用户名: 密码: 验证码:
封育措施对退化沙质草地植被特征与土壤理化因子的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙质草地是中国北方干旱半干旱地区重要的土地资源,其严重的退化/沙漠化已成为中国北方主要的生态环境问题。围栏封育是当前退化草地主要的植被恢复和重建措施之一。开展围封对退化沙质草地土壤-植被系统影响的研究,不仅是准确评估该地区荒漠化现状及逆转程度的基础工作,也对该地区采取经济而有效的围封方式具有广泛的应用价值和指导意义。
     本研究用空间代替时间的研究方法,通过对甘肃景泰绿洲边缘沙质草地在不同封育措施下生物多样性、构件生物量等植被特征与土壤水分、土壤养分及碳氮储量等土壤理化因子的变化研究,以掌握该地区沙质草地植被与土壤恢复对封育措施的响应机理,为我国西部生态环境建设和生态恢复提供科学依据。研究结果表明:
     1、封育措施对沙质草地植物群落物种组成与多样性特征有显著影响。流动沙地上植物种仅有9种,经过19年的封育后,沙质草地植物种增加到18种。天然围封+人工抚育措施实施后,沙质草地群落的优势种主要为柠条和花棒等人工建植的灌木种,虽然物种丰富度较纯天然围封和短期人工抚育沙质草地为低,但人工建植灌木表现出良好的生长状态且处于优势地位。不同封育措施下群落物种多样性特征总的趋势为:封育19年(人工抚育19年)>封育19年(人工抚育5年)>封育10年(自然恢复)>流动沙地。
     2、沙地植被的平均高度、平均密度、平均冠幅和平均盖度在不同封育管理措施下具有显著差异(P<0.05)。其各指标的大小均表现为:封育19年(人工抚育19年)>封育19年(人工抚育5年)>封育10年(自然恢复)>流动沙地。不同坡位比较结果显示,封育沙地植被平均高度、平均密度、平均冠幅和平均盖度受坡位影响较流动沙地显著(P<0.05)。
     3、沙地群落总生物量随封育年限的增加而增大。在不同封育措施下,群落总生物量的排序为:封育19年(人工抚育19年)(94.41g/m~2)>封育19年(人工抚育5年)(60.08g/m~2)>封育10年(自然恢复)(58.22g/m~2)>流动沙地(33.75g/m~2)。但长期的封育(19年天然围封+19年人工抚育措施)并不能改变1年生草本和多年生草本植物的花、茎、叶和根构件对整个植株的贡献率;而灌木植物的花、茎、叶和根构件对植株的构成则有所变化。总体上,封育沙地的根冠比小于流动沙地,大部分植物构件对地上生物量的比率顺序为茎>叶>花>根,植物构件对个体生物量的比率顺序为叶>茎>花>根。
     4、封育可使沙质草地土壤物理性质发生显著改善。砂粒、粉粒、粘粒含量、土壤容重、总孔隙度、最大含水量和紧实度在不同封育管理沙质草地之间具有显著差异(P<0.05)。和流动沙地相比,沙质草地随着封育年限的增加,土壤中砂粒含量明显减少,粘粒含量明显增加,土壤容重趋于降低,土壤总孔隙度和最大含水量都显著增加。3个封育沙质草地10cm深度处土壤含水量均低于流动沙地,不同封育类型下土壤储水量的大小依次为:流动沙地>封育19年(人工抚育5年)>封育10年(自然恢复)>封育19年(人工抚育19年)。不同坡位比较结果显示,封育沙地土壤物理性质受坡位影响比流动沙地显著(P<0.05)。
     5、封育也使沙质草地土壤有机碳(SOC)和氮磷钾养分大量回归,促进了沙地向高质量土壤性状的良好演变。和流动沙地相比,封育19年(人工抚育19年)沙质草地0~20cm土层SOC、全N、全P和全K分别增加380.0%,238.9%,75.0%和59.6%。封育沙地土壤理化性质受坡位影响具有显著差异,而流动沙地各特征值受坡位影响不显著(P<0.05);封育沙质草地SOC、氮磷钾全量和速效养分含量沿上坡到下坡呈增加趋势,而流动沙地中没有表现出相同的趋势。
     6、在天然封育和人工抚育措施实施后,沙质草地0~40cm层土壤轻组及全土碳氮含量、单位面积有机碳和全氮储量都明显增加(P<0.05)。沙质草地土壤轻组碳(氮)占全土碳(氮)储量的比例,封育沙质草地高于流动沙地。与流动沙地比较,天然封育和人工抚育措施都能够有效地降低土壤有机无机复合度(HFOC/SOC)。总体上,0~20cm土层,HFOC/SOC基本表现为封育沙地大于流动沙地,HFOC/SOC变化规律与LFOC/SOC相反。
     7、植被特征与土壤理化因子的相关分析表明,Margalef丰富度指数、Shannon-Wiener指数、Pielou均匀度指数和Simpson优势度指数与SOC、土壤轻组有机碳(LFOC)、速效氮和土壤含水量呈正相关,与速效磷、土壤容重和砂粒含量呈负相关;不同封育管理沙质草地地上、地下生物量和凋落物量均与SOC、全N、LFOC、轻组氮(LFN)、重组有机碳(HFOC)含量呈极显著正相关关系(P<0.01),而与土壤储水量和砂粒含量呈极显著负相关关系(P<0.01);封育沙质草地SOC和全N含量的升高与土壤粘粉粒含量的增加呈极显著正相关(P<0.01),而与砂粒含量的减少呈极显著负相关(P<0.01);SOC与全N、全K之间呈极显著正相关(P<0.01);且SOC、全N、全K与植被平均高度、平均冠幅、总生物量等特征呈极显著(P<0.01)和显著(P<0.05)正相关;容重、砂粒含量与植被平均高度、平均冠幅、总生物量等特征间呈极显著负相关。
     8、天然封育+人工抚育措施对沙质草地的影响和改善程度高于纯天然封育措施。对退化沙质草地采取围栏封育并配合人工造林、补植措施,可促使绿洲外围沙质草地植被与土壤间逐渐形成一个相互作用的良性循环系统,对促进退化草地正向演替和沙漠化的逆转具有积极而显著的作用。
Sandy Grassland is the important land resource in Arid and semi-arid regions innorthern China and its serious degradation and desertification has become the vitalecological environment problem in northern China. At present, exclosure is one of thesignificant measures in dealing with the restoration and reconstruction of soil andplant of degraded sandy grassland. The survey of exclosure effects on soil and plantsystem is not only the element task to exactly estimate the desertification status andthe degree of reverse of the region but also has the extensive application value andguiding significance in applying the economic and effective exclosure methods.
     Through the alternation study in different measures on plant characteristics ofbiological diversity and structural component biomass and soil physicochemicalproperties of soil moisture, soil nutrient, soil organic carbon and nitrogen stores ofsandy grassland of Gansu Jingtai oasis edge, the research gets hold of the responsemechanism between the sandy grassland plant and soil restoration and the exclosuremeasure which has provided the scientific basis for China’s western ecologicalenvironment construction and restoration. The study result show:
     1. The effects of exclosure on species composition and diversity characteristicsof plant community of sandy grassland are extraordinary.Desert plant species haveincreased from nine kinds in mobile sandy grassland to18kinds in19-year-oldexclosure (19-year-old artificial restoration). After the application of natural exclosureplus artificial exclosure, the dominant species in sandy grassland are mainly artificialshrub species such as caragana microphylla and hedysarum solarium. Although thespecies richness is inferior to that cultivated by natural exclosure and short-termartificial nurture, artificial shrub species presents perfect growing status and stands ina dominant position. The total trend of species diversity characteristics is:19-year-oldexclosure (19-year-old artificial restoration)>19-year-old exclosure (5-year-oldartificial restoration)>10-year-old exclosure (natural restoration)> mobile sand.
     2. The average index of height, density, canopy and coverage of plant underdifferent exclosure management measure has an obvious difference (P<0.05). Theindex all show as:19-year-old exclosure (19-year-old artificial restoration)>19-year-old exclosure (5-year-old artificial restoration)>10-year-old exclosure(natural restoration)>mobile sand. Through multiple comparisons in different slopepositions, the results show that the plant average height, average density, averagecanopy and average coverage in sandy grassland are more likely to be influenced bythe slope positions than mobile sand(P<0.05).
     3. The total biomass of sand community increased with exclosure lasting. Theorder of total biomass under different exclosure management is:19-year-old exclosure (19-year-old artificial restoration)(94.41g/m~2)>19-year-old exclosure (5-year-oldartificial restoration)(60.08g/m~2)>10-year-old exclosure (natural restoration)(58.22g/m~2)> mobile sand (33.75g/m~2). But long time exclosure (19-year-old exclosure and19-year-old artificial restoration) that can’t change the contribution rate of flowers,stems, leaves and the root to the whole plant. However, the flowers, stems, leaves andthe root modular of suffurticosa plant change the whole composition of the wholeplant. In general, root shoot ratio in exclosure sample plot is smaller than that ofmobile sand. The ratio order of most plant modular with aboveground biomass is:stems> leaves> flowers> root, and the ratio list of plant modular with individualbiomass is: leaves> stems> flowers> root.
     4. The exclosure measure can significantly improve soil physical properties ofsandy grassland. Compared with mobile sand, with the rise of years of exclosure, thesand content is significantly reduced, the content of clay particle increase dramatically.Soil bulk density tends to decrease, total soil porosity and maximum moisture contentare both increase obviously. The10cm depth of soil water content of three exclosuresandy grasslands lower than mobile sand. The order of soil water storage is: mobilesand>19-year-old exclosure (5-year-old artificial restoration)>10-year-old exclosure(natural restoration)>19-year-old exclosure (19-year-old artificial restoration).Through the comparisons of different slope positions, the result shows that soilphysical properties in exclosure sandy land is more likely to be influenced by theslope positions than mobile sandy(P<0.05).
     5. The SOC and N P K nutrient have a significant regression directed by sandygrassland exclosure, it can promote sand soil property developed. Compared withmobile sand,19-year-old exclosure (19-year-old artificial restoration) sandy grassland(0~20cm), SOC、total N and total P and total K increase380.0%,238.9%,75.0%and59.6%, respectively. Soil physicochemical properties in exclosure sandy grassland isinfluenced by slopes positions obviously. However, the characteristics of the mobilesandy have a tiny influence by the slop positions (P<0.05). Exclosure sandy grasslandSOC, total N and total P and total K and available nutrient content increase greatlyfrom upper slop positions to foot slop positions. However, the mobile sandy doesn’tpresent an obvious tendency.
     6. After the application of natural exclosure and artificial exclosure, in sandygrassland0~40cm, light fraction and the total content of carbon and nitrogen, unitarea of organic carbon and the content of total nitrogen increased greatly(P<0.05).The proportion of soil light fraction orgnic carbon or nitrogen with totalorgnic carbon or nitrogen, the exclosure sandy grassland is higher than the mobilesand. Compared with mobile sand, natural exclosure and artificial restoration can botheffectively reduce HFOC/SOC. In general, in0~20cm, HFOC/SOC basically demonstrates that exclosure sandy land is higher than mobile sand. However, theHFOC/SOC and LFOC/SOC change opponently.
     7. The correlation analysis of plant characteristics and soil physicochemicalproperties show, the index of Margalef, Shannon-Wiener, Pielou and Simpsona havepositive correlation with SOC, LFOC, available nitrogen and soil moisture content,and they have a negative correlation with available phosphorus, soil bulk density andsand. The above ground biomass, underground biomass and the content of litter fall indifferent exclosure sandy grassland have a positive correlation with SOC, total N,LFOC, LFN and HFOC(P<0.01), however, they have a negative correlation with soilwater storage and sand content(P<0.01).The rise of the SOC and total N in exclosuresandy grassland have a significantly positive correlation with the rise of soil clayparticle content (P<0.01), but it has a significantly negative correlation with thedecrease of the content of sand (P<0.01).The content of SOC and total N and total Khas a significantly positive correlation (P<0.01). Meanwhile, the content of SOC, totalN and total K have an significantly positive correlation with the average height ofplant, the average cnopy and total biomass characteristics (P<0.01) and (P<0.05),respectively. The characteristics of soil bulk density and the content of sand have anobvious negative correlation with the average height of plant, the average canopy, andtotal biomass.
     8. The effects and improved degree of the measure of natural exclosure andartificial restoration in sandy grassland are higher than that of pure natural exclosure.After the measure of exclosure and afforestation and replanting, a mutual effectbenign recycling system between plant and soil are being formed in sandy grasslandof oasis edge. The mesures can promote the deteriorated grasslands favorableevolution, and have energetic action in desertification reversed.
引文
1.Aber J D, Melillo J M, Nadlhoffer K J. Fine root turnover in forest ecosystems inrelation to quantity and form of nitrogen availability: a comparison of twomethods [J]. Oecologia,1985,66:317-321.
    2.Adler P B, Milchunas D G, Lauenroth W K, et al. Functional traits of graminoids insemiarid steppes: A test of grazing Histories [J]. Applied Ecology,2004,41:653-663.
    3.Agarwal M, Shukla A, Pal V N. Grazing of forested grassland and its conservation[J]. Ecology Modelling,1993,69:57-62.
    4.Agustin R, Adrian E. Small scale spatial soil-plant relationship in semiarid gypsumenvironments [J]. Plant and Soil,2000,220:139-150.
    5.Alice A, Martin O, Elsa L, et al. Effect of grazing on community structure andproductivity of a Uruguayan Grassland [J]. Plant Ecology,2005,179:83-91.
    6.Allington G R H, Valone T J. Reversal of desertification: the role of physical andchemical soil properties [J]. Journal of Arid Environments,2010,74:973-977.
    7.Antonio F. Growth dynamics of superficial roots in Portuguese plantations ofEucalyptus globulus Labill. Studied with a Mesh Bag Technique [J]. Plant andSoil,1985,83:233-242.
    8.Bai Y F, Han X G, Wu J G, et al. Ecosystem stability and compensatory effects inthe Inner Mongolia grassland [J]. Nature,2004,431:181-184.
    9.Bashkin M A, Binkley D. Changes in soil carbon following afforestation in Hawaii[J]. Ecology,1998,79(3):828-833.
    10.Berger T W, Hager H. Physical top soil properties in pure stands of Norwayspruce (Picea abies) and mixed species stands in Austria [J]. Forest Ecology andManagement,2000(136):159-172.
    11.Bettina J, Tamon Y, Bernard L, et al. Storage of organic carbon in aggregate anddensity fractions of silty soils under different types of land use [J]. Geoderma,2005,128:63-79.
    12.Boix-Fayos C, Calvo-Cases A, Imeson A C, et al. Influence of soil propertieson the aggregation of some Mediterranean soils and the use of aggregate size andstability as land degradation indicators [J]. Catena,2001(44):47–67.
    13.Bullock J M, Pywell R F, Burke M J W, et al. Restoration of biodiversityenhances agricultural production[J]. Ecology Letter,2001,4:185-189.
    14.Búrquez A, Martínez-Yrízar A, Núńez S, et al. Aboverground biomass in threeSonoran Desert communities: Variability within and among sites using replicatedplot harvesting [J]. Journal of Arid Environments,2010,74:1240-1247.
    15.Christensen B T. Physical fractionation of soil and organic matter in primaryparticle size and density separates [J]. Advance in Soil Science,1992,20:2-90.
    16.Conteh A, Blair G J, Macleod D A. Soil organic carbon changes in cracking claysoils under cotton production as studied by carbon fractionation [J]. AustralianJournal of Agricultural Research,1997,48:1049-1058.
    17.Dai Y C, Yang Z L, Cui B K, et al. Species diversity and utilization of medicinalmushrooms and fungi in China[J]. International Journal of MedicinalMushrooms,2009,11(3):287-302.
    18.Dalal R C, Mayer R J. Long-term trends in fertility of soils under continuousrestoration and cereal cropping in southern queensland vi loss of total nitrogenfrom different particle-size and density fractions [J]. Australian Journal of SoilResearch,1987,25:83-93.
    19.Davies R G, Orme C, Webster A J, et al. Environmental predictors of globalparrot (Aves: Psittaciformes) species richness and phylogenetic diversity [J].Global Ecology and Biogeography,2007,16(2):220-233.
    20.de Kroon H, Hutchings M J. Morphological plasticity in clonal plants: Theforaging concept reconsidered [J]. Journal of Ecology,1995,83:143-152.
    21.Dexter A R. Physical properties of tilled soils [J]. Soil&Tillage Research,1997,43(1-2):41-63.
    22.Dias A C C P, Northcliff S. Effects of two land clearing methods on the physicalproperties of an Oxisol in the Brazilian Amazon [J]. Tropical Agriculture,1985(62):207–212.
    23.Dong M. Clonal growth in plants in relation to resource heterogeneity: foragingbehavior [J].Acta Botanica Sinica,1996,38(10):828-835.
    24.Duan Z H, Xiao H L, Dong Z B, et al. Estimate of total CO2output fromdesertified sandy land in China [J]. Atmospheric Environment,2001,35:5915-5921.
    25.Dyksterhuis E J. Condition and management of rangeland based on quantitativeecology [J]. Journal of Range Management.1949,2:104-115.
    26.Eldridge D J, Westoby M, Holbrook K M. Soil surface characteristics,microtopography and proximity to mature shrubs: effects on survival of severalcohorts of Atriplex vesicariaseedlings [J]. Journal of Ecology,1992,78(2):357-364.
    27.Fang J Y, Piano S L, Tang Z Y. Inter-annual variability in netprimary productionand precipitation [J]. Science,2001,293:1723-1724.
    28.Fang W, Peng S L. Development of species diversity in the restoration process ofestablishing a tropical man made forest ecosystem in China [J]. Forest Ecologyand Management,1997,99:185-196.
    29.Fank J H. The primary productivity of lawns in a temperate environment [J].Journal of Applied Ecology,1980,17:109~114.
    30.Filip Z. International approach to assessing soil quality by ecologically-relatedbiological parameters [J]. Agriculture, Ecosystems&Environment,2002,Special Issue,88(2):169-174.
    31.Gad A, Abdel S. Study on desertification of irrigated arable lands in Egypt [J].Egyptian Journal of Soil Science,2000,40(3):373-384.
    32.Garten jr C T, Post W M, Hanson P J. Forest soil carbon inventories and dynamicsalong an elevation gradient in the southern appellation mountains [J].Biogeochemistry,1999,45:115-145.
    33.Gomes L, Arrue J L, Lopez M V, et al. Wind erosion in a semiarid area of Spain:the WELSONS project [J]. Catena,2003,52:235-256.
    34.Green D R. Rangeland restoration projects in western New South Wales [J].Australian Rangeland Journal,1989,11(2):110-116.
    35.Greenwood K L, MacLeod D A, Scott J M. Changes to soil physical propertiesafter grazing exclusion [J]. Soil Use and Management,1998,14:19-24.
    36.Guo L B, Gifford R M. Soil carbon stocks and land use change: a meta analysis [J].Global Change Biology,2002,8:345-360.
    37.Guo Q F, Berry W. Species richness and biomass: dissection of t he hump-shapedrelationships [J]. Eccology,1998,7:2555-2559.
    38.Haper J L, White J. The demography of plants [J]. Annual Review Ecology andSystmaics,1974,5:419-463.
    39.Haynes R J. Labile organic matter fractions as central components of the qualityof agricultural soils: an overview [J]. Advances in Agronomy,2005,85:221-268.
    40.Hector A, Schmid B, Beierkuhnlein C, et al. Plant diversity and productivityexperiments in European grassland [J]. Science,1999,286:1123-1127.
    41.Hill M O, Evans D F, Bell S A. Long-term effects of excluding sheep from hillpastures in NorthWales [J]. Journal of Ecology,1992,80:1-13.
    42.Hill M O. Diversity and evenness an unifying notation and its consequences [J].Ecology,1973,54:427-431.
    43.Hobbs R J, Norton D A. Towards a conceptual framework for restoration ecology[J]. Restoration Ecology,1996,4(2):93-100.
    44.Holeplass H, Singh B R, Lal R. Carbon sequestration in soil aggregate underdifferent crop rotations and nitrogen fertilization in an Inceptisol in southeasternNorway [J]. Nutrition Cycle of Agroecosystem,2004(70):167-177.
    45.Hook B P, Burke I C, Lauenroth W K. Heterogeneity of soil and plant N and Cassociated with individual plants and opening in North America short grasssteppe [J]. Plant Soil,1991,138:247-256.
    46.Hurlbert S H. The non-concept of species diversity: a critique and alternativeparameters [J].Ecology,1971,52:577-586.
    47.Hussey A, Long S P. Seasonal-changes in weight of above-ground andbelow-ground vegetation and dead plant-material in a salt-marsh at Colne point,Essex [J]. Journal of Ecology,1982,70:757-771.
    48.Huston M A, Aarssen L W, Austin M P, et al. No consistent effect of plantdiversity on productivity [J]. Science,2000,289:1255.
    49.Huston M A. Hidden treatments in ecological experiments: re-evaluating theecosystem function of biodiversity [J]. Oecologia,1997,110:449-460.
    50.Janzen H H, Campbell C A, Brandt S A, et al. Light-fraction organic matter insoils from long-term crop rotations[J]. Soil Science Society of America Journal,1992,56:1799-1806.
    51.Jenkinson D S, Adams D E, Wild A. Model estimates of CO2emission from soilin response to global warming [J]. Nature,1991,351(6324):304-306.
    52.Karlen D L, Stott D E. Framework for evaluating physical and chemical indicatorsof soil quality. In: Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A.(Eds.), Methods for Assessing Soil Quality, SSSA Special Publications. SoilScience Society of America, Madison, WI, USA,1994(35):53–72.
    53.Kay B D. Rate of change of soil structure under different cropping systems [J].Adv. Soil Science,1990(12):1-52.
    54.Keller A, Rodel M O, Linsenmair K E, et al. The importance of environmentalheterogeneity for species diversity and assemblage structure in Bornean streamfrogs [J]. Journal of Animal Ecology,2009,78(2):305-314.
    55.Kenkel N C, Derksen D A, Thomas A G, et al. Review: Multivariate analysis inweed science research [J]. Weed Science,2002,50:281-292.
    56.Lal R. Carbon sequestration in drylands [J]. Annuls of Arid Zone,2000,39(1):1-10.
    57.Lal R. Soil carbon sequestration impacts on global climate change and foodsecurity [J]. Science,2004,304(5677):1623-1627.
    58.Lal R. Soil erosion impact on agronomic productivity and environment quality [J].Critical Reviews in Plant Sciences,1998,17:319-464.
    59.Lauenroth W K, Sala O E. Long term forage production of north American shortgrass steppe [J]. Ecological Applications,1992,2:397-403.
    60.Levin L A, Etter R J, Rex M A, et al. Environmental influences on regionaldeep-sea apecies diversity[J]. Annual Review of Ecology and Systematics,2001,2:51-93.
    61.Li X R, Kong D S, Tan H J, et al. Changes in soil and in vegetation followingstabilisation of dune in sout-heastern fringe of the Tengger Desert, China [J].Plant and Soil,2007,300:221-231.
    62.Li X R, Xiao H L, He M Z et al. Sand barriers of straw checkerboards for habitatrestoration in extremely arid desert regions [J]. Ecological Engineering,2006,(28):149-157.
    63.Li Y Y, Shao M A. Change of soil physical properties under long-term naturalvegetation restoration in the Loess Plateau of China [J]. Journal of AridEnvironments,2006,(64):77-96.
    64.Li Y Y, Shao M A. Impact of tillage on water transformation andrunoff-sediment-yielding characteristics on slope land [J]. Transactions of theCSAE,2003,19(1):46–50.
    65.Liu X, Li F M, Liu D Q, et al. Soil organic carbon, carbon fractions and nutrientsas affected by land use in semi-arid region of Loess of Plateau of China [J].Pedosphere,2010,20(2):146-152.
    66.Lowery B, Swan J, Schumacher T, et al. Physical properties of selected soils byerosion class [J]. Journal of Soil and Water Conservation,1995,50:306-311.
    67.Margalef R. Information theory in ecology [J]. General System,1957,3:37-71.
    68.Matthew R R, Loeser, Thomas D. Impact of grazing intensity during drought in anarizona grassland [J]. Conservation Biology,2006,21(1):87-97.
    69.Meissner R A, Facelli J M. Effects of sheep exclusion on the soil seed bank andannual vegetation in chenopod shrublands of South Australia [J]. Journal of AridEnvironments,1999,42(2):117-128.
    70.Mendham D S, O’Commell A M, Grove T S. Change in soil carbon after landclearing or afforestation in highly weathered lateritic and sandy soils ofsouth-western Australia [J]. Agriculture, Ecosystems and Environment,2003,95:143-156.
    71.Mensah F, Schoenau J J, Malhi S S. Soil carbon changes in cultivated andexcavated land converted to grasses in east-central Saskatchewan [J].Biogeochemistry,2003,63:85-92.
    72.Micchunas D G, Sala O E, Lauenroth W K. A generalized model of the effects ofgrazing by large herbivores on grassland community structure [J]. AmericanNaturalist,1988,132:11-23.
    73.Molyneux D E. Rooting pattern and water relations of three pasture grassesgrowing in drying soil [J]. Oecologia,1983,58:220-224.
    74.Monz C A. The response of two arctic tundra plant communities to humantrampling disturbance [J]. Journal of Environmental Management,2002,64(2):207-217.
    75.Naeem S, Tompson L J, Lawler S P, et al. Declining biodiversity can alter theperformance of ecosystems [J]. Nature,1994,368:734-737.
    76.Noy-Meir I. Compensating growth of grazed plants and its relevence to the use ofrangelands [J]. Ecological Applications,1993,3:32-34.
    77.Oba G, Vetaas O R, Stenseth N C. Relationships between biomass and plantspecies richness in arid zone grazing lands[J].Journal of Applied Ecology,2001,38:836-845.
    78.Oesterheld M, McNaughton S J.Effects of stress and time for recovery on theamount of compensatory growth after grazing [J].Oecologia,1991,85:305-313.
    79.Pan Y X, Wang X P, Jia R L, et al. Spatial variability of surface soil moisturecontent in a re-vegetated desert area in Shapotou, Northern China [J]. Journal ofArid Environments,2008,72:1675-1683.
    80.Peng L, Yu C Z. Nutrient losses in soils on Loess Plateau [J]. Pedosphere,1995,5(1):83–92.
    81.Pielou E C. Ecological Diversity [M]. New York: John Wiely&Sons Inc,1975.
    82.Redmann R E. Production ecology of grassland plant communities in westernNorth Dakata [J]. Ecological Monographs,1975,45:83-106.
    83.Reeder J D, Franks C D, Milchunas D G. Root biomass and microbial processes.In: Follett R F, Kimble J M, eds. The Potential of US Grazing Lands to SequesterCarbon and Mitigate the Greenhouse Effect Lewis Publishers, Boca Raton F L,2001.139-166.
    84.Reeder J D, Schuman G E. Influence of livestock grazing on C sequestration insemi-arid mixed-grass and short-grass rangelands [J]. Environmental pollution,2002,116:457-463.
    85.Risser P G. Making ecological information practical for resource managers [J].Ecological Applications,1993,3:37-38.
    86.Schlatterer H. Life history and plant architecture: size-dependent reproductiveallocation in annual and biennial Centaurium species [J]. Acta BotanicaNearlandica,1989,38(2):183-201.
    87.Shannon C E, Weiner W. The mathematical theory of communication, unknowndistance function [M]. Urbana: Illinois Press,1949,27:219-246.
    88.Simpson E H. Measurement of diversity [J]. Nature,1949,163:688.
    89.Six J, Elliott E T, Paustian K. Soil macroaggregate formation: a mechanism for Csequestration under no-tillage agriculture [J]. Soil Biology Biochemistry,2000(32):2009-2013.
    90.Smith J L, Halvorson J J, Papendick R I. Using multiple-variable indicator krigingfor evaluating soil quality [J]. Soil Science Society of America,1993(57):743-749.
    91.Spycher G P, Sollins, Rose S. Carbon and nitrogen in the light fraction of a forestsoil: vertical distribution and seasonal patterns [J]. Soil Science,1993,135:79-87.
    92.Su Y Z, Zhao H L, Zhang T H, et al. Processes and characteristics of soildegradation in rainfed farmland in the Hoeqin sandy land [J]. Journal of SoilWater Conservation,2002,16:25-28.
    93.Tan Z, Lal R, Owen S L, et al. Distribution of light and heavy fractions of soilorganic carbon as related to land use and tillage practice [J]. Soil and TillageResearch,2007,92:53-59.
    94.Tilman D, Downing J A. Biodiversity and stability in grassland [J]. Nature,1994,367:363-367.
    95.Tilman D, Knops J, Wedin D, et al. The influenced of functional diversity andcomposition on ecosystem processes [J]. Science,1997,277:1300-1302.
    96.Tilman D, Wedin D, Knops J. Productivity and sustainability influenced bybiodiversity in grassland ecosystems[J]. Nature,1996,379:718-720.
    97.Tisdall J M, Oades J M. The effect of soil crop rotation on aggregation in ared-brown earth [J]. Australia Journal of Soil Research,1980(18):423-433.
    98.Trakhtenbrot A, Kadmon R. Effectiveness of environmental cluster analysis inrepresenting regional species diversity [J]. Conservation Biology,2006,20(4):1087-1098.
    99.Trumbore S E, Chadwick O A, Amundson R. Rapid exchange between soil carbonand atmospheric carbon dioxide driven by temperature change [J]. Science,1996,272(5260):393-396.
    100.Vickery P J. Grazing and net primary production of a temperate grassland [J].Jounal of Applied Ecology,1992,9:307-314.
    101.Vitousek P M, Matson P A, Cleve K V. Nitrogen availability and nitrificationduring succession, primary, secondary and older field series [J]. Plant and Soil,1989,115:229-239.
    102.Wang G X, Li Y S, Wang Y B, et al. Effects of permafrost thawing on vegetationand soil carbon pool losses on the Qinghai-Tibet Plateau, China[J]. Geoderma,2008,143:143-152.
    103.Wang X P, Li X R, Xiao H L, et al. Evolutionary characteristics of the artificiallyre-vegetated shrub ecosystem in the Tengger Desert, Northern China [J].Ecological Research,2006,21:415-424.
    104.Wardel D A, Huston M A, Grime J P, et al. Biodiversity and ecosystemfunctioning: an issue in ecology [J]. Bulletin of the Ecological Society of America,2000,81:235-239.
    105.Wolde M, Veldkamp E, Mitiku H, et al. Effectiveness of exclosures to restoredegraded soils as a result of overgrazing in Tigray, Ethiopia [J]. Journal of AridEnvironments,2007,69:270-284.
    106.Zhao W Z, Xiao H L, Liu Z M, et al. Soil degradation and restoration as affectedby land use change in the semiarid Bashang area, northern China [J]. Catena,2005(59):173-186.
    107.白永飞.降水量的季节分配对克氏针茅草原群落地初级生产力影响的研究[J].植物生态学报,1999,23(2):155-160.
    108.鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    109.蔡学彩,李镇清,陈佐忠,等.内蒙古草原大针茅群落地上生物量与降水量的关系[J].生态学报,2005,25(7):45-61.
    110.曹文侠,徐长林,张德罡,等.杜鹃灌丛草地土壤容重与水分特征对不同休牧模式的响应[J].草业学报,2011,20(3):28-35.
    111.曹子龙,郑翠玲,赵廷宁,等.围封草地“种子岛”效应对周围沙化草地土壤种子库的影响[J].水土保持学报,2006,20(3):197-200.
    112.常学礼,鲁春霞,高玉葆.科尔沁沙地不同沙漠化阶段植物物种多样性与沙地草场地上生物量关系研究[J].自然资源学报,2003,18(4):26-30.
    113.常学礼,邬建国.科尔沁沙地沙漠化过程中的物种多样性[J].应用生态学报,1997,8(2):151-156.
    114.常兆丰,韩福贵,仲生年,等.民勤荒漠草场植物群落自然更新和退化演替初探[J].草业科学,2008,25(8):10-13.
    115.陈生云,刘文杰,叶柏生,等.疏勒河上游地区植被物种多样性和生物量及其与环境因子的关系[J].草业学报,2011,20(3):70-83.
    116.陈四清,崔骁勇,周广胜,等.内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的CO2排放速率研究[J].植物学报,1999,41(6):645-650.
    117.陈银萍,李玉强,赵学勇,等.放牧与围封对沙漠化草地土壤轻组及全土碳氮储量的影响[J].水土保持学报,2010,24(4):182-186.
    118.陈佐忠,黄德华,张鸿芳.内蒙古锡林河流域羊草草原与大针茅草原地下生物量与降雨量关系模型探讨//中国科学院内蒙古草原生态系统定位站.草原生态系统研究[M].2集.北京:科学出版社.1988.20-25.
    119.程根伟,余新晓,赵玉涛,等.山地森林生态系统水文循环与数学模拟[M].北京:科学出版社,2004.
    120.崔永琴,马剑英,刘小宁,等.人类活动对土壤有机碳库的影响研究进展[J].中国沙漠,2011,31(2):407-414.
    121.单贵莲,初晓辉,田青松,等.典型草原恢复演替过程中土壤性状动态变化研究[J].草业学报,2012,21(4):1-9.
    122.单贵莲,徐柱,宁发,等.围封年限对典型草原植被与土壤特征的影响[J].草业学报,2009,18(2):3-10.
    123.董光荣,吴波,慈龙骏,等.我国荒漠化现状、成因与防治对策[J].中国沙漠,1999,19(4):318-332.
    124.董全民,赵新全,马玉寿,等.不同耗牛放牧率下江河源区垂穗披碱草/星星草混播草地第一性生产力及其动态变化[J].中国草地学报,2006,28(3):5-15.
    125.杜国祯,覃光莲,李自珍,等.高寒草甸植物群落中物种丰富度与生产力的关系研究[J].植物生态学报,2003,27(1):125-132.
    126.方楷,宋乃平,魏乐,等.不同放牧制度对荒漠草原地上生物量及种间关系的影响[J].草业学报,2012,21(5):12-22.
    127.冯起,程国栋.我国沙地水分分布状况及其意义[J].土壤学报,1999,36(2):225~236.
    128.冯起,高前兆.禹城沙地水分动态规律及其影响因子[J].中国沙漠,1995,15(2):153~157.
    129.傅华,陈亚明,王彦荣,等.阿拉善主要草地类型土壤有机碳特征及其影响因素[J].生态学报,2004,24(3):469-476.
    130.甘肃省科技厅.荒漠化防治与治沙技术[M].兰州:甘肃人民出版社,2001,140.
    131.高安社.羊草草原放牧地生态系统健康评价[D].呼和浩特:内蒙古农业大学学位论文,2003.
    132.高青山,胡自治.红豆草地下部植物量和光能利用率的研究[J].草业科学,1990,7(5)::25-29.
    133.高凯.内蒙古锡林河流域菊芋及野生植物能用潜力评价[D].内蒙古农业大学硕士学位论文,2011.
    134.韩龙,郭彦军,韩建国,等.不同刈割强度下羊草草甸草原生物量与植物群落多样性研究[J].草业学报,2010,19(3):70-75.
    135.韩天虎,赵忠,王安禄,等.青藏高原东缘异针茅草地群落组成及生产力研究[J].草业学报,2007,16(6):62-66.
    136.郝文芳,陈存根,梁宗锁,等.植被生物量的研究进展[J].西北农林科技大学学报(自然科学版),2008,36(2):175-182.
    137.郝占庆,于德永,杨晓明,等.长白山北坡植物群落A多样性及其随海波梯度的变化[J].应用生态学报,2002,13(7):785-789.
    138.贺金生,方精云,马克平,等.生物多样性与生态系统生产力:为什么野外观测和受控实验结果不一致[J]?植物生态学报,2003,27:835-843.
    139.侯扶江,杨中艺.放牧对草地的作用[J].生态学报,2006,26(1):244-264.
    140.黄培祐.干旱区免灌植被及其恢复[M].北京:科学出版社,2002:30-90.
    141.贾树海,崔学明,李绍良,等.牧压梯度上土壤理化性质的变化[A].草原生态系统研究(第五集)[C].北京:科学出版社,1995,12-16.
    142.姜恕,戚秋慧,孔德珍.内蒙古羊草大针茅草地群落生物量初步研究[A].草原生态系统研究(第1集)[C].北京:科学出版社1985,12~22.
    143.兰州沙漠研究所沙坡头沙漠试验研究站.腾格里沙漠沙坡头地区流沙治理研究(2)[C].银川:宁夏人民出版社,1980,13-25.
    144.李博.生态学[M].北京:高等教育出版,2000.
    145.李步杭,张健,姚晓琳,等.长白山阔叶红松林草本植物多样性季节动态及空间分布格局[J].应用生态学报,2008,19(3):467-473.
    146.李海英,彭红春,王启基,等.高寒矮嵩草草甸不同退化演替阶段植物群落地上生物量分析[J].草业学报,2004,13(5):26-32.
    147.李金花,李镇清.不同放牧强度下冷篙、星毛委陵菜的形态可塑性及生物量分配格局[J].植物生态学报,2002,26(4):435-440.
    148.李凯辉,胡玉昆,阿德力.麦地,等.天山南坡高寒草地物种多样性及地上生物量研究[J].干旱区资源与环境,2007,21(1):21-27.
    149.李凌浩,刘先华,陈佐忠.内蒙古锡林河流域羊草草原生态系统碳素循环研究[J].植物学报,1998,40(10):955-961.
    150.李凌浩.土地利用变化对草原生态系统土壤碳贮量的影响[J].植物生态学报,1998,22(4):300-302
    151.李巧,陈彦林,周兴银,等.退化生态系统生态恢复评价与生物多样性[J].西北林学院学报,2008,23(4):69-73.
    152.李新荣,何明珠,贾荣亮.黑河中下游荒漠区植物多样性分布对土壤水分变化的响应[J].地球科学进展,2008,23(7):685-691.
    153.李新荣,贾玉奎,龙利群,等.干旱半干旱地区土壤微生物结皮的生志学意义及若干研究进展[J].中国沙漠,2001,21(1):4-11.
    154.李新荣,马凤云,龙立群,等.沙坡头地区固沙植被土壤水分动态研究[J].中国沙漠,2001,21(3):217~222.
    155.李新荣,肖洪浪,刘立超,等.腾格里沙漠沙坡头地区固沙植被对生物多样性恢复的长期影响[J].中国沙漠,2005,25(2):173-181.
    156.李新荣,张景光,刘立超,等.我国干旱沙漠地区人工植被与环境演变过程中植物多样性的研究[J].植物生态学报,2000,24(3):257-261.
    157.李新荣,张志山,王新平,等.干旱区土壤-植被系统恢复的生态水文学研究进展[J].中国沙漠,2009,29(5):845-852.
    158.李雪华,李晓兰,蒋德明,等.科尔沁沙地70种草本植物个体和构件生物量比较研究[J].干旱区研究,2009,26(2):200-205.
    159.李永宏,汪诗平.放牧对草原植物的影响.中国草地,1999,3:11-19.
    160.李月梅,王跃思,曹广民,等.开垦对高寒草甸土壤有机碳影响的初步研究[J].地理科学进展,2005,24(6):61-67.
    161.立玉中,程延年,等.北方地区干旱规律及抗旱综合技术[M].北京:中国农业科学出版社2003.
    162.刘国华,马克明,傅伯杰,等.崛江干旱河谷主要灌丛类型地上生物量研究[J].生态学报,2003,23(9):1757-1764.
    163.刘明春,马兴祥,尹东,等.天祝草甸、草原草场植被生物量形成的气象条件及预测模型[J].草业科学,2001,18(3):65-69.
    164.刘佩勇,张庆灵,杨允菲.松嫩平原朝鲜碱茅无性系种群构件生物量结构及相关模型分析.应用生态学报,2004,15(4):543-548.
    165.刘清泉,杨文斌,珊丹.草甸草原土壤含水量对地上生物量的影响[J].干旱区资源与环境,2005,19(7):44-49.
    166.刘伟,周立,王溪.不同放牧强度对植物及啮齿动物作用的研究[J].生态学报,1999,19(3):376-382.
    167.刘文杰,苏永中,杨荣,等.黑河中游临泽绿洲农田土壤有机质时空变化特征[[J].干旱区地理,2010,33(2):170-176.
    168.刘忠宽,汪诗平,陈佐忠,等.不同放牧强度草原休牧后土壤养分和植物群落变化特征[J].生态学报,2006,26(6):2048-2056.
    169.刘钟龄.内蒙古草原退化与恢复演替机理的探讨[J].干旱区资源与环境,2002,16(1):84-90.
    170.娄彦景,赵魁义,马克平.洪河自然保护区典型湿地植物群落组成及物种多样性梯度变化[J].生态学报,2007,27(9):3883-3891.
    171.卢建国,王海涛,何兴东,等.毛乌素沙地半固定沙丘油篙种群对土壤湿度空间异质性的响应[J].应用生态学报,2006,17(8):1469-1474.
    172.马玉寿,李青云,朗百宁,等.柴达木盆地次生盐渍化撂荒地的改良与利用[J].草业科学,1997,14(3):17-20.
    173.倪进治,徐建民,谢正苗.土壤生物活性有机碳库及其表征指标的研究[J].植物营养与肥料学报,2001,7(1):56-63.
    174.牛丽丽,张学培,曹奇光.我国西北干旱区生物多样性研究[J].水土保持研究,2007,14(1):223-225.
    175.彭少麟,周后诚,陈天杏,等.广东森林群落的组成结构数量特征[J].植物生态学与地植物学学报,1989,13(1):10-17.
    176.彭少麟.恢复生态学与植被重建[J].生态科学,1996,15(2):26-31.
    177.彭文英,张科利,杨勤科.退耕还林对黄土高原地区土壤有机碳影响预测[J].地域研究与开发,2006,25(3):94-99.
    178.漆良华,彭镇华,张旭东,等.退化土地植被恢复群落物种多样性与生物量分配格局[J].生态学杂志,2007,26(11):1697-1702.
    179.乔峰,张克斌,张维军,等.宁夏盐池县不同荒漠化治理措施生物多样性研究[J].水土保持研究,2006,13(2):54-57.
    180.邱国玉,石庆辉.沙坡头工固沙区沙地水分动态和植被演替[A].中国科学院沙坡头沙漠试验研究站年报[C].兰州:甘肃科学技术出版社,1993,120-127.
    181.任海,刘庆,李凌浩,等.恢复生态学导论[M].北京:科学出版社,2008:52-71.
    182.任继周,梁天刚,林慧龙,等.草地对全球气候变化的响应及其碳汇潜势研究[J].草业学报,2011,20(2):1-22.
    183.戎玉萍,韩建国,王培,等.放牧强度对草地土壤理化性质的影响[J].中国草地,2001,23(4):41-47.
    184.上官铁梁,贾志力,张金屯,等.汾河太原段河漫滩草地植被的数量分类与排序[J].草业学报,2001,10(4):31-39.
    185.苏永红,冯起,朱高峰,等.土壤呼吸与测定方法研究进展[J].中国沙漠,2008,28(1):57-65.
    186.苏永中,赵哈林,文海燕.退化沙质草地开垦和封育对土壤理化性状的影响[J].水土保持学报,2002,16(4):5-8.
    187.苏永中,赵哈林,张铜会,等.不同强度放牧后自然恢复的沙质草地土壤性状特征[J].中国沙漠,2002,22(4):333-338.
    188.苏永中,赵哈林,张铜会,等.科尔沁沙地不同年代小叶锦鸡儿人工林植物群落特征及其土壤特性.植物生态学报,2004,28(1):93-100.
    189.苏永中,赵哈林.持续放牧和围封对科尔沁退化沙地草地碳截存的影响[J].环境科学,2003,24(4):23-28.
    190.苏永中,赵哈林.农田沙漠化过程中土壤有机碳和氮的衰减及其机理研究[J].中国农业科学,2003,36(8):928-934.
    191.苏智先,钟章成.缙云山慈竹种群生物量结构研究[J].植物生态学与地植物学学报,1991,15(3):240–251.
    192.孙栋元,王辉,马仲武,等.干旱荒漠区封育沙地土壤水分变化研究[J].西北林学院学报,2007,22(2):49-53.
    193.孙鸿烈,刘光崧.土壤理化分析与剖面描述[M].北京:中国标准出版社,1996.
    194.田洪艳,郭平,周道玮.草原开垦对草原土壤及植被的扰动生态学作用[J].干旱区研究,2001,18(3):67-70.
    195.王伯荪,李鸣光,彭少麟.植物种群学[M].广州:广东高等教育出版社,1995,8-27.
    196.王辉,孙栋元,刘丽霞,等.干旱荒漠区沙蒿种群根系生态特征研究.水土保持学报,2007,21(1):99-102.
    197.王蕙,赵文智,常学向.黑河中游荒漠绿洲过渡带土壤水分与植被空间变异.生态学报,2007,27(5):1731-1739.
    198.王俊明,张兴昌.退耕草地演替过程中的碳储量变化[J].草业学报,2009,18(1):1-8.
    199.王启基,周兴民,沈振西,等.不同调控策略下退化草地植物群落结构及其多样性分析[A].中国科学院海北高寒草甸生态系统定位研究站.高寒草甸生态系统(第4集)[C].北京:科学出版社,1995:269-280.
    200.王涛,宋翔,颜长珍,等.近35a来中国北方土地沙漠化趋势的遥感分析.中国沙漠,2011,31(6):1351-1356.
    201.王涛,朱震达.中国北方沙漠化的若干问题[J].第四纪研究,2001,21(1):56-65.
    202.王炜,刘钟龄,郝敦元,等.内蒙古草原退化群落恢复演替的研究II.恢复演替时间进程的分析[J].植物生态学报,1996,20(5):460-471.
    203.王炜,刘钟龄,郝敦元,等.内蒙古退化草原植被对禁牧的动态响应[J].气候与环境变化,1997,2(3):236-240.
    204.王娓,郭继勋.东北松嫩平原羊草群落的土壤呼吸与枯枝落叶分解释放CO2贡献量[J].生态学报,2002,22(5):655-660.
    205.王彦荣,曾彦军,付华,等.过牧及封育对红砂荒漠植被演替的影响[J].中国沙漠,2002,22(4):321-327.
    206.魏朝富,陈世正,谢得体.长期施用有机肥料对紫色水稻土有机无机复合性状的影响[J].土壤学报,1995,32(2):159-166.
    207.魏晶,吴钢,邓红兵.长白山高山冻原植被生物量的分布规律[J].应用生态学报,2004,15(11):1999-2004.
    208.文海燕,赵哈林.退化沙质草地植被与土壤分布特征及相关分析[J].干旱区研究,2004,21(1):76-80.
    209.吴波,苏志珠,陈仲新.中国荒漠化潜在发生范围的修订[J].中国沙漠,2007,27(6):911-917.
    210.吴建国,张小全,王彦辉,等.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学,2002,38(4):19-29.
    211.吴乐知,蔡祖聪.农业开垦对中国土壤有机碳的影响[J].水土保持学报,2007,21(6):118-121.
    212.吴彦,刘庆,乔永康,等.亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响[J].植物生态学报,2001,25(6):648-655.
    213.武天云,Jeff J S,李凤民,等.耕作对黄土高原和北美大草原三种典型农业土壤有机碳的影响[J].应用生态学报,2003,14(12):2213-2218.
    214.谢锦升,杨玉盛,解明曙,等.土壤轻组有机质研究进展[J].福建林学院学报,2006,26(3):281-288.
    215.徐惠风,刘兴土,陈景文.长白山区沟谷沼泽湿地乌拉苔草地上生物量与土壤有机质和氮素相关性分析[J].农业环境科学学报,2007,26(1):356-359.
    216.闫玉春,唐海萍,辛晓平,等.围封对草地的影响研究进展[J].生态学报,2009,29(9):5039-5046.
    217.闫玉春,唐海萍.围封下内蒙古典型草原区退化草原群落的恢复及其对碳截存的贡献[J].自然科学进展,2008,18(5):546-551.
    218.闫玉春,唐海萍.围栏禁牧对内蒙古典型草原群落特征的影响[J].西北植物学报,2007,27(6):1225-1232.
    219.闫玉春,王旭,杨桂霞,等.退化草地封育后土壤细颗粒增加机理探讨及研究展望[J].中国沙漠,2011,31(5):1162-1166.
    220.严旭升.土壤肥力研究方法[M].北京:农业出版社,1988.
    221.杨殿林,韩国栋,胡跃高,等.放牧对贝加尔针矛草原群落植物多样性和生产力的影响[J].生态学杂志,2006,25(12):1470-1475.
    222.杨晓晖,张克斌,侯瑞萍.封育措施对半干旱沙地草场植被群落特征及地上生物量的影响[J].生态环境,2005,14(5):730-734.
    223.杨晓晖,张克斌,侯瑞萍,等.半干旱沙地封育草场的植被变化及其与土壤因子间的关系[J].生态学报,2005,25(12):3213-3220.
    224.姚拓,龙瑞军.天祝高寒草地不同扰动生境土壤三大类微生物数量动态研究[J].草业学报,2006,15(2):93-99.
    225.姚月锋,满秀玲,刘畅,等.封育对沙地油篙群落生物量及其土壤水分影响[J].东北林业大学学报,2007,35(1):38-39.
    226.宇万太,马强,赵鑫,等.不同土地利用类型下土壤活性有机碳库的变化.生态学杂志,2007,26(12):2013~2016.
    227.袁吉有,欧阳志云,郑华,等.科尔沁沙地东南缘不同草地恢复方式下的物种多样性与生物量[J].干旱区资源与环境,2011,25(10):175-178.
    228.曾昭顺,沈善敏,乔樵,等.我国黑土农田生态系统的现状与调控途径[J].土壤通报,1980,(2):15-17.
    229.曾志新,罗军,颜立红,等.生物多样性的评价指标和评价标准[J].湖南林业科技,1999,26(2):26-29.
    230.张春华,杨允菲.松嫩平原寸草苔种群生殖分株的种子生产与分殖分配策略[J].草业学报,2001,10(2):7-13.
    231.张国盛,王林和,等.毛乌素沙区风沙土机械组成及含水率的季节变化[J].中国沙漠,1999,19(2):145-150.
    232.张金屯.数量生态学[M].北京:科学出版社,2004,83-107.
    233.张奎壁,邹受益.治沙原理与技术[M].北京:中国林业出版社,1989:35-44.
    234.张丽华,陈亚宁,李卫红,等.准格尔盆地梭梭群落下土壤CO2释放规律及其影响因子的研究.中国沙漠,2007,27(2):266-272.
    235.张强,赵雪,赵哈林.中国沙区草地[M].北京:气象出版社,1998:1-2.
    236.张伟华,关世英,李跃进,等.不同恢复措施对退化草地土壤水分和养分的影响[J].内蒙古农业大学学报,2000,21(4):31-35
    237.张伟华,关世英,李跃进.不同牧压强度对草原土壤水分、养分以及第地上生物量影响.干旱区资源与环境,2000,14(4):61-64.
    238.张文辉,卢涛,马克明,等,岷江上游干旱河谷植物群落分布的环境与空间因素分析[J].生态学报,2004,24(3):552-559.
    239.张彦平,马非.黄土高原丘陵区不同植被恢复措施下草地植物群落物种多样性的研究[J].黑龙江生态工程职业学院学报,2007,20(1):22-27.
    240.赵哈林,大黑俊哉,李玉霖,等.科尔沁沙质草地植物群落的放牧退化及其自然恢复过程[J].中国沙漠,2009,29(2):229-235.
    241.赵哈林,大黑俊哉,李玉霖,等.人类放牧活动与气候变化对科尔沁沙质草地植物多样性的影响[J].草业学报,2008,17(5):1-8.
    242.赵哈林,赵学勇,张铜会,等.放牧胁迫下沙质草地植被的受损过程[J].生态学报,2003,23(8):1505-1511.
    243.赵哈林,赵学勇,张铜会,等.科尔沁沙地沙漠化过程及其恢复机理[M].北京:海洋出版社,2003.
    244.赵哈林,赵学勇,张铜会.我国北方农牧交错带沙漠化的成因、过程和防治对策[J].中国沙漠,2000,20(增刊):22-28.
    245.赵哈林,周瑞莲,苏永中,等.科尔沁沙地沙漠化过程中土壤有机碳和全氮含量变化[J].生态学报,2008,28(3):976-982.
    246.赵怀宝,刘彤,雷加强,等.古尔班通古特沙漠南部植物群落B多样性及其解释[J].草业学报,2010,19(3):29-37.
    247.赵吉.典型草原土壤健康的生物学优化监测与量化评价[D].内蒙古:内蒙古大学,2005.
    248.赵丽娅,赵哈林.我国沙漠化过程中的植被演替研究概述[J].中国沙漠,2000,20(增刊):7-14.
    249.赵文智.科尔沁沙地人工植被对土壤水分异质性的影响[J].土壤学报,2002,39(1):113~119.
    250.郑小林,朱照宇,黄伟雄,等.N、P、K肥对香根草修复土壤镉、锌污染效率的影响[J].西北植物学报,2007,27(3):560-564.
    251.郑晓翾,王瑞东,靳甜甜,等.呼伦贝尔不同草地利用方式下生物多样性与生物量的关系[J].生态学报,2008,28(11):5392-5399.
    252.中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科技出版社,1978:7-59.
    253.周华坤,赵新全,温军,等.黄河源区高寒草原的植被退化与土壤退化特征[J].草业学报,2012,21(5):1-11.
    254.周华坤,周立,刘伟,等.封育措施对退化与未退化矮嵩草草甸的影响[J].中国草地,2003,25(5):15-22.
    255.朱丽,郭继勋,鲁萍.松嫩羊草草甸碱茅群落土壤酶活性比较研究[J].草业学报,2002,11(4):28-34.
    256.朱震达.中国土地荒漠化的概念、成因与防治[J].第四纪研究,1998,18(2):145-155.
    257.祝燕,赵谷风,张俪文,等.古田山中亚热带常绿阔叶林动态监测样地—群落组成与结构[J].植物生态学报,2008,32(2):262-273.
    258.邹雨坤,张静妮,杨殿林,等.不同利用方式下羊草草原土壤生态系统微生物群落结构的PLFA分析[J].草业学报,2011,20(4):27-33.
    259.左万庆,王玉辉,王风玉,等.围栏封育措施对退化羊草草原植物群落特征影响研究[J].草业学报,2009,18(3):12-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700