobov V I. Pressing and Pelleting of Hay Straw Materials by and Impact Load[J]. Traktory I Selkhozmachiny,1970,40(6):21-23
    [11]Rehkugler G. E, Buchele W F. Biomechanices of forage wafering[J]. Trans.of ASAE,1969,12(1):1-8
    [12]Mohsenin N, Zaske J. Stress Relaxation and energy requirements in compression of uncongolidated materials [J]. Agric.Engng.Res.,1976,21(1):193-205
    [13]Bock R G, Puri V M, Manbeck H B. Modeling Stress Relaxation Response of Wheat En Masse Using the Triaxial Test[J].1989,35(5):1701-1708
    [14]O'Dogherty M J. A review of the mechanical behaviour of straw when compressed to high densities[J]. Agri. Engng.Res.,1989,44:241-265
    [15]Fabotade M O. A rheological model for the compression of fibrous agricultural materials[J]. Agri Eng Res.,1989,42:164-178
    [16]Anthony WS. Concept to reduce cotton bale packaging forces[J]. Applied Engineering in Agriculture,200117(4):356-363
    [17]杨明韶.牧草压缩过程研究[J].农业工程学报,1996,12(1):61-64
    [18]杨明韶,张永,李旭英.粗纤维物料压缩过程的一般流变规律的探讨[J].农业工程学报,2002,18(1):134-137
    [19]王春光,杨明韶,高焕文等.牧草在高密度压捆时的应力松弛研究[J].农业工 程学报,1997,13(9):49-51
    [20]王春光,杨明韶,童淑敏等.高密度压捆时牧草在压缩室内受力和变形研究[J].农业工程学报,1999,15(4):54-59
    [21]王春光.应力松弛时间及其应用[J].农业机械学报,2007,38(1):46-50
    [22]周晓杰,王春光.压缩条件对苜蓿草径向受力的影响[J].农业机械学报,2009,40(2):114-118
    [23]吕江南,王建辉.红麻料片的压缩特性及压力与压缩密度的数学模型[J].农业机械学报,1998,29(2):83-86
    [24]盛奎川,Gomaa H.棉秆切碎及压缩成型的试验研究[J].农业工程学报.1999,15(4):221-225
    [25]盛奎川,吴杰.切碎棉杆高密度压缩成型的试验研究[J].浙江大学学报(农业与生命科学版),2003,29(2):139-142
    [26]Busse W. Die theorie auf dem gebiet des verdichtens landwirtschaftlicher halmguter[J]. Landtechnische Forschung,1964,18(1):50-57
    [27]Shaw M D, Tabil L G. Compression, Relaxation and adhesion properties of selected biomass grinds[J]. Agricultural Engineering International,2007,4(6):1-16
    [28]Anon. Engineering solution:Pelleting line's new equipment proves to be worth the scratch[J]. Powder and Bulk Engineering,2006,20(10):42-44
    [29]Rolfe L A, Huff H E, Hsieh F. Effects of particle size and proeessing variables on the propertics of an extruded catfish feed[J]. Journal of Aquatic Food Product Technology,2001,10(3):21-33
    [30]Tabil L G. Sokhansanj S. Compression and Compaction Behavior of Alfalfa Grind-Part 2:Compaction Behavior[J], Powder Handling and Processing,1996, 8(2):116-122
    [31]Vervaet C, Vermeersch H, Mikhael S, et al. Parameters influencing granule quality using a continuous granulator[J]. International Journal of Pharmaceutics,1994,106 (2):156-160
    [32]Yliruusi J, Merkku P, Kristoffersson E, et al. Process variables of instant granulator and sphereoniser:Ⅰ. Physical properties of granules, extrudate and pellets[J]. International Journal of Pharmaceutics (Amsterdam),1993,96(3):196-204
    [33]Yliruusi J, Kristoffersson E, Hellen L, Process variables of instant granulator and spheroniser:Ⅱ. Size and size distributions of pellets[J]. International Journal of Pharmaceutics (Amsterdam),1993,96(3):204-216
    [34]Yliruusi J, Hellen L. Process variables of instant granulator and spheroniser:Ⅲ. Shape and shape distributions of pellets [J]. International Journal of Pharmaceutics (Amsterdam),1993,96(3):216-223
    [35]Sokhansanj S, Tabil L G, Patil R. Alfalfa Cube Quality Characterization[A]. ASAE Annual International Meeting, Paper No.961032, St. Joseph, MI (1996):American Society of Agricultural Engineers
    [36]Holm J K, Henriksen U B, Hustad J E, et al. Toward an understanding of controlling parameters in softwood and hardwood pellets produetion[J]. Energy and Fuels,2006,20(6):2685-2694
    [37]Holm J K, Henriksen U B, Wand K, et al. Experimental verification of novel pellet model using a single pelleter unit[J]. Energy and Fuels,2007,21(4):2445-2449
    [38]Adapa P K. Tabil L G. Schoenau G J, et al. Compression characteristics of fractionated alfalfa grinds[J]. Powder Handling and Processing,2002,14(4):252-259
    [39]Adapa P K, Tabil L G, Sehoenau G J, et al. Pelleting characteristics of fractionated suncured and dehydrated alfalfa grinds[J]. Applied Engineering in Agiculture, ASAE Transactions,2004,20(6):813-820
    [40]Adapa P K, Singh A K, Schoenau G J, et al. Pelleting characteristics of fractionated alfalfa grinds:Hardness models[J]. Powder Handling and Proeessing,2006,18(5): 293-299
    [41]Ghebre-Sellassie I. Mechanism of pellet formation and growth. Pharmaceutical Pelletization Technology[M], Marcel Dekker Inc., New York,1984:123-143
    [42]钟启新,齐广海.制粒机理及其影响因素[J].中国饲料,1999,(14):8-10.
    [43]李忠平.饲料在制粒中的物理和化学变化的探讨[J],饲料工业,1996,17(9):1-4
    [44]恩和.环模式粗饲料压块机的研究[J].饲料工业,1998,19(8):10-12.
    [45]吴劲锋,黄建龙,张维果等.苜蓿草粉制粒密度与挤出力模拟试验[J].农业机械学报,2004,38(1):68-71.
    [46]张炜,吴劲锋.环模制粒机中环模结构型孔的有限元分析[J].中国农机化,2007,(6):25-27
    [47]武凯,施水娟,彭斌彬等.环模制粒挤压过程力学建模及影响因素分析[J],农业工程学报,2010,26(12):142-147
    [48]施水娟,武凯,蒋爱军.制粒过程中环模力学模型的建立及有限元分析[J].机械设计与制造,2011,(1):38-40
    [49]HUANG Xiao-peng, HUANG Jian-long, WU Jing-feng, ZHANG Wei. The analysis of the grass powder flow field in the roller system[C].2011 2nd International Conference on Mechanical and Electronics Engineering, ICMEE 2011,Volume 4:3412-3415
    [50]Lindley J A, Vossoughi M. Physical properties of biomass briquets[J]. Transactions of the ASAE,1989,32(2):361-366
    [51]O'Dogherty M J. A review of the mechanical behavior of straw when compressed to high densities [J]. Journal of Agricultural Engineering Research,1989,44: 241-264. Journal of Agricultural Engineering Research
    [52]Faborode M O, Callaghan J R O. Optimizing the compression/briquetting of fibrous agricultural materials[J]. Journal of Agricultural Engineering Research, 1987,38:244-262.
    [53]O'Dogherty M J, Wheeler J A. Compression of straw to high densities in closed cylindrical Dies[J]. Journal of Agricultural Engineering Research,1984,29:61-72
    [54]Ooi Chin Chin, Kamal M. Siddiqui. Characteristics of some biomass briquettes prepared under modest die pressures[J]. Biomass and Bioenergy,2000,18: 223-228.
    [55]Demirbas A. Properties of charcoal derived from hazelnut shell and the production of briquettes using pyrolytic oil[J]. Energy,1999,24(2):141-150.
    [56]Nalladurai K, Vance Morey R..Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switch grass[J]. Bioresearch Technology,2010,101:1082-1090
    [58]郭康权.粉粒体技术基础[M].西安:西北大学出版社,1995
    [59]郭康权.植物材料压缩成型时粒子的变形及结合形式[J].农业工程学报,1995,11(1):138-143
    [60]Lehtikangas P.. Storage effects on pelletised sawdust, logging residues and bark[J]. Biomass and Bioenergy,2000,19:286-293
    [61]胡建军.秸秆颗粒燃料冷态压缩成型实验研究及数值模拟[D].大连理工大学,2008,5
    [62]徐广印,沈胜强,胡建军等.秸秆冷态压缩成型微观变化的实验研究[J].太阳能学报,2010,31(3):273-278
    [63]齐菁,于洪亮,林海等.稻壳生物质颗粒成型机理的显微观察[J].辽宁农业科学,2009(6):49-50
    [64]刘圣勇,杨国峰,苏超杰等.玉米秸秆成型燃料的微观结构观察与分析[J].热科学与技术,2009,8(3):277-282
    [65]霍丽丽,田宜水,孟海波等.生物质颗粒燃料微观成型机理[J].农业工程学报,2011,27(增1):21-25
    [66]Richardson RCD, The Wear of Materials by Relatively soft Abrasives[J]. Wear, 1968, (11):244-274.
    [67]Richardson R L D. The wear of metal by hard abrasive [J]. Wear,1967, (10): 291-309
    [68]Wang Ning. Transformation of soft-abrasive wear into hard-abrasive wear under the effect of frictional heat[J]. Tribology Transactions,1989,32:84-90
    [69]Rabinowicz E. The Wear of Hard Surface by Relatively soft Abrasives [J]. Wear of Materials,1983,(8):12-17
    [70]Peter J. The significance and use of the friction coefficient[J]. Tribology International,1997,30(5):321-331
    [71]赵博彦,徐克明,田志兴.磨粉机轧辊失效机理及提高使用寿命的途径[J].沈阳工业大学学报,1987,(2):26-29
    [72]林福严,邵荷生.软磨料冲蚀磨损机理的研究[J].水利电力机械,1990,(1):16-21
    [73]宗力,徐红梅,彭小飞.锤片式粉碎机锤片磨损机理初探[J].饲料工业,2004,25(9):4-7
    [74]包那日那.粉碎机锤片磨损机理分析及粉碎性能试验研究[D].内蒙古农业大学,2011
    [75]向红亮,刘东.磨盘材料软磨料的磨损机理[J].中国造纸,2007,26(2):18-19
    [76]郭二军,王丽萍,岳金权等.双螺旋辊式新型磨浆机螺旋套磨损机理的研究[J].摩擦学学报,2005,25(6):593-596
    [77]曹平祥,王毅,周兆斌.工刀具损机理及抗技术[J].林产工业,2003,30(4):13-16
    [78]关凯书,张美华.颗粒饲料机压模的磨损失效分析及耐磨材料研究[J].润滑与密封,1995,20(5):49-54
    [79]吴劲锋,黄建龙,赵武云等.苜蓿草颗粒制粒环模磨损失效分析与磨料磨损试验研究[J].中国农机化,2007,27(4):83-86
    [80]霍丽丽,侯书林,田宜水.生物质固体燃料成型机压辊磨损失效分析[J].农业工程学报,2010,27(7):103-106
    [81]孔雪辉.生物质固化成型环模磨损实验研究及数值模拟[D].东北林业大学,2010
    [82]吴劲锋,黄建龙,张维国等.苜蓿草粉对金属材料磨损性能的影响[J].摩擦学学报,2007,27(1):88-90
    [83]张炜,吴劲锋,马国军等.苜蓿草粉对金属材料的磨料磨损试验[J].农业机械学报,2009,40(11):63-67
    [84]张炜,吴建民,吴劲锋等.苜蓿草粉对45#钢磨损性能的影响[J].农业工程学 报,2009,25(10):116-120
    [85]张炜,吴劲锋,黄晓鹏等.农业纤维物料对9SiCr钢磨损性能的影响[J].材料热处理学报,2010,31(10):105-109
    [86]You S J. Computer synthesis of three-dimensional surface[J]. wear,1991, 145:158-167
    [87]Huang Y Y, Wu S M. Grinding Surface Characterization by CEST[J]. The International Journal of Machine Tool Design and Reasareh,1986,26(4):102-110
    [88]Tanimura Y. Graphical Signatures for Manufactured surfaces [J]. Trans, ASME, Series F,1982,104(4):264-273
    [89]Lin T Y, Blunt L. Determination of proper Frequency Bandwidth for 3D topography Measurment using Spectral Analysis[J]. wear,1993,166:253-264
    [90]Klimezak T. Three-dimensional characteristic of surface texture, proc 8th Int. conf. of Chemnitz Tech, University Chemnitz,1988
    [91]Dong W P, Sullivan P J, Stout K J. Comprehensive study of parameters for characterizing three-dimensional surface topography Ⅲ:Parameters for amplitude and some functional properties [J]. wear,1994,78:29-43
    [92]黄逸云,三维随机表面形貌的识别[J].浙江大学学报,1984,15(3):36-40
    [93]杨叔子,吴雅.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1990
    [94]李成贵.粗糙磨损表面特征的双谱分析[J].摩擦学学报,2003,23(5):425-430
    [95]Tomas A P, Tomas T R. Engineering surface as fractals, fractal aspects of material[M], Pittsburgh:Materials Research Society,1986
    [96]Majumdar A, Tien C L. Fractal Characterization and simulation of rough surfaces[J]. wear,1990,136(2):313-317
    [97]Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization and contact mechanics of surfaces [J]. Journal of Tribology(ASME),1990,112: 204-216
    [98]Majumdar A, Bhushan B. Fractal Model of elastic-plastic contact between rough surfaces[J]. Journal of Tribology(ASME),1991,113:1-11
    [99]Vandenberg S, Osborne C F. Digital image processing techniques, fractal dimensionality and scale-space applied to surface roughness[J]. Wear,1992,159: 16-30
    [100]Brown C. A.. Fractal analysis of topographic data by the patchword method[J]. wear,1993,161:267-279
    [101]Zhou G Y. Measurement and assessment of topography and machined surfaces, in Microstructural Evolution in Metal processing. ASME winter meet, American Society of Mechanical Engineers,1990
    [102]Zhou G. Y. Statistical, random and fractal characterization of surface topography with engineering applications, Ph. D Dissetation, New Jersey Institute of Technology, New York, NJ,1992
    [103]Zhou G. Y, Leu M C, Blackmore D. Fractal geometry model for Wear Prediction[J]. Wear,1993,170:1-14
    [104]Stupark P R, Kang J H, Donovan J A. Fractal characteristics of rubber wear surfaces as a function of load and velocity [J]. Wear,1990,141(1):73-84
    [105]Stupak P R, Kang J H, Donovan J A. Computer-aided fractal analysis of rubber wear surfaces[J]. Materials Characterization,1991,27(4):231-240
    [106]Tricot C, Ferland P, Baran G.. Fractal analysis of worn surfaces[J]. Wear,1994, 172(2):126-133
    [107]Sahoo P, Roy Chowdhury S K. A fractal analysis of adhesive wear at the contact between rough solids[J]. Wear,2002,253:923-934
    [108]Myung C K, Jeong S K, Kwang H K. Fractal dimension analysis of machined surface depending on coated tool wear[J]. Surface and Coatings Technology,2005, 193(1):259-265
    [109]葛世荣,索双富,表面轮廓分形维数计算方法的研究[J].摩擦学学报1997,17(4):354-362
    [110]陈国安,葛世荣,张晓云.机加工表面轮廓的分形插值[J].中国矿业大学学报,1999,28(2):118-121
    [111]陈国安,葛世荣,用分形几何表征工程表面的凡个问题[J].润滑与密封,1995,18(3):3-17
    [112]陈国安,葛世荣,分形理论在摩擦学研究中的应用[J].摩擦学学报,1998,18(2):179-184
    [113]葛世荣,Tonder K.粗糙表面的分形特征与分形表达研究[J],.摩擦学学报,1997,17(1):70-80
    [114]费斌.工程粗糙表面粘着磨损的分形学研究[J].摩擦学学报,1999,19(1):78-82
    [115]费斌,机械加工表面分形特性的研究[J],西安交通大学学报,1998,32(5):83-86
    [116]徐雁,齐毓霖.用峰结构函数表征磨损表面形貌的变化过程[J].摩擦学学报,1998,18(1):118-121
    [117]贺林,朱均.锡基巴氏合金磨损表面的分形与磨损率[J].摩擦学学报,1998, 18(3):209-214
    [118]朱华,葛世荣,陈国安.磨合表面形貌变化的分形表征[J].机械工程学报,2001,37(5):68-71
    [119]黄传辉,朱华.磨粒积聚与磨损表面之间的分形维数关联性研究[J].摩擦学学报,2003,23(2):1-148
    [120]熊翔,周焱,朱建新.微机电系统(MEMS)磨损的分形分析[J].润滑与密封,2008,33(6):63-66
    [121]李静,尹衍升,潘悦飞.Fe3Al基复合材料摩擦表面的分形特性研究[J].润滑与密封,2006,31(11):21-24
    [122]蒋书文,姜斌,李燕.磨损表面形貌的三维分形维数计算[J].摩擦学学报,2003,23(6):533-536
    [123]陈庆虎,李柱,表面粗糙度提取的小波频谱法[J],机械工程学报,1999,35(3):41-43
    [124]陈庆虎.表面粗糙度评定的小波基准线[J].计量学报,1998(10):253-257
    [125]王安良,杨春信.评价机械加工表面形貌的小波变换方法[J].机械工程学报,2001,37(8):64.69
    [126]王炳成,褚祥志,任朝晖.磨损表面形貌分析中的小波变换和分形方法[J].组合机床与自动化加工技术,2005,(1):69-71
    [127]ZHOU Xin-cong, FENG Wei, YAN Xin-ping, et al. Influence Factors of Fractal Characterization of Reciprocating Sliding Wear Surfaces[J]. Tsinghua Science and Technology,2004, (3):312-316
    [128]李国宾,关德林.磨合表面形貌特征参数的提取及分析[J].摩擦学学报,2007,27(2):155-160
    [129]周仲荣.摩擦学发展前沿[M].北京:科学出版社,2006
    [130]谢友柏.摩擦学科学及工程应用现状与发展战略研究[M],高等教育出版社,2006
    [131]许斌,冯承明,丁明等.饲料粉碎机锤片的固体硼氮碳共渗[J].农业机械学报,28(3):151-153
    [132]许斌,冯承明,宋月鹏等.常规处理65Mn钢与45钢硼化物层的磨粒磨损性能研究[J].热加工工艺.1997,(4):19-20
    [133]许斌,冯承明,宋月鹏.硼铬稀土共渗对提高钢的耐磨粒磨损性能的试验研究[J].农业工程学报.1998,14(3):163-167
    [134]申庆泰,金敏,池少英.饲料粉碎机锤片磨损特征与自磨刃强化处理[J].农业机械学报,2010,41(增刊):229-233
    [135]朱世杰,楼南金,郭喜云.等稀土碳氮共渗提高饲料机环模的使用寿命[J]. 热加工工艺,1998,(4):45-47
    [136]徐滨士等.表面工程与热喷涂技术及其发展[J].中国表面工程,1998,(1):3-10
    [137]许斌,冯承明.氧-乙炔焰镍基碳化钨喷熔层的磨粒磨损性能和抗咬合性[J].农业机械学报,1998,29(4):134-139
    [138]许斌,冯承明,张业民.镍基碳化钨自熔合金喷焊层与硼化物层磨损特性的对比研究[J].摩擦学学报,1998,18(2):152-156
    [139]王长生,罗美华.锤片表面喷焊NiWC合金的耐磨性能[J].热加工工艺,2000,(4):33-36
    [140]丛锦玲,李志鑫,王维新.犁铧刃面熔敷耐磨材料试验与应用[J].农机化研究,2004,(2):36-38
    [141]丛锦玲,王维新,李景彬.氧乙炔镍基合金粉末喷焊处理技术在犁铧刃表面的应用研究[J].石河子大学学报(自然科学版),2010,28(6):790-792
    [142]贾小艳,姚冠新.自熔性合金粉末在农业机械中的应用[J].农机化研究,2004,(7):172-177
    [143]郝建军,马跃进,刘占良,申玉增.鞭式刀具的失效及火焰喷焊NiWC强化的可行性研究[J].农业工程学报,2005,21(8):73-77
    [144]郝建军,马跃进,杨欣等.火焰熔覆镍基/铸造碳化钨熔覆层在犁铧上的应用[J].农业机械学报,2005,36(11):139-142
    [145]郝建军,马跃进,黄继华等.氩弧熔覆Ni60A耐磨层在农机刀具上的应用[J].农业工程学报,2005,21(11):73-76
    [146]郝建军,马跃进,李建昌等.氩弧熔覆原位合成Ni基耐磨层在犁铧上的应用[J].农业工程学报,2006,22(12):116-120
    [147]黄瑞峰.热喷焊Ni基A1203复合涂层在农业机械中的应用[J].农机化研究,2005.(12):160-164
    [148]乐俊淮,杨立忠,常照波.激光技术[M].北京:中国科学技术出版社,1994
    [149]凌刚,李德玉,徐杨.农机用65Mn钢激光表面处理后的组织与性能[J].中国农业大学学报,1996,1(6):62-65
    [150]花银群,杨继昌,张永康等.激光复合强化提高球铁耐磨性能的实验研究[J].农业机械学报,2004,35(1):146-149
    [151]陈卓君,张祖立,李柏姝等.旋耕刀表面激光强化工艺参数研究[J].润滑与密封,2009,34(1):63-66
    [152]陈卓君,张祖立.65Mn激光硬化表面土壤磨损试验[J].纪念中国农业工程学会成立三十周年暨中国农业工程学会2009年学术年会(CSAE),2009: 1626-1632
    [153]陈卓君,张祖立.激光硬化9SiCr表面土壤磨损研究[J].摩擦学学报,2011,31(1):83-87
    [154]Blank H de, Hendrix E, Litjens M. On-line control and optimisation of the pelleting process of animal feed[J] Journal of the Science of Food and Agriculture, 1997,74(1):13-19.
    [155]Tabil L, Sokhansanj S. Process conditions affecting the physical quality of alfalfa pellets[J]. Applied Engineering in Agriculture,1996,12(3):345-350.
    [156]何晓峰,雷廷宙,李在峰等.生物质颗粒燃料冷成型试验研究[J].太阳能学报.2006.27(9):937-941
    [157]李在峰,雷廷宙,何晓峰等.玉米秸秆颗粒燃料致密成型电耗测试[J].农业工程学报,2006,22(增刊1):117-119
    [158]武凯,施水娟,彭斌彬等.环模制粒挤压过程力学建模及影响因素分析[J].农业工程学报,2010,26(12):142-147
    [159]Anon. Engineering Solution:PelletingLine's New Equipment Proves to be Worth the Scratch[J]. Powder and Bulk Engineering,2006,20(10):42-44
    [160]曹康,金征宇.现代饲料加工技术[M].上海:上海科学技术文献出版社,2003
    [161]Cooper A R, Eaton L E. Compaction behavior of several ceramic powders[J]. J Am Ceram Soc,1962,45(3):97-102
    [162]甘建国.高压对辊粉碎的微分剪切理论及数学模型[J].机械工程学报,2008,43(3):242-248
    [163]张维果.制粒环模的力学模型与磨料磨损试验研究[D].兰州:甘肃农业大学,2006
    [164]饶应昌.饲料加工工艺与设备[M].北京:中国农业机械出版,1996
    [165]郭维俊,黄高宝,王芬娥等.小麦根系力学性能及微观结构研究[J].农业机械学报,2010,41(1):92-95
    [166]Wirojanupatump S, Shipway P H. A direct comparison of wet and dry abrasion behaviour of mild steel[J], Wear,1999,233-235:655-665
    [167]Wirojanupatump S, Shipway P H. Abrasion of mild steel in wet and dry conditions with the rubber and steel wheel abrasion apparatus[J]. Wear,2000,239: 91-101
    [168]Zhang M Q, Song L, Zeng H M,et al. Predictability of wear status provided by fractal dimensions of wear particles[J]. Journal of Materials Science Letters,1996, 15:1288-1290
    [169]张怀亮,卜英勇,邱显焱.球形磨粒和切削磨粒轮廓分形维数研究[J].摩擦学学报,2002,22(4):304-307
    [170]葛世荣,朱华.摩擦学的分形[M].北京:机械工业出版社,2005
    [171]Sarkar N, Chaudhuri B B. An Effieient Differential Box-Counting Approaeh to Compute Fraetal Dimension of Image[J]. IEEE TRANSACTIONS ON SYSTEMS.1994,24(1):115-120.
    [172]Sarkar N, Chaudhuri B B. An effieient approaeh to estimate fraetal dimension of textural images[J]. Pattern Recognition.1992,25(9):1035-1041
    [173]Peleg S, NaoR J, Hartley R, etal. Multiple resolution texture analysis and classification[J], IEEE Trans.,1984, PAMI (6):518-523
    [174]Peli T. Multiscale fractal theory and object characteri-zation[J]. J.Opt. Soc. AmA, 1990,7(6):101-112
    [175]Dubuc B, Quiniou J, Roques-Carmes C, et al. Evalu-ating the Fractal Dimension of Profiles[J]. Physica Review A.1989,39 (3):1500-1509
    [176]王祖林,周荫清.多重分形谱及其计算[J].北京航空航天大学学报,2000,26(3):256.258
    [177]孙霞,吴自勤,,黄昀.分形原理及其应用[M].合肥:中国科学技术大学出版社,2003
    [178]Wyant J C. Development of a three-dimensional non-contact digital optical profiler[J]. J Trib Trans ASME F 1986,108:1-8
    [179]Mallat S, Hwang W L. Singularity detection and processing with wavelet[J]. IEEE Trans On IT,1992,38(2):617-643
    [180]陈庆虎,谢峰,谢铁邦等.小波滤波的频率结构分析及其在表面形貌分析中的应用[J].武汉交通科技大学学报,1998,22(3):231-233
    [181]周新聪,萧汉梁,严新平等.一种新的磨粒图像特征参数[J].摩擦学学报,2002,22(2):138-141
    [182]周新聪.分形理论和小波分析在磨损表面形貌及磨粒分析中的应用[D].武汉:武汉交通科技大学,2000
    [183]李国宾,关德林.磨合表面形貌特征参数的提取及分析[J].摩擦学学报,2007,27(2):156-160
    [184]Ulaby FT, Kouyate F, Brisco B, et al. Textural information in SAR images. IEEE Transactions on Geoscience and Remote Sensing,1986,24(2):235-245
    [185]高程程,惠晓威.基于灰度共生矩阵的纹理特征提取[J].计算机系统应用,2010,19(6):195-198
    [186]徐滨士,朱绍华,刘世参等.材料表面工程[M].哈尔滨:哈尔滨工业大学出版社,2005
    [187]关振中.激光加工工艺手册[M].北京:中国计量出版社,2005
    [188]Roy A,Manna I.Laser surface engineering to improve wear resistance of austempered ductile iron[J]. Materials Science and Engineering,2001, A293: 85-93
    [189]Nelea V,Pelletier H.Mechanical properties improve-ment of pulsed laser-deposited hydroxyapatite thin films by high energy ion-beam implantation[J]. Applied Surface Science,2002,186:483-489
    [190]Xue Y, Wang H M. Microstructure and wear properties of laser clad TiCo/Ti2Co intermetallic coatings on titanium alloy [J]. Applied Surface Science,2005, (243): 278-286.
    [191]Wang H M,Liu Y RMicrostructure and wear resistance of clad Ti5Si3/NiTi2 intermetallic compositecoating on titanium alloy[J]. Materials Science and Engineering,2002(A338):126-132.
    [192]Sagaro R, Ceballos J S, Mascarell J,et al. Tribological behaviour of line hardening of steel U13A with Nd:YAG laser[J]. Revista de Metalurgia (Madrid),1999,35 (3): 166-172
    [193]Ouyang Jiahu, Li Xiadong, Pei Yutao. Structure and properties of laser quenched 4Cr13 steel[J]. Chinese Journal of Laser,1993, B2 (5):475-480
    [194]Yu P, Kikin A A, Medvedev A,et al. Effect of pulsed laser quenching on the mechanical properties of structural steels inhigh-rate deformation[J]. Physics and Chemistry of MaterialsTreatment,1990,24 (6):582-583
    [195]Hua Yinqun, Chen Ruifang, Lu Miao, et al. Study on the experiment of 40Cr steel by laser shock processing[J]. Chinese J. Lasers,2004,31(4):495-498

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700