用户名: 密码: 验证码:
鹅掌楸杂种优势分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鹅掌楸种间杂交具有明显的杂种优势,从DNA分子水平研究鹅掌楸杂种优势的遗传基础具有重要意义。本文以江西景德镇、南京江浦2个试验点3-7a生的杂交鹅掌楸子代测定林为材料,在分析子代幼林期生长性状遗传变异及杂种优势表现的基础上,利用SSR分子标记检测鹅掌楸交配亲本的遗传距离以及杂交组合子代的一般杂合度和特殊杂合度,进而分析鹅掌楸生长性状的杂种优势与亲本遗传距离及子代杂合度之间的相关性。同时,利用Tassel3.0软件对景德镇试验点鹅掌楸杂种子代7a生长性状与101个SSR位点进行关联分析,寻找与生长性状相关联的DNA分子标记,并对相关联分子标记所对应的EST序列进行生物信息学分析。主要研究结果如下:
     鹅掌楸杂种子代生长表现与杂种优势分析。对景德镇试验点16个杂交组合3-7a的生长量进行了分析,发现树高和胸径在不同组合间差异较大。树高与胸径生长最快的两个组合分别是S×M、H×M;生长最慢的两个组合分别是L×C2、N1×H。方差分析结果表明,树高及胸径年生长量在不同林龄及不同杂交组合间均达到了极显著差异。对鹅掌楸杂交子代生长性状杂种优势分析发现,并非所有的杂种子代都表现出杂种优势。其中,12个杂交组合表现出正向杂种优势,其余4个杂交组合表现出负向杂种优势。方差分析结果表明,树高、胸径杂种优势在不同组合间差异均达到了极显著水平(P=0.0001),但树高超高亲优势、树高超中亲优势及胸径超高亲优势在在不同林龄间差异不明显,未达到显著性水平(P=0.4432,P=0.0819,P=0.1615),仅胸径超中亲优势在不同林龄间差异达到显著性水平(P=0.002);。
     鹅掌楸交配亲本遗传距离与杂种优势相关性。利用30个SSR分子标记分析了景德镇试验点16个杂交组合亲本间的遗传距离。各交配组合亲本间遗传距离存在较大的遗传差异,变幅为0.117~1.4。将子代杂种优势4个度量指标分别与亲本遗传距离进行相关性分析,发现二者存在相关性,但均未达到显著性水平(P=0.9504,P=0.9823,P=0.6422,P=0.4591)。进一步分析发现,当亲本间遗传距离<1.0时,随着遗传距离增加,子代杂种优势逐渐增加。在亲本遗传距离为1.0左右时,子代杂种优势达最大值。当遗传距离>1.0时,随着遗传距离增大,杂种优势反而下降。为了验证上述结论,用同一批SSR分子标记对定植于南京江浦的另一批鹅掌楸杂交组合材料进行分析,所得结论与此相似。因此,可以认为,在进行杂交育种亲本选配时,亲本对之间最适的遗传距离应为1.0左右。
     鹅掌楸杂交子代群体杂合度与杂种优势相关性。利用同一批SSR分子标记分析了景德镇试验点16个杂交组合子代的一般杂合度。杂交组合子代具有较高的观测杂合度(0.6931~0.8278)。对杂种子代杂种优势表现与一般杂合度进行相关性分析,发现二者相关性均未达到显著性水平(P=0.8252,P=0.8846,P=0.7513,P=0.7286)。利用关联分析结果对杂种子代进行特殊杂合度分析,发现杂交组合子代特殊杂合度变化幅度较大(0.3741~0.8714)。对杂种子代杂种优势表现与特殊杂合度进行相关性分析,发现二者相关性也均未达到显著性水平(P=0.5694,P=0.716,P=0.447, P=0.5389),说明杂交子代杂合度可能并非鹅掌楸杂种优势形成的主要原因。
     杂交鹅掌楸生长性状与SSR分子标记关联分析。利用Tassel3.0软件对101对SSR标记间的连锁不平衡(LD)进行分析,发现有40对位点间存在较强的连锁不平衡。利用筛选后的61个标记通过Structure2.3软件对景德镇试验点16个杂交组合进行群体结构分析,得出最佳模拟分群数目为8(K值)。通过计算不同杂交组合子代归入各亚群的概率(Q值),对关联分析的结果进行矫正,再利用Tassel3.0软件对景德镇杂交组合7a生长量性状与101对SSR标记进行关联分析。发现在P<0.01显著性水平下,共有6个标记与树高性状相关联,7个标记与胸径性状关联。而且,关联的标记中,除691号位点未与树高性状关联外,其余关联标记与两个性状均存在极显著相关,说明两个性状之间可能存在较高的相关性。进一步对树高与胸径相关性研究发现,二者相关系数r=0.9438,P=0.0001。
     与鹅掌楸生长性状关联分子标记的生物信息学分析。基于上述关联分析结果,对每一个与生长性状相关联的SSR标记,从鹅掌楸EST数据库找出与其相对应的EST序列,登入NCBI网站进行序列比对。7个关联位点中,有4个可以搜索到与其EST相匹配的序列,并在其它物种中做过相关研究。另外3个EST序列在数据库中未找到与其相关序列。其中2号位点对应的EST序列在蓖麻研究中相关序列是有关叶绿体的分子伴侣(铜伴侣);15号位点对应的EST序列在拟南芥研究中相关序列是有关核内小核糖核蛋白输入蛋白的;542号位点对应的EST序列在毛果杨研究中相关序列是有关组蛋白H1的;642号位点对应的EST序列在拟南芥研究中相关序列是有关顶端生长缺陷蛋白的。分析发现TIP1是促使顶端生长和维持细胞生长所必需的。
     遗传多样性度量与SSR标记数量的关系。从实验室规模化开发的1000多对鹅掌楸属EST-SSR引物中筛选出100对多态性较好引物,以景德镇试验点16个鹅掌楸种间杂交组合为材料,以Na、Ne、I、Ho、Nei5个遗传多样性度量指标。以多态性为指标对SSR标记位点依次排序,5个位点为一组,分析SSR分子标记数量与遗传多样性度量的关系。研究发现,随着检测的标记位点数增加,估算的群体遗传多样性随之降低;但当标记位点数达到20个左右时,群体遗传多样性趋于稳定,表明在利用多态性较高的分子标记进行群体遗传多样性检测时,标记数量以20个左右为宜。
It has been proved that an obvious heterosis occurred in interspecific hybrid ofLiriodendron, while its genetic basis has not been clear yet. In this paper, the relationshipbetween the heterosis of growth and the genetic distance among mating parents and theheterozygosity of hybrids was explored based on the evaluation on both growth traits and SSRmarkers. Two batch of crossing combinations were taken as experimental populations, onecontains16interspecific hybrid combinations and their parental half-sibs and was establishedin2006at Jingdezhen, the other covers17interspecific hybrid combinations,7intraspecifichybrid combinations and their parental half-sibs in2010at Nanjing. Furthermore, theassociation between the growth traits of hybrid Liriodendron and SSR markers were analyzed.Meanwhile, the relationship between the number of SSR markers and the measurement ongenetic diversity was also explored. The main results are as follows:
     There were significant variation existing among combinations when analysing3-7aheight and DBH of16hybrid combinations at Jingdezhen trial site. Two combinations withfastest growth are S×M and H×M; while two combinations with slowest growth are L×C2andN1×H. Analysis of variance revealed significant variations of annual growth existing amongboth tree ages and combinations. Relatively large difference of heterosis among hybridcombinations was found by comparing the growth of hybrids with parental half-sibs. Not allthe hybrids showed heterosis,12hybrid combinations showed positive heterosis and4hybridcombinations showed negative heterosis. According to the analysis of variance, heterosischange on DBH and heigh was clear among mating combinations that the results reach ahighly significant leve(lP=0.0001,P=0.0001),while heterosis change on height and over BPHfor DBH of mating combinations was not clear among forest ages that the results did not reacha significant level(P=0.4432,P=0.0819,P=0.1615), however, heterosis change on over MPHfor DBH of mating combinations was clear among forest ages that the results reach a highlysignificant level(P=0.002).
     Based on the analysis of the parental genetic distance, relatively large genetic variationsamong parents were found with variation range of0.117~1.4at Jingdezhen. According toresults of correlation analysis, significant correlations were not found between the geneticdistance and the heterosis of growth(P=0.9504,P=0.9823,P=0.6422,P=0.4591).Furtherstudies showed that heterosis reached the maximum when the genetic distance was about1,heterosis showed downward trend with further increase of genetic distance. In order to verifythe above conclusions, the correlation of genetic distance and heterosis was analyzed with thesame molecular marker at Nanjing Qiaolin trial site,and similar conclusion was gotten,Parental genetic distance1could be used as indicator of parent selection.
     The general heterozygosity of hybrids were analyzed with the same molecular marker atJing dezhen, the range of the general heterozygosity of hybrids was0.6931~0.8278.The correlation of the general heterozygosity and heterosis did not reach a significant level(P=0.8252,P=0.8846,P=0.7513,P=0.7286);The special heterozygosity of hybrids wereanalyzed according to the results of association analysis, the range of the specialheterozygosity of hybrids was0.3741~0.8714. Furthermore, the correlation was analyzedbetween special heterozygosity of hybrids and heterosis,the results did not reach a significantlevel too(P=0.5694,P=0.716,P=0.447,P=0.5389),It can be deduced that heterozygosity ofhybrids is probably not the main reason for the formation of Liriodendron heterosis.
     LD among101pairs of markers was analyzed using Tassel3.0Software,we found thatstrong linkage disequilibrium between the40pairs of loci. Population structure of16hybridcombinations was also explored based on the results of LD screening, we found that8was thethe best analog clustering number,and calculated the probability of hybrid combinationoffspring which attributed to the subsets. Furthermore, association analysis was investigatedbetween7-year-old growth traits of16hybrid combinations at Jing dezhen and101pairs ofmolecular markers,the result showed that6markers associated with height trait and7markersassociated with DBH trait when the correlation between markers and traits was highlysignificant (P<0.01=, and the associated markers were consistent in addition to the691sitedid not associate with height trait, Further speculated that there may be a high correlationbetween the two traits, Further studies showed that the correlation of height and DBH reacheda highly significant level (r=0.9438, P=0.0001).
     EST sequences which corresponded to the associated markers were identified accordingto the correlation results,the result of sequence alignment showed that EST sequences of the4sites matched with sequences which came from NCBI,EST sequences of the3sites were notfound in the database,EST sequence of the2ndsite corresponded to sequence of chloroplastchaperone (copper companion) in Ricinus communis;EST sequence of the fifteenth No. sitecorresponded to sequence of snurportin-1in Arabidopsis thaliana;EST sequence of No.542site corresponded to sequence of histone H1in Populus trichocarpa;EST sequence of No.642site corresponded to sequence of tip growth defective in Arabidopsis thaliana; Further studiesshowed that TIP1was necessary to promote tip growth and cell growth,however, the aboverelated genes function needed to be verified in Liriodendron.
     The relationship between the number of SSR markers and the measurement on geneticdiversity was explored,SSR sites were rearranged in accordance with the number of allelesand effective alleles,considered five sites as a gradient based on the order, the metrics ofgenetic diversity (Na, Ne, I, Ho, Nei) were selected to analyze genetic diversity of hybridcombinations. Further studies showed that the genetic diversity of hybrid combinations wasstable when the number of loci was about20.
引文
Ashikari M,Sakakibara H,Lin SY, etal. Cytokinin oxidase regulates rice grain production. Science,2005,309:741-745.
    Bertin I, Zhu J H, GaleM D. SSCP-SNP in pearlmillet-a new maker system for comparative genetics [J].Theoretical and Applied Genetics,2005,110:1467-1472.
    Boppenmaier J. Genetic diversity for RFLPs in European maize inbreds(Ⅲ). Performance of crosses withinversus between heterotic groups for grain traits[J]. Plant Breeding,1993,111:217-226.
    Breseghello F, Sorrells M E.Association mapping of kernelsize and milling quality in wheat cultivars [J].Genetics,2006,172:1165-1177.
    Chen X D, Sun D F, Rong D F, etal.Relationship of genetic distance and hybrid performance in hybridsderived from a new photoperiod-thermo sensitive male sterile wheat line337S[J].Euphytica,2010,175:365–371.
    Ching A, Caldwell K S, Jung M, et al. SNP frequency, haplotype structure and linkage disequilibrium inelite maize inbred lines [J]. BMC Genetics,2002,3:19.
    Chowdhury M J, Ahmad S, Nazim Uddin M, Quamruzzaman A. K. M. and Patwary M. M. A.Expression ofHeterosis for Productive Traits in F1Brinjal (Solanum melongena L.) Hybrids[J]. TheAgriculturists.2010.8(2):8-13.
    Cao G Q,Zhu J,He C X,etal. QTL Analysis for episitatic effects and QTL Environment interaction effects onfinal height of rice (Oryzasativa L.[J]. Acta genetica Sinica,2001,28(2):135-143.
    David Hall, CarolinaTegstrom and Par K. Using association mapping to dissect the genetic basis of complextraits in plants [J]. Briefings in functional genomics,2010,9(2).157-165.
    Daniella Tambasco-Talhari, Maurício Mello de Alencar, Cláudia Cristina Paro de Paz,etal.Molecular markerheterozygosities and genetic distances as correlates of production traits in F1bovinecrosses[J].Genetics and Molecular Biology,2005,28(2),218-224.
    Devlin B, Risch NA. Comparison of linkage disequilibrium measures for fine-scale mapping [J]. Genom ics,1995,29:311-322.
    Dudley J W. Molecular marker and grouping of parents in maize breeding programs[J]. Crop Sci.,1991,31:718-723.
    Ducrocq S, Madur D, Veyrieras JB, etal.Key Impact of Vgt1on flowering time adaptation in maize: Evidence from association mapping and ecogeographical information [J].Genetics,2008,178:2433-2437.
    Eoin ryan, Claire s. grierson, Alison cavell, etal.TIP1is required for both tip growth and non-tip growth inArabidopsis [J]. New Phytol,1998,138:49-58.
    Evanno G, Regnaut S and Goudet J.Detecting the number of clusters of individuals using the softwareSTRUCTURE: a simulation study[J]. Mol Ecol,2005,14:2611-2620.
    Falush D, Stephens MS, Pritchard JK. Inference of population structure using multilocus genotype datalinked loci and correlated allele frequencies[J].Genetics,2003,164:1567-1587.
    Flint-Garcia SA, Thornsberry JM, Buckler E S.Structure of linkage disequilibrium in plants [J]. AnnualReview of Plant Biology,2003,54:357-374.
    Fukaki H,Okushima Y,Tasaka M.Auxin-mediated lateral root formation in higer plants.In RevCytol,2007,256:111-137.
    Gupta PK, Rustgi S, Kulwal PL. Linkage disequilibrium and association studies in higher plants: presentstatus and future prospects[J]. Plant Molecular Biology,2005,57(4):461-485.
    Hackett CA, Wachira FN, Paul S, et al. Construction of a genetic linkage map for Camellia sinensis (tea)[J].Heredity,2000(85):346-355.
    Hedriek PW.Gametic disequilibrium measures:Proceed with caution[J].Geneties,1987,117:331-341.
    He G M,Luo X J,Tian F, et al.Haplotype variation in structure and expression of a gene cluster associatedwith a quantitative trait locus for improved yield in rice[J].Genome Res,2006,16:618-626.
    H. Lu, J. Romero-Severson,R. Bernardo.Genetic basis of heterosis explored by simple sequence repeatmarkers in a random-mated maize population[J].Theor Appl Genet (2003)107:494–502.
    Jone M A. Exceptionally high levels of restriction site polymorphism in DNA near the maize ADH1gene[J].Genetics,1983,105:733-743.
    Jun TH, Van K, Kim MY, et al. Association analysis using SSR markers to find QTL for seed protein contentin soybean[J]. Euphytica,2008,162(2):179-191.
    Jung M, Ching A, Bhattram akki D, etal.Linkage disequilibrium and sequence diversity in a500-kbp regionaround the adh1locus in elite maize germplasm [J].Theor App l Genet,2004,109:681-689.
    Kuhner M K, Beerli P, Yamato J, et al. Usefulness of single nucleotide polymorphism data for estimatingpopulation parameters [J]. Genetics,2000,156(1):439-447.
    Laurent V. Variability for nuclear ribosomal genes within”theobromacacao”[J]. Heredity,1993,71(1):96-103.
    Lee M. Association of RFLPs amongmaize inbreds with agronomic performanc of their crosses[J]. Crop Sci.,1989,29:1067-1071.
    Liang H Y, Saravanaraj Ayyampalayam, Norman Wickett, Abdelali Barakat,Yi Xu, Lena Landherr,Paula E.Ralph, Yuannian Jiao, Tao Xu.Generation of a large-scale genomic resource for functional andcomparative genomics in Liriodendron tulipifera L[J].TGG,2011,7:941–954.
    Liu X C, Wu J L.SSR heterogenic patterns of parents for marking and predicting heterosis in rice breeding[J].Molecular Breeding,1998.4:263–268.
    Li Z.,Wang Z. Relationship between heterosis and endogenous plant hormones in Liriodendron [J].ActaBotanica Sinica,2002,44(6):698-701.
    Li Z K, Pinson S RM, ParkW D, et al. TW. Ep istasis for three grain yield compolents in rice (O ryza salivaL.)[J]. Genetics,1997,145:453-465.
    Mckenie KS. Genetic analysis of amylose content, alkali spreading score, and grain dimension in rice[J].Crop Sci,1983,23(2).
    Mejnartowin L. Evidence for long-term heterosis phenomenon in the A lnus incana×A. glutinosa F1hybrids[J]. Silvae Genetica,1999,48(2):100-106.
    Melchinger A E. Genetic diversity for restriction fragment length polymorphism: relation to estimated geneticeffects in maize inbreds[J]. Crop Sci.,1990,30:1033-1040.
    Nasu S, Suzuk i J, Ohta R, et al. Search for and analysis of single nucleotide polymorphisms (SNPs) in rice(Oryza sativa, Oryza rufipogon) and establishment of SNP markers[J]. DNA Research,2002,9:163-171.
    Parisseaux B, Bernardo R.In silico mapping of quantitative trait loci in maize [J]. Theor Appl Genet,2004,109(3):508-514.
    Peter J. Bradbury, Zhiwu Zhang2, Dallas E. Kroon, Terry M. Casstevens,Yogesh Ramdoss,Edward S.Buckler.TASSEL: software for association mapping of complex traits in diverse samples [J].Bioinformaties,2007,23(19):2633-2635.
    Prakash H, Timmapur P R, Dharmatti, R.V.,Patil, S.T. and Naik, K. Heterosis for Yield in Brinjal (Solanummelongena L.).Karnataka Journal of Agricultural Science,2008.21(3):476-478.
    Remington D L,Thornsberry J M, M atsuoka Y,etal.Structure of linkage disequilibrium and phenotypicassociations in the maize genome [J].Proc Natl Acad Sci USA,2001,98:11479-11484.
    Rentao S and Joachim M.Gene expression of a gene family in maize based on noncollinearhaplotypes[J].PNAS,2003.
    Robin M, Hisamoto E, Thomas N. Seyfried.Molecular basis for heterosis for myelin basic protein content inmice [J].Proc. Natl. Acad. Sci. USA,1986,83:1532-1535.
    Robert M S,Nathan M S.Cis-transcriptional variation in maize inbred lines B73and Mo17leads to additiveexpression patterns in the F1hybrid [J].Genetics,2006,173:2199-2210.
    Romagnoli S, MaddaloniM, Livini C. Relationship between gene expression and hybrid vigor in primary roottips of young maize(Zea maysL.)plantets[J]. TheorApplGenet,1990,80:769-779.
    Rogers S O. Heritability and variability in Ribosomal RNA genes of viciafaba[J].Genetics,1987,117:285-295.
    Saghai Maroof M A, Yang GP, Zhang Q, etal. Correlation between molecular marker distance and hybridperformance in US southern long grain rice[J]. Crop Sci.,1997,37:145-150.
    Salvi S G, Sponza M, Morgante D, etal.Conserved non-coding genomic sequences associated with a flowerring-time quantitative trait locus in maize[J].Proc Natl Acad Sci USA,2007,104:11376-11381.
    Sattarzadeh A, A chenbach U, L ubeck J, et al. Single nucleotide polymorphism (SNP) genotyping as basisfor developing a PCR-based marker highly diagnostic for potato varieties with high resistance toGlobodera pallida pothotype Pa2/3[J]. Molecular breeding,2006,18:301-312.
    Smith O S. Similarities among a group of elite inbreds as measured by pedigree F1grain yield heterosis andRFLPs [J]. Theor Appl Genet,1990,80:273-280.
    Song R T, Joachim M. Gene expression of a gene family in maize based on noncollinear haplotypes[J].ProcNatl Acad Sci USA,2003,100:9055-9060.
    Sun Q X, Ni Z F, Liu Z Y.Differential gene expression between wheat hybrids and their parental inbreds inseedling leaves [J]. Euphytica,1999,106:117-123.
    Shen Y. Polymorphism of mitochondrial DNA from cytoplasmic male sterile and fertile lines in rice[J].JZhejiang of Agricultural University,1996,22(5):441-447.
    Srivastava H K. Heterosis and intergenomic complementation mitochondria, chloroplast and nucleus. In:Frankel, R.(ed),Heterosis-reappraisal of theory and practic[M]. NewYork:Springer Berlin Heidelberg,1983,260-286.
    Stich B, Maurer H P, MelchingerA E, et al. Linkage disequilibrium in European elite maize germplasminvestigated with SSRs [J]. Theor Appl Genet,2005,111(4):723-730.
    Stich B, Mohring J, Piepho H P, et al.Melchinger AE. Comparison of mixed-model approaches forassociation mapping[J].Genetics,2008,178:1745-1754.
    Sourdille P, Cadalen T, Guyomarch H, et al.An update of the Courtot×Chinese Spring intervarietalmolecular marker linkage map for the QTL detection of agronomic traits in wheat[J]. TheorAppl Genet,2003,106:530538
    Shafeeq A, Madhusudan K, Hancinal, R.R., et al. Heterosis in Brinjal. KarnatakaJournal of AgriculturalScience,2007,20(1):33-40.
    Singh A K, Pan R S, Mathura, R. and Prashad,K. Heterosis for yield and its contributing attributes in brinjal(S.melongena L.). Vegetable Science,2004,31:143-147.
    Tsaftaris A S, Polidoros A N. Studying the expression ofgenes in maize parental inbreds and their heteroticand nonheterotic hybrids[C]//Proc XII EucarpiaMaize and Sorghum Conference.Bergamo, Italy,1993:283-292.
    Thornsberry JM, Goodman M M, Doebley J, etal.Dwarf8polymorphisms associate with variation inflowering time[J]. Nat Genet,2001,28:286-289.
    Ueguchi-Tanaka M,Ashikari M,Nakajima M,et al. Gibberellin insensitive dwarf encodes a soluble receptorfor gibberellin. Nature,2005,437:693-698.
    Wang H, Nussbaum-Wagler T, Li B L,et al.The origin of the naked grains of maize [J]. Nature,2005,436:714-719.
    Wanger D B. Paternal leakage of mitochondrial DNA in pinus[J]. Theor Appl Genet,1991,62:510-514.
    Wang Z K,Ni Z F,Wu H L.Heterosis in root development and diverential gene expression between hybridsand their parental inbreds in wheat (Triticum aestivum L.)[J].Theor Appl Genet,2006,113:1283-1294.
    Wu, R L, Zeng Z B. Joint linkage and linkage disequilibrium mapping in natural populations.Genetics,2001,157:899–909.
    Xiao J H. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis usingmolecular marker[J].Genetic,1995,135:876-879.
    Xiao J H. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed byPCR-based markers[J]. Theor Appl Genet,1996,92:637-643.
    Xiong L Z,Yang G P,Xu C G,etal.Relationships of differential gene expression in leaves with heterosis andheterozygosity in a rice diallel cross [J]. Molecular Breeding,1998,4:129-136.
    Xu M,Li H G,Zhang B.Fifteen polymorphic simple sequence repeat markers from expressed sequence tagsof Liriodendron tulipifer[J].Molecular Ecology Notes,2006,6:728-730.
    Yang J S. Molecular basis of heterosis in hybrid rice and hybrid maize revealed by mRNA amplification[J].IRRI,1996,21(1):12-13.
    Yang X H, Gao S B, Xu ST, et al. Characterization of a global germplasm collection and its potentialutilization for analysis of complex quantitative traits in maize[J].Mol Breeding,2010,28:511-526.
    Yu JM, Buckler ES.Genetic association mapping and genome organization of maize[J].Curr OpinBiotech,2006,17:155-160.
    Zhang Q F, GaoY J, YangS H, et al. A diallel analysis of heterosis in elite hybrid rice based on RFLPs andmicrosatellites[J]. Theor. Appl. Genet,1994,89:185-192.
    Zhang Q F, Zhou Z Q, Yang G P, et al. Molecular marker heterozygosity and hybrid performance in indicaand japonicarice[J]. Theor. Appl. Genet,1996,93:1218-1224.
    Zhang H Y,He H,Chen L B,etal. A genome-wide transcription analysis reveals a close correlation ofpromoter INDEL polymorphism and heterotic gene expression in rice hybrids[J]. MolecularPlant,2008,1:720-731.
    Zhang Q Q, Wu C L, Ren F Y, etal. Association analysisof important agronomical traits of maize inbred lineswith SSRs [J]. AJCS,2012,6(6):1131-1138.
    Zhang T, Ni X L, Jiang K F,etal.Relationship Between Heterosis and Parental Genetic Distance Based onMolecular Markers for Functional Genes Related to Yield Traits in Rice[J]. Rice Science,2010,17(4):288295.
    Zilberman D,Gehring M,Tran R K,et al.Genomewide analysis of Arabidopsis thaliana DNA methylationuncoversan interdependence between methylation and transcription[J].Nat Genet,2007,39:61-69.
    Zhu C S, Yu J M. Nonmetric multidimensional scaling corrects for population structure in associationmapping with different sample types[J].Genetics,2009,182:875-888.
    陈兰,张红,张启武,江建华,王洋陈杰丽,洪德林.水稻6个异交相关性状的SSR关联分析[J].南京农业大学学报,2012,35(2):1-9.
    褚延广,苏晓华.单核苷酸多态性在林木中的研究进展[J].遗传,2008,30(10):1272-1278.
    陈金慧,施季森.鹅掌楸组培苗的生根及移植技术[J].林业科技开发,2002,16(5):21-22.
    崔国惠,倪中福,吴利民,等.微卫星分子标记遗传距离与普通小麦和斯卑尔脱小麦种间杂种优势的关系.麦类作物学报,2002,22(1):5~9
    杜金昆.小麦ISSR标记遗传差异及赤霉素代谢调控与杂种优势机理[D].北京:中国农业大学,2004.
    黄敏仁等.杂种马褂木的同工酶分析[J].南京林业大学学报,1979,Z1:156-158.
    郝岗平,吴忠义,陈茂盛等.拟南芥CBF4基因位点的单核苷酸多态性(SNP)变化与抗旱表型的相应性[J].农业生物技术学报,2004,(12):122-131.
    韩继成,方宣钧.五种热带水果乙烯受体基因的SNP分析[J].分子植物育种,2003,1(1):72-81.
    金国庆,秦国峰,周志春.马尾松生长性状交配效应的遗传分析及杂交组合选择[J].林业科学,2008,44(6):28-33.
    林建丽,朱正歌,高建伟.植物杂种优势研究进展[J].华北农学报.2009,24(增刊):46-56.
    李周岐,王章荣.鹅掌楸属种间杂交可配性与杂种优势的早期表现[J].南京林业大学学报,2001,25(2):32-38.
    李周岐,王章荣.鹅掌楸属种间杂种苗期生长性状的亲本配合力分析[J].西北林学院学报,2001,16(3):7-10.
    李周岐等.鹅掌楸属种间杂种苗期生长性状遗传变异与优良遗传型选择[J].西北林学院学报,2001,16(2):5-9.
    李博,张志毅.张德强等.植物杂种优势遗传机理研究[J].分子植物育种,2007,15(6):36-44.
    李周岐,王章荣.杂种马褂木无性系隨机扩增多态DNA指纹图谱的构建[J].东北林业大学学报,2001,29(4):5-8.
    李周岐.鹅掌楸属种间杂种优势的研究[D].南京林业大学博士学位论文,2000.
    李勇超,宋书锋,李建民.杂种优势的分子机理研究进展[J].湖北农业科学,2009,48(6).1501-1503.
    李火根,施季森.杂交鹅掌楸良种选育与种苗繁育[J].林业科技开发,2009,23(3):1-5.
    李火根,陈龙,梁呈元等.鹅掌楸属树种种源试验研究[J].林业科技开发,2005,19(5):13-17.
    卢庆善,等.农作物杂种优势[M].中国农业科技出版社,2002,6-7.
    刘丽,刘楚吾,曾健民.RAPD分析中最适样本量和位点数的研究[J].湛江海洋大学学报,2005,25(4):1~4
    刘晗.基于SSR标记的中国东北大豆育成品种遗传多样性及育种性状的关联分析[D].南昌大学硕士学位论文,2011.
    李海权,刁现民.关联分析及其在植物研究中的应用[J].河北农业科学,2010,14(11):157-160.
    明道绪,张征锋,刘永建,作物杂种优势遗传基础的研究进展[J],四川农业大学学报,2002,20(2):177-181.
    彭泽斌,刘新芝,傅骏骅等.玉米自交系杂种优势类群与杂优模式构建的初步研究[J].作物学报,1998,24(6):711-717.
    齐明,骆文坚,何贵平.林木重要性状的杂种优势和遗传方式以及杂优预测的可能性[J].世界林业研究,2010,23(2):75-80.
    孙其信,倪中福,陈希勇等.冬小麦部分基因杂合性与杂种优势表达[J].中国农业大学学报,1997,2(1):64,116.
    沈浩,刘登义.遗传多样性概述[J].生物学杂志,2001,18(3):5-9.
    田曾元,戴景瑞.利用cDNA-AFLP技术分析玉米灌浆期功能叶基因差异表达与杂种优势[J].科学通报,2002,47(18):1412-1416.
    唐梅,何光华,裴炎等. DNA分子标记在作物杂种优势研究中的应用[J].专题与综述,2001:1-5.
    王凭青,吴明生,王远亮.作物杂种优势预测与遗传机理的研究进展[J].作物学报,2003:11-14.
    王荣焕,王天宇,裕黎.关联分析在作物种质资源分子评价中的应用[J].植物遗传资源学报,2007,8(3):366-372.
    吴敏生,戴景瑞.AFLP标记与玉米杂种产量、产量杂种优势的预测.植物学报,2000,42(6):600~604
    武小金.提高水稻杂种优势水平的可能途径[J].中国水稻科学,2000,14(1):61-64.
    王章奎,倪中福,孙其信等.小麦杂交种及其亲本拔节期根系基因差异表达与杂种优势关系的初步研究[J].中国农业科学,2003,36(5):473-479.
    王得元,殷秋妙,李颖等.作物杂种优势的分子生物学研究进展[J].西北农业大学学报,1999,27(1),94-98.
    王辉,张宏军,吴险峰等.作物杂种优势遗传研究进展[J].安徽农业大学学报,2010,37(1):15-21.
    王章荣.鹅掌楸属杂交育种回顾与展望[J].南京林业大学学报,2003,27(3):76-78.
    王晓阳,李火根.鹅掌楸苗期生长杂种优势的SSR分析[J].林业科学,2011,47(4):57-62.
    王章荣.鹅掌楸属树种杂交育种与利用[M].中国林业出版社,2005.
    王章荣.中国马褂木遗传资源的保存与杂交育种前景[J].林业科技通讯,1997,9:8-10.
    王章荣.鹅掌揪属杂交育种成就与育种策略[J].林业科技开发,2008(5):1-8.
    文自翔,赵团结,郑永战等.中国栽培和野生大豆农艺品质性状与SSR标记的关联分析I.群体结构及关联标记[J].作物学报,2008,34(7):1169-1178.
    文自翔,赵团结,郑永战等.中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析II.优异等位变异的发掘[J].作物学报,2008,34(7):1339-1349.
    吴中贤,张文灿.利用杂种性能估计杂种优势率的新方法[J].遗传,1983,5(4):23-24.
    许明辉.作物亲本间遗传差异与杂种优势研究进展[J].云南农业大学学报,1999,14(1),107-112.
    辛业芸,邓小林,罗崇善.利用分子标记预测作物杂种优势研究进展[J].杂交水稻,2007,22(6):1-5.
    徐进,李帅,李火根等.鹅掌楸属植物生长旺盛期叶芽基因差异表达与杂种优势关系的分析[J].分子植物育种,2008,6(6):1111-1116.
    向道权,黄烈健,戴景瑞.玉米产量QTL和杂种优势遗传基础研究进展[J].中国农业大学学报,1994,4(增刊):1-7.
    游光霞,张学勇.基于选择牵连效应的标记/性状关联分析方法简介[J].遗传,2007,29(7):881-888.
    杨小红,严建兵,郑艳萍等.植物数量性状关联分析研究进展[J].作物学报,2007,33(4):523-530.
    姚明哲,乔婷婷,马春雷等.EST-SSR标记与茶树表型性状关联的初步分析[J].茶叶科学,2010,30
    (1):45~51.
    杨洁,刘海.生物序列比对算法的研究现状[J].湖南信息职业技术学院,2011,21(9):49.
    尹增芳,樊汝汶.中国鹅掌楸与北美鹅掌楸种间杂交的胚胎学研究[J].林业科学研究,1995,8(6):605-610.
    杨金水.杂种优势机理探讨:作物雄性不育与及杂种优势研究进展.[M].北京:中国农业出版社.1996.1-12.
    叶金山等.杂种马褂木杂种优势的遗传分析[J].林业科学,2002,38(4):67-71.
    叶金山.鹅掌楸杂种优势的生理遗传基础[D].南京林业大学博士学位论文,1998.
    叶金山,王章荣.水分胁迫对杂种马褂木与双亲重要生理性状的影响[J].林业科学,2002,38(3):20-26.
    庄杰云,樊叶杨,吴建利.杂交水稻中超显性效应的分析[J].遗传,2000,22(4):205-208.
    周志春,金国庆.马尾松纸浆材重要经济性状配合力和杂种优势分析[J].林业科学,2004,40(4):52-57.
    张军,赵团结,盖钧镒.大豆育成品种农艺性状QTL与SSR标记的关联分析[J].作物学报,2008,34(12):2059-2069.
    赵景奎.黄河三角洲柽柳遗传多样性的研究[D].南京林业大学硕士学位论文,2006.
    张君,王丕武,闫冬生等.大豆杂交种及其亲本苗期叶片基因差异表达与杂种优势的关系[J].西北农林科技大学学报,2010,38(2),91-100.
    曾艳玲,谭晓风,曾晓峰.单核苷酸多态性的检测及其在林木育种中的应用[J].经济林研究,2009,27(1):
    102-105.
    钟金城,陈智华.杂种优势理论研究回顾与展望[J].黄牛杂志,1996,22(4),4-6
    钟金城.活性基因效应假说[J].西南民族学院学报,1994,20(2):203-205.
    赵素君,欧江涛,白文林.杂种优势遗传基础的研究进展[J].西南民族学院学报,2002,28(3),327-330.
    周庭波.自花授粉作物杂种优势数学模型的探讨[J].遗传学报,1982,9(4):289-297.
    张博等.一种高效的树木总DNA提取方法[J].南京林业大学学报,2004,28(1):13-16.
    张武兆等.马褂木不同家系生长动态及杂种优势对比试验[J].林业科技开发,1997,2:32-33.
    赵书喜.杂交马褂木的引种与杂种优势利用[J].湖南林业科技,1989,2:32-33.
    赵书喜.杂交马褂木引种栽培试验[J].林业科技通讯,1989,8:16-18.
    张义荣,姚颖垠,彭慧茹等.植物杂种优势形成的分子遗传机理研究进展[J].自然科学进展.2009,19
    (7):697-703.
    左波,熊远著,邓昌彦.杂种优势遗传学基础的研究进展[J].中国畜牧兽医,2002,29(4),34-36.
    朱其卫,李火根.鹅掌楸不同交配组合子代遗传多样性分析[J].遗传,2010,32(2):183-188.
    周延清.DNA分子标记在植物研究中的应用[M].化学工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700