用户名: 密码: 验证码:
青海湖北岸草地矿物元素分布格局与蓄积分异行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了了解青海湖北岸草地矿物元素特征及其分布格局,探讨草地矿物元素蓄积分异行为发生的可能机制,明确在过度放牧和围栏封育等人类活动干扰下草地矿物元素蓄积分异行为是其对外界环境变化的一种“应激”响应,揭示草地矿物元素对于草地生态系统演替的敏感性。依据草地类型和海拔高度,分别选择河边滩地(垂穗披碱草型高寒草甸)、那仁车站(芨芨草型温性干草原)、烂泥湾(紫花针茅型高寒山地干草原)和加洋沟山顶(小嵩草草甸)等地的退化草地和封育草地为试验样地,通过草地植被群落调查,植物和土壤样品采集、分析,取得以下主要结论:
     1)青海湖北岸草地植物中矿物元素的“四个特征,两个格局”
     矿物元素特征谱特征、垂直带状谱特征、与株高和地上生物量之间负相关特征以及草地植物的指示性特征是草地矿物元素的“四个特征”。具有与地形地貌相一致的空间分布格局,如河边滩地、那仁车站、烂泥湾和加洋沟,海拔由3209m、3216m、3291m、3462m,退化草地植被中B含量逐渐升高,分别为14.24mg/kg、15.48mg/kg、16.25mg/kg、19.84mg/kg(P<0.05);封育草地中矿物元素随封育时间的增加而降低的时间分布格局,如那仁车站封育期5年和20年草地植被中Zn分别为77.01mg/kg、55.46mg/kg(P<0.05)。
     2)草地植物中矿物元素的蓄积分异行为及其内外动力学机制
     退化草地植物中矿物元素具有蓄积分异性,如烂泥湾退化、封育草地植被中Cu分别为10.48mg/kg、7.275mg/kg(P<0.05),退化草地植被中Cu蓄积增加了44.1%。封育草地植物中重金属具有蓄积分异性,如河边滩地退化、封育草地植被中Pb分别为3.915mg/kg、5.125mg/kg(P<0.05),封育草地植被中Pb蓄积增加了30.9%。为了解释矿物元素蓄积分异行为发生的动力学机制,对生物体内矿物元素营养供给与平衡关系进行了一种假设,当某一矿物元素在其耐性范围内供给相对不足时,生命体处于一种对该矿物元素“饥饿”的状态,为了适应这种矿物元素的“饥饿”状态,生命体及时通过调节矿物元素需求量并适量储备矿物元素于体内,以满足生命活动对于矿物元素的及时所需。即生命体为了适应矿物元素的“饥饿”状态,体内蓄积矿物元素的现象,形象地称为矿物元素的“饥饿效应”。
     矿物元素“饥饿效应”假说,阐释了退化草地中矿物元素蓄积分异行为发生的内动力这一科学问题;诠释了草地植物中矿物元素与株高之间负相关性、与地形地貌相一致的空间分布格局等现象。
     矿物元素的“饥饿效应”是草地植物中矿物元素蓄积分异行为发生的内动力之一;而全球气候变化和人类活动干扰则是草地矿物元素蓄积分异行为发生的主要外动力。
     3)草地生态系统演替进程中矿物元素响应的数学模型
     退化演替进程中矿物元素蓄积分异行为响应的数学模型:C退(t)=Cb(1-exp(-α t))。
     封育演替进程中矿物元素蓄积分异行为响应的数学模型:C封(t)=Cbexp(-β t)。
     4)作物种植试验和高原富铁营养抗缺氧作用
     大坂山、拉脊山地区作物种植试验和西宁盆栽试验,较好地阐释并肯定了青海湖北岸草地植物中矿物元素具有与地形地貌相一致的空间分布格局,以及垂直带状谱特征等结论。同时,对于草地矿物元素的“饥饿效应”假说理论的检验与完善提供了部分试验依据。
     青海湖北岸草地植物以及大坂山、拉脊山地区种植青稞和胡萝卜中矿物元素铁的空间分布格局,提示:高原植物中铁元素具有抗高原缺氧作用。如大坂山2009年海拔2817m、2920m、3562m、3574m处种植青稞中Fe含量分别为93.60mg/kg、609.9mg/kg、799.1mg/kg、1360mg/kg(P<0.05)。高海拔缺氧环境下植物因呼吸作用的增强,驱使其铁营养的“饥饿”状态而蓄积分异,即高原植物中富铁营养具有抗高原缺氧的作用。
     5)青海湖北岸人工草地中矿物元素特征
     青海湖北岸人工草地植物与天然草地一样,其中矿物元素具有特征谱的特征和随着海拔高度的增加而增加的空间分布格局。如铁路边坡、三角城羊场、县城西的海拔分别为3216m、3220m、3287m,各样地垂穗披碱草中Zn分别为30.07mg/kg、37.96mg/kg、42.01mg/kg(P<0.05)。
     青海湖北岸人工草地相对于天然草地植物中矿物元素含量为低。按照矿物元素“饥饿效应”假说理论,天然草地植物中矿物元素的“饥饿效应”驱动了其中矿物元素的蓄积分异。
     6)矿物元素循环及其在草地畜牧业生产实践中指导作用
     草地土壤中矿物元素在生物地球化学循环作用下,形成了青海湖北岸草地植物中矿物元素的垂直带状谱特征,以及与地形地貌相一致的空间分布格局。经过草地植物—草地畜牧业生产等一系列食物链传递,又将部分矿物元素传递给我们人类,即矿物元素通过生物地球化学循环,不仅稳定地维持着草地生态系统的平衡与健康,而且对于草地畜牧业可持续发展和畜牧业产品的品质有着重要影响。
     利用草地矿物元素的各种特征和时空分布格局,可进行草地类型的划分,建立草地演替进程中矿物元素响应的数学模型等。在草业生产实践中,对于草地植物生长与矿物元素营养的补充供给的监测、管理具有指导作用,实现优质、高产的草业资源以满足草地畜牧业生产与可持续发展的需求。
     按照草地矿物元素“饥饿效应”假说,在草业生产中应注意草地植物中矿物元素营养的“饥饿效应”现象,避免矿物元素营养因“饥饿”状态的蓄积分异行为而造成的假象,以正确、有效、科学地补给草地植物必需的矿物元素营养。
The aims of this study were to get to know the characteristics of mineral elements accumulationdifferentiation and to investigate their distribution pattern in grassland plants on the north bank of Qinghai Lakeand to find out the possible mechanism for their accumulating differentiation and the distribution patternscaused by the succession of grassland ecosystem. It can be defined as a “stress” response to the changes ofenvironmental conditions especially the influence of human activities, such as overgrazing and grasslandenclosure. Four investigation sites were selected based on grassland types and altitude: Hebiantandi (Elymusnutans, alpine meadow), Naren Railway Station (Achnatherum splendens, temperate steppe), Lanniwan (Stipapurpurea, alpine mountaine meadow) and the top of Beishanjiayanggou (Kobresia pygmaea, alpine meadow).The main results are as follows:
     1)The mineral elements in plants showed four characteristics and two distribution patterns
     The mineral elements in grassland plants showed a characteristic spectrum, a vertical-banded spectrum, anegative correlation with plant height and aboveground biomass.
     The spatial distribution of mineral elements in grassland plants showed a pattern of increasing with alongwith the altitude. In which, the contents of B in degraded grassland in Hebiantandi, Naren Railway Station,Lanniwan and Beishanjiayanggou were14.24mg/kg,15.48mg/kg,16.25mg/kg and19.84mg/kg and the relatedaltitude were3209m,3216m,3291m and3462m respectively;The time distribution pattern of mineralelements in grassland plants was that the content of mineral element decreased with the time of enclosure. Inwhich, the Zn contents of grassland plants in the area of Naren Railway Station were77.01mg/kg and55.46mg/kg after enclosure for5and20years respectively(P<0.05).
     2)Accumulating differentiation behavior of mineral elements in grassland and its kinetic mechanisms
     The mineral elements in plants of degraded grassland showed a characteristic of accumulatingdifferentiation. The content of Cu in degraded grassland in Lanniwan, increased from7.275mg/kg to10.48mg/kg (44.1%, P<0.05) compared with that in enclosed grassland; The content of Pb in enclosed grassland inLanniwan, increased from3.915mg/kg to5.125mg/kg (30.9%, P<0.05) compared with that in degradedgrassland. In order to find out the possible mechanism for their accumulating differentiation behavior of mineralelements, we proposed a hypothesis to explain the supply-demand balance of mineral element nutrition in thebody of organisms. When the mineral elements supply is relatively insufficient but still in the tolerant range oforganisms, they would fall into a “hungry” state for this element, in order to grow well the organisms wouldadjust their demand for mineral elements timely and begin to store them accumulating in their body. We call thisphenomenon “Starvation Effect”.
     “Starvation Effect” hypothesis theory has answered the question why mineral elements accumulatedifferently in plants and it can scientifically explain why the correlation between mineral elements content andplant height is negative. It also can be applied to some phenomena such as the spatial distribution patterns of mineral elements in plants.
     “Starvation Effect” might be the endogenetic force for the mineral elements to accumulate in plants and theclimate change and human activity’s interference as the main exogenetic force.
     3)Mathematical models of mineral elements in accumulating differentiation in the process of grasslandecosystem succession were established.
     The mathematical model for mineral elements accumulating differentiation of grassland plants in thedegradation succession: Cde(t)=Cb(1-exp(-αt)) and for that in the enclosed grassland: Cen(t)=Cbexp(-βt).
     4)Crops cultivation experiments and anti-hypoxic function of high iron content
     The crops cultivation experiments in Dabanshan-mountain, Lajishan-mountain and Xining well verify thespatial distribution pattern and the characteristic of vertical-banded spectrum of mineral elements in plants onthe north blank of Qinghai Lake. Meanwhile,these experiments provide some evidence for the “StarvationEffect” hypothesis.
     The distribution pattern of iron in barley and carrot in grassland plants on the north bank of Qinghai Lakeand Dabanshan-mountain and Lajishan-mountain area shows that high iron content in plants probably hasanti-hypoxic effect. For example, the content of Fe in the cultured highland barley in Dabanshan-mountain on2009are respectively93.60mg/kg,609.9mg/kg,799.1mg/kg,1360mg/kg and of which the altitude arerespectively2817m,2920m,3562m and3574m (P<0.05). Plants require more iron to increase theirrespiration in order to adapt the high altitude and the low oxygen levels which makes plants “hungry” for iron,under such circumstance, the iron accumulates. So, from this we come to a conclusion that low oxygen level inplateau air makes iron accumulate in plants.
     5)Characteristics of mineral elements in cultivation grassland on the north bank of Qinghai Lake
     The characteristics of mineral elements in cultivation grassland are the same as that in natural grassland onthe north bank of Qinghai Lake. Each cultivation plant has a characteristic spectrum of mineral element andspatial distribution patterns of the content increases with altitude increase. For example, the content of Zn inplants of Elymus nutans in such places as Railway Side Slope, Sanjiaocheng Sheep Stud, West Town arerespectively30.07mg/kg,37.96mg/kg and42.01mg/kg and of which the altitude are respectively3216m,3220m and3287m (P<0.05).
     The content of mineral element in plants is lower on cultivation grassland than that on natural grassland.We use the “Starvation Effect” theory to explain this phenomenon; the “hungry” state is the endogenetic forcefor the accumulation of the mineral element on natural grassland.
     6)Cycles of mineral elements and its directive function of in production practice
     Through the biogeochemical cycle the mineral elements in soil can be taken up by grassland plants andaccumulate in their body forming the vertical-banded spectrum and the spatial distribution pattern which isconsistent with geomorphology and topography; then the mineral elements are transferred into human bodiesthrough food chain via plants and products from grassland animal husbandry. The mineral elements not onlyplay an important role in maintaining the balance of grassland ecosystem and the livestock-pasture system interms of their sustainable development but also have significant influence on the quality of livestock products.
     According to its characteristics and distribution patterns in space-time, we divide different grassland into different types. We also establish a mathmatical model for mineral elements in plants in grassland successionprocess. We can apply this theory to monitoring the supply of mineral elements in prataculture productionpractice so as to facilitate high-yield, high-quality produce. Consequently, meet the demands of sustainabledevelopment of prataculture and grassland animal husbandry. We should pay more attention on the“StarvationEffect”phenomenon when apply it in practice to avoid the illusion caused by mineral elements accumulationand differentiation behavior and provides mineral nutrition to plants scientifically.
引文
[1]张忠孝.青海地理[M].青海:青海人民出版社,2004,187~190.
    [2]陈桂琛,陈孝全,苟新京.青海湖流域生态环境保护与修复[M].青海:青海人民出版社,2008,76~87.
    [3]李积兰,马生林.青海湖区生态环境恶化原因探析[J].植物学报,2006,24(4):8~11.
    [4]王宝山,张玉,才茅,等.青海湖区生态环境现状及建设途径探讨[J].草原与草坪,2007,(4):1~6.
    [5]张旭萍,郭连云,田辉春.环青海湖盆地气候变化对草地生态环境的影响[J].草原与草坪,2008,(2):64~69.
    [6]杜庆.初探青海湖地区生态环境演变的起因[J].生态学报,1990,10(4):317~322.
    [7]张登山,武健伟.环青海湖区沙漠化综合治理规划研究[J].干旱区研究,2003,20(4):307~311.
    [8]王顺忠,陈桂琛,周国英,等.青海湖鸟岛地区草地植物群落特征的研究[J].生态学杂志,2003,23(11):16~19.
    [9]刘庆,周立华.青海湖北岸植物群落与环境因子关系的初步研究[J].植物学报,1996,38(11):887~894.
    [10]陈桂琛,彭敏.青海湖地区植被及其分布规律[J].植物生态学与地植物学报,1993,17(1):71~81.
    [11]陈桂琛,彭敏.青海湖芨芨草草原的群落特征及其分布规律[J].西北植物学报,1993,13(3):154~162.
    [12]彭敏,陈桂琛.青海湖地区植被演变趋势的研究[J].植物生态学与地植物学报,1993,17(3):217~223.
    [13]李迪强,郭泺,朵海瑞,等.青海湖流域土地覆盖时空变化与生态保护对策[J].中央民族大学学报(自然科学版),2009,18(1):18~22.
    [14]俞文政,常庆瑞,岳庆玲,等.青海湖流域草地类型变化及其结构演替研究[J].中国农学通报,2005,21(4):306~309,362.
    [15]朱宝文.青海湖北岸天然草地牧草生长特征分析[J].青海草业,2010,19(1):2~6.
    [16]李旭谦.青海湖流域草地类型及其分布[J].青海草业,2009,18(4):20~23,19.
    [17]李旭谦.青海湖地区生态环境治理应突出草地植被保护[J].青海草业,2010,19(1):15~17.
    [18]魏永林,宋理明,马宗泰,等.海北地区天然草地(冷季)草畜平衡分析及对策[J].青海草业,2007,16(3):43~46.
    [19]陈永杰.刚察县发展生态畜牧业的探索与思考[J].上海畜牧兽医通讯,2009,(5):63~67.
    [20]范青慈.青海湖区生态环境现状及建设措施[J].青海草业,2001,10(1):26~28.
    [21]王一博,王根绪,沈永平,等.青藏高原高寒区草地生态环境系统退化研究[J].冰川冻土,2005,27(5):633~640.
    [22]廖红,严小龙.高级植物营养学[M].北京:科学出版社,2003,197~241.
    [23][德]H.马斯纳著,曹一平,陆景陵,等译.高等植物的矿质营养[M].北京:北京农业大学出版社,1991,118~222.
    [24][美]A.LAUCHLI,[新西兰]R.L.BIELESKI著,张礼忠,毛知耘,等译.植物的无机营养[M].北京:农业出版社,1992,21~58.
    [25]蒋高明等.植物生理生态学[M].北京:高等教育出版社,2004,112~160.
    [26][苏]A.萨比宁著,刘富林,译.植物营养生理学原理[M].北京:科学出版社,1958,154~269.
    [27](美)S. J. Lippard and J.M. Berg著.席振峰,姚光庆,项斯芬,等译.生物无机化学原理[M].北京:北京大学出版社,2000,96~260.
    [28]毛达如.植物营养研究方法[M].北京:中国农业大学出版社,2001,43~137.
    [29]赵福庚,何龙飞,罗庆云.植物逆境生理生态学[M].北京:科学出版社,1963,154~438.
    [30]单贵莲,徐柱,宁发,等.围封年限对典型草原群落结构及物种多样性的影响[J].草业学报,2008,17(6):1~8.
    [31]李金花,李镇清,任继周.放牧对草原植物的影响[J].草业学报,2002,11(1):4~11.
    [32]安耕,王天河.围栏封育改良荒漠化草地的效果[J].草业科学,2011,28(5):874~876.
    [33]朱宝文,周华坤,徐有绪,等.青海湖北岸草甸草原牧草生物量季节动态研究[J].草业科学,2008,25(12):62~66.
    [34]周国英,陈桂琛,徐文华,等.围栏封育对青海湖地区芨芨草草原生物量的影响[J].干旱区地理,2010,33(3):434~441.
    [35]周国英,陈桂琛,韩友吉,等.围栏封育对青海湖地区芨芨草草原群落特征的影响[J].中国草地学报,2007,29(1):19~23.
    [36]周国英,陈桂琛,魏国良,等.青海湖地区芨芨草群落主要种群分布格局研究[J].西北植物学报,2006,26(3):579~584.
    [37]周国英,陈桂琛,赵以莲,等.青海湖地区芨芨草群落特征及其物种多样性研究[J].西北植物学报,2003,23(11):1956~1962.
    [38]孙菁,彭敏,陈桂琛,等.青海湖区针茅草原植物群落特征及群落多样性研究[J].西北植物学报,2003,23(11):1963~1968.
    [39]淮银虎,周立华.青海湖湖盆南部植物群落的生态优势度与海拔梯度[J].西北植物学报,1995,15(3):240~243.
    [40]韩友吉,陈桂琛,周国英,等.青海湖地区高寒草原植物个体特征对放牧的响应[J].中国科学院研究生院学报,2006,23(1):118~124.
    [41]祝存冠,陈桂琛,周国英,等.青海湖区河谷灌丛植被群落多样性研究[J].草业科学,2006,24(3):31~35.
    [42]黄志伟,彭敏,陈桂琛,等.青海湖几种主要湿地植物的种群分布格局及动态[J].应用与环境生物学报,2001,7(2):113~116.
    [43]赵以莲,周国英,陈桂琛.青海湖区东部沙地植被及其特征研究[J].中国沙漠,2007,27(5):820~825.
    [44]李博,雍世鹏,李瑶,等.中国的草原[M].北京:科学出版社,1990,81~155.
    [45]胡自治等.青藏高原的草业发展与生态环境[M].北京:中国藏学出版社,2000,25~37.
    [46]侯向阳.中国草地生态环境建设战略研究[M].北京:中国农业出版社,2005,109~121.
    [47]王堃.草地植被恢复与重建[M].北京:化学工业出版社,2004,51~126.
    [48]汪玺等.天然草原植被恢复与草地畜牧现代技术[M].甘肃:甘肃科学技术出版社,2004,28~41.
    [49]李建龙等.草业生态工程技术[M].北京:化学工业出版社,2004,49~120.
    [50]沈景林,谭刚,乔海龙,等.草地改良对高寒退化草地植被影响的研究[J].中国草地,2000,10(5):49~54.
    [51]周华坤,赵新全,赵亮,等.青藏高原高寒草甸生态系统的恢复能力[J].生态学杂志,2008,27(5):697~704.
    [52]周华坤,周立,赵新全,等.围栏封育对轻牧与重牧金露梅灌丛的影响[J].草地学报,2004,12(2):140~144.
    [53]王长庭,龙瑞军,王启兰,等.放牧扰动下高寒草甸植物多样性、生产力对土壤养分条件变化的响应[J].生态学报,2008,28(9):4144~4152.
    [54]王长庭,龙瑞军,王启基,等.高寒草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其环境因子的关系[J].草业学报,2005,14(4):15~20.
    [55]王长庭,王启基,龙瑞军,等.高寒草甸植物群落多样性和初级生产力沿海拔梯度变化的研究[J].植物生态学报,2004,28(2):240~245.
    [56]王文颖,王启基.高寒嵩草草甸退化生态系统植物群落结构特征及物种多样性分析[J].草业学报,2001,10(3):8~14.
    [57]武高林,杜国祯.青藏高原退化高寒草地生态系统恢复和可持续发展探讨[J].自然杂志,2007,29(3):159~164.
    [58]韩立辉,尚占环,任国华,等.青藏高原“黑土滩”退化草地植物和土壤对秃斑面积变化的响应[J].草业学报,2011,20(1):1~6.
    [59]黄德青,于兰,张耀生,等.祁连山北坡天然草地地下生物量及其与环境因子的关系[J].草业学报,2011,20(5):1~10.
    [60]黄德青,于兰,张耀生,等.祁连山北坡天然草地地上生物量及其与土壤水分关系的比较研究[J].草业学报,2011,20(3):20~27.
    [61]张斐,陈克龙,朵海瑞,等.青海湖流域草地景观格局变化研究[J].安徽农业科学,2010,38(2):1001~1003.
    [62]拉毛才让.青海草地类型在中国草地分类系统中的归并初探[J].草业科学,2008,25(8):31~34.
    [63]索有瑞,李天才,陈桂琛.青海湖地区植物微量元素自然背景值及其特征[J].广东微量元素科学,2000,7(6):24~27.
    [64]李天才,陈桂琛等.青海湖地区植物中非必需微量元素特征[J].草业科学,2002,19(4):42~44.
    [65]李天才,陈桂琛,等.青海湖地区植物常量营养元素含量特征[J].草业科学,2001,18(1):27~29.
    [66]李天才,曹广民,柳青海,等.青海湖北岸退化与封育草地土壤与优势植物中四种微量元素特征.草业学报,2012,21(5):213~221.
    [67]李天才,陈桂琛,曹广民,等.青海湖北岸退化草地和封育草地中钾、钙、镁等矿质常量元素特征[J].草地学报,2011,19(5):752~759.
    [68]李天才,曹广民,柳青海,等.青海湖北岸退化、封育草地中钠、锶、锂矿质元素特征及与草地植被的关系.草原与草坪,2012,32(6):17~22.
    [69]韩友吉,李天才,周国英,等.祁连山中部冰缘植物必需元素含量分析[J].广东微量元素科学,2008,15(8):57~61.
    [70]祝存冠,陈桂琛,李天才,等.青海湖区河谷灌丛主要植物微量元素含量特征[J].广东微量元素科学,2005,12(11):34~38.
    [71]焦婷,张力,李伟,等.高寒草地放牧系统铜的季节动态及盈亏分析[J].草原与草坪,2008,129(4):67~70.
    [72]焦婷,张力,侯焉会,等.高寒草地放牧系统铁的季节动态及盈亏分析[J].家畜生态学报,2009,30(2):88~90.
    [73]焦婷,张力,蒲小鹏,等.高寒草地放牧系统钼的季节动态及盈亏分析[J].中国草地学报,2008,30(5):13~17.
    [74]赵生国,焦婷,张力,等.高寒草地放牧系统锰的季节动态及盈亏分析[J].草业科学,2009,26(6):132~135.
    [75]李晶,孙国荣,阎秀峰,等.星星草地上部6种元素含量季节动态及其分布[J].草地学报,2001,9(3):213~217.
    [76]匡艺,李廷轩,余海英.小黑麦植株铁、锰、铜、锌含量对氮素反应的品种差异及其类型[J].草业学报,2011,20(4):82~89.
    [77]秦彧,李晓忠,姜文清,等.西藏主要作物与牧草营养成分及其营养类型研究[J].草业学报,2010,19(5):122~129.
    [78]周志宇,张洪荣,付华,等.施用污泥对无芒雀麦和土壤中元素含量的影响[J].草地学报,2001,9(3):223~227.
    [79]钱忠明.铁代谢-基础与临床[M].北京:科学出版社,2000,10~143.
    [80]王夔等.生命科学中微量元素[M].北京:中国计量科学出版社,1991.
    [81]常彦忠,段相林.铁代谢失衡疾病的分子生物学原理[M].北京:人民卫生出版社,2012,113~184.
    [82]曹治权,孙作民,孙爱贞,等.微量元素与中医药[M].北京:中国中医药出版社,1993.
    [83]符克军,曹光辉,徐艳钢等.人体生命元素[M].北京:中国医药科技出版社,1995,210~332.
    [84]张彦博,汪源,刘学良等.人与高原[M].青海:青海人民出版社,1996,215~291.
    [85]张朝华,贾存英.富铁元素与人体健康[J].微量元素与健康研究,2002,19(3):41.
    [86]刘旭新.微量元素铁代谢的研究进展[J].广东微量元素科学,2001,8(1):11~15.
    [87]陈家从.微量元素铁的营养及评价指标[J].中国临床医药实用杂志,2004,16(3):3~5.
    [88]王婕.浅谈微量元素铁与人体健康[J].贵州教育学院学报,2005,16(4):31~32,39.
    [89]朱航,罗海吉.铁过量与人体健康[J].广东微量元素科学,2006,13(7):9~14.
    [90]马金凤.微量元素铁与一些疾病关系的研究[J].微量元素与健康研究,1999,16(3):72~74.
    [91]邹春琴,张福锁,毛达如.铁对玉米体内氮代谢过程的影响[J].中国农业大学学报,1998,3(5):45~50.
    [92]彭新湘,山内埝.植物对铁毒的抗性研究[J].植物生理学通讯,1996,32(6):465~469.
    [93]邢承华,蔡妙珍.过量Fe2+对水稻的毒害作用[J].广东微量元素科学,2007,14(1):17~22.
    [94]郭世伟,邹春琴,张福锁,江荣风.提高植物体内铁再利用效率的研究现状及进展[J].中国农业大学学报,2000,5(3):80~86.
    [95]李天才,陈桂琛,周国英等.青海省大黑沟种植大黄中矿物质元素研究[J].中国科学院研究生院学报,2005,22(2):226~229.
    [96]李天才,索有瑞,陈桂琛等.种植青海大黄中矿物质元素研究[J].中医药学刊,2004,22(1):17~21.
    [97]宋德荣.施用不同氮肥对牧草和放牧牦牛血液营养元素含量的影响[J].中国草地学报,2010,32(2):42~46.
    [98]Street R, SzákováJ, Drábek O, Mládkova L. The status of micronutrients (Cu, Fe, Mn, Zn) in tea and tea infusions inselected samples imported to the Czech Republic[J].Czech J Food Sci,2006,24:62~71.
    [99]Zou Chunqin,Zhang Fusuo. Ammonium improves iron nutrition by decreasing leaf apoplastic pH of sunflowerplants(Helianthus annuus L. cv. Frankasol)[J]. Chinese Science Bulletin,2003,48(20):2215~2220.
    [100]Zou C, Shen J, Zhang F, Guo S, Tang,Rengl. Effect of different nitrogen forms on iron transport and reutilization in maizeplants[J]. Plant and Soil,2001,235(2):143~149.
    [101]Madejon P,Murillo J M,Maranon T,et a1.Bioaccumulation of trace elements in a wild grass three years after theAznalcollar mine spill[J].Environmental Monitoring and Assessment,2006,114(1/3):169—189.
    [102]Sun DP, Tang Y, Xu ZQ, Han Z. Apreliminary investigation on chemical evolution of the Lake Qinghai water[J]. Chin SciBull,1991,15:1172~1174.
    [103]Zi Wang, Yuxiu Zhang, Zhibo Huang, Lin Huang. Antioxidative response of metal-accumulator and non-accumulator plantsunder cadmium stress[J]. Plant Soil,2008,310:137~149.
    [104]Conrad M E,Umbreit J N,Moore E G et al.Alternate iron transport pathway[J]. J. Biol. Chem.,1994,269:7169~7173.
    [105]Kennard M L,Feldman H,Yamada T et al. Serum levels of the iron binding protein p97are elevated in Alzheimer,sdisease[J]. Nature Medicine,1996,1230~1235.
    [106]Michal Hejcman,Ji ina Szaková, Jürgen Schellberg, Pavel Tlusto. The Rengen Grassland Experiment: relationshipbetween soil and biomass chemical properties, amount of elements applied,and their uptake[J]. Plant Soil,2010,333:163~179.
    [107]Hejcman M, Száková J, Schellberg J, rek P, Tlusto P. The Rengen Grassland Experiment: soil contamination by traceelements after65years of Ca, N, P and K fertilizer application[J]. Nutr Cycl Agroecosyst,2009,83:39~50.
    [108]Chen W, Chang A C, Wu L. Assessing long-term environmental risks of trace elements in phosphate fertilizers[J]. EcotoxEnviron Safe,2007,67:48~58.
    [109]Zou Chunqin,Zhang Fusuo,H.E. Goldbach. Iron fractions in the apoplast of intact root tips of Zea mays L. seedlingsaffected by nitrogen form[J]. Chinese Science Bulletin,2002,47(9):727~731.
    [110]BarcelóJ, Poschenrieder C. Hyper accumulation of trace elements: from uptake and tolerance mechanisms to litterdecomposition:selenium as an example[J]. Plant and Soil,2011,341:31~35.
    [111]安志装,陈同斌,雷梅,等.蜈蚣草耐铅、铜、锌毒性和修复能力的研究[J].生态学报,2003,23(12):2594~2598.
    [112]韩照祥,朱惠娟,李春峰.三叶草对土壤中铜和铅的吸收及其相互影响研究[J].淮海工学院学报(自然科学版),2006,15(1):48~51.
    [113]李君,周守标,黄文江,等.马蹄金叶片中铜、铅含量及其对生理指标的影响[J].应用生态学报,2004,15(12):2355~2358.
    [114]黄朝表,郭水良,陈旭敏,等.金华地区11种杂草对4种重金属的吸附与富集作用研究[J].农业环境保护,2001,20(4):225~228.
    [115]叶春和.紫花苜蓿对铅污染土壤修复能力及其机理的研究[J].土壤与环境,2002,l1(4):331~334.
    [116]赵立新.杂草对重金属的生物积累特性的研究[J].环境保护科学,2004,30(125):43~45,55.
    [117]郭水良,黄朝表,边媛,等.金华市郊杂草对土壤重金属元素的吸收与富集作用(I)6种重金属元素在杂草和土壤中的含量分析[J].上海交通大学学报:2002,20(1):22~29.
    [118]刘小梅,吴启堂,李秉滔.超积累植物治理重金属污染土壤研究进展[J].农业环境科学,2003,22(5):636~640.
    [119]王铁宇,汪景宽,周敏,等.黑土重金属元素局地分异及环境风险[J].农业环境科学学报,2004,23(2):272~276.
    [120]鲁春霞,谢高地,李双成,等.青藏铁路沿线土壤重金属的分布规律初探[J].生态环境,2004,13(4):546~548.
    [121]Zhangdong Jin, Yongming Han,Li Chen. Past atmospheric Pb deposition in Lake Qinghai, northeastern Tibetan Plateau[J].J Paleolimnol,2010,43:551~563.
    [122]Bra¨nnvall ML, Bindler R, Emteryd O, Renberg I. Four thousand years of atmospheric lead pollution in northern Europe: asummary from Swedish lake sediments[J]. J Pa-leolimnol,2001,25:421~435.
    [123]Xiao C, Qin D, Yao T, Ren J, Li Y. Global pollution shown by lead and cadmium contents in precipitation of polar regionsand Qinghai-Tibetan Plateau[J]. Chin Sci Bull,2000,45:847~853.
    [124]Clemens S. Toxi cmetal accumulation, responses to exposure and mechanisms of tolerance in plants[J]. Biochimie,2006,88:1707~1719.
    [125]Christie P, Beattie JA M. Grassland soil microbial biomass and accumulation of potentially toxic metals from long-termslurry application[J]. J Appl Ecol,1989,26:597~612.
    [126]Tamas J,Kovacs E.Vegetation pattern and heavy metal accumulation at a mine tailing at Gyongyosoroszi,Hungary[J].Zeitschrift fur Naturforschung. Section C,Bio-sciences,2005,60(3/4):362~367.
    [127]SekaraA,Poniedzialek M,Ciura J,a1.Cadmium and lead accumulation and distribution in the organs of nine crops:Implications for phytoremediation[J].Polish Journal of Environmental Studies,2005,14(4):509~516.
    [128]Archer M J G,Caldwell R A.Response of sixAustralian plant species to heavy metal contamination at an abandoned minesite[J].Water Air&Soil Pollution,2004,157(1~4):257~267.
    [129]Boutran CF, Candelone JP, Hong S. Past and recent changes in the large-scale tropospheric cycles of lead and other heavymetals as documented in Antarctic and Greenland snow and ice: a review[J]. Geochim Cosmochim Acta,1994,58:3217~3322.
    [130]Kober B, Wessels M, Bollhofer A, Mangini A. Pb isotopes in sediments of Lake Constance, Central Europe constrain theheavy metal pathways and the pollution history of the catchment, the lake and the regional atmosphere[J]. Geochim CosmochimActa,1999,63:1293~1303.
    [131]Hao X. Agreen fervor sweeps the Qinghai-Tibetan Plateau[J]. Science,2008,321:633~635.
    [132]Li Z, Yao T, Tian L, Xu B, Li Y. Atmospheric Pb variations in Central Asia since1955from Muztagata ice core record,eastern Pamirs[J]. Chin Sci Bull,2006,51:1996~2000.
    [133]赵凯华,陈熙谋.电磁学(下册)[M].北京:人民教育出版社,1978,50~64.
    [134]武汉大学《电子线路》教材编写组.电子线路(下册)[M].北京:人民教育出版社,1979,23~35.
    [135]曹广民,吴琴,李东,等.土壤-牧草氮素供需状况变化对高寒草甸植被演替与草地退化的影响[J].生态学杂志.2008.23(6):25~28.
    [136]张国胜,李希来,徐维新,等.环青海湖地区植物群体结构演替及其气象条件分析[J].中国生态农业学报,2001,9(1):95~97.
    [137]赵新全.高寒草甸生态系统与全球变化[M].北京:科学出版社,2009,106~143.
    [138]Yan JP, Hinderer M, Einsele G. Geochemical evolution of closed-basin lakes, general model and application to LakesQinghai and Turkana[J]. Sed Geol,2002,148:105~122.
    [139]Akiyama T, Kawamura K. Grassland degradation in China: methods of monitoring, management and restoration[J].Grassland Sci,2007,53:1~17.
    [140]Zhang XP, Deng W, Yang XM. The background concentrations of13soil trace elements and their relation-ships to parentmaterials and vegetation in Xizang (Tibet),China[J]. J Asian Earth Sci,2002,21:167~174.
    [141]Wu GL, Du GZ, Liu ZH, Thirgood S. Effect of fencing and grazing on a Kobresia-dominated meadow in theQinghai-Tibetan plateau[J]. Plant Soil,2009,319:115~126.
    [142]Shang ZH, Long RJ. Formation causes and recovery of the “Black Soil Type” degraded alpine grassland inQinghai-Tibetan Plateau[J]. Frontiers Agric China,2007,1:197~202.
    [143]QI Ying-xiang. Carrying Capacity of Grassland and Sustainable Development of Animal Husbandry in Qinghai LakeArea[J]. Agricultural science Technology,2009,10(5):175-178,183.
    [144]Francois M, Grant C, Lambert R, SauvéS. Prediction of cadmium and zinc concentration in wheat grain from soils affectedby the application of phosphate fertilizers varying in Cd concentration[J]. Nutr Cycl Agroecosys,2009,83:125~133.
    [145]Lehoczky E,Nemeth T,Kiss Z,et a1.Cadmium and lead uptake by ryegrass,lettuce and white mustard plants on differentsoils[J].Agrokemia as Talajtan,2002,51(1/2):201~210.
    [146]Harris R B. Rangeland degradation on the Qinghai-Tibetan plateau:Areview of the evidence of its magnitude and causes[J].Journal of Arid Environments,2010,74(1):1~12.
    [147]R.B. Harris. Rangeland degradation on the Qinghai-Tibetan plateau:A review of the evidence of its magnitude and causes[J]. Journal of Arid Environments,2010,74(1):1~12.
    [148]Li X, Xu H, Sun Y, Zhang D, Yang Z. Lake-level change and water balance analysis at Lake Qinghai, west China duringrecent decades[J]. Water Res Manag,2007,21:1505~1516.
    [149]Huakun Zhou,Xinquan Zhao,Yanhong Tang. Alpine grassland degradation and its control in the source region of theYangtze and Yellow Rivers, China [J]. Japanese Society of Grassland Science,2005,51(4):191~203.
    [150]Boominathan R, Doran PM. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmiumhyper-accumulator Thlaspi caerulescens[J]. Bio technol Bioeng,2003,83:158~167.
    [151]Grat o PL, PolleA, Lea PJ,Azevedo RA. Making the life of heavy metal-stressed plants a little easier[J]. Funct Plant Biol,2005,32:481~494.
    [152]Boyd RS. The defense hypothesis of elemental hyper accumulation:status,challenges and new directions[J]. PlantSoil,2007,293:153~176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700