用户名: 密码: 验证码:
N沉降对木荷觅取低磷的影响及种源间感知差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木荷(Schima superba)是山茶科木荷属常绿阔叶大乔木,为亚热带地带性常绿阔叶林的主要建群种,广泛分布于我国南方各省。其树干端直,木材坚重致密,结构均匀,力学性质好,是建筑、器材、木制工艺品等优质用材,同时木荷还是我国南方主栽的生物防火树种和重要的生态防护树种。然而我国南方林地有效磷缺乏,严重影响了木荷人工林的持续高产经营。林木磷效率的遗传改良成为育种学研究热点。近年来,我国南方地区大气N沉降加剧,土壤N素增加,重要环境因素的变化对植株的生长产生了重大的影响,然而有关N沉降对木荷生长、根系结构、叶片生理及磷素营养效率的影响,研究报道较少。本论文分别选取木荷不同产区的地理种源材料为试验对象,设置0、50、100和200kg N ha-1·a-1不同浓度的N素沉降模拟盆栽试验,揭示不同浓度N沉降影响下,木荷不同种源分别适应低磷胁迫的生长、生物量差异、根系生长发育状况、磷素吸收特点和叶片光合生理等的生物学机制,揭示不同种源感知N沉降的遗传反应差异,及N沉降与低P耦合作用对木荷不同种源P吸收和利用、干物质积累和分配等的作用,为选育N沉降丰富条件下觅取利用土壤有限P素等能力强、生产力高的木荷优良新品种提供理论基础和科学依据。主要研究结果如下:
     1.模拟N沉降对土壤pH值、N和P有效性的影响研究
     N沉降作用引起土壤酸化,pH值下降,低磷环境下土壤酸化更为显著;随着N沉降浓度加大和处理时间的延长,土壤pH值下降程度增大,土壤酸化程度更高。
     N沉降初期,随着植物吸收加强和土壤酸化活化形成的铁、铝离子的增多螯合部分有效磷,造成土壤有效磷含量降低,而随着N沉降浓度的增加,土壤有效磷的衰减速度减慢,这可能和土壤酸化加剧,植物生长受限,固定态的磷的转化有关。
     土壤水解氮含量随着N沉降浓度增加和处理时间的延长呈现增长趋势。N沉降对土壤N存在积累效应,这既可以增加森林生产力,但另一方面也加大了土壤有效氮流失的潜力。
     2.模拟N沉降对木荷根系发育及根系分泌物的影响研究
     采用盆栽模拟试验研究了低磷(5.49mg·kg-1)和正常磷(60mg·kg-1)条件下,模拟N沉降浓度升高和时间延长对木荷根系特征、根系分泌的有机酸成分含量变化及酸性磷酸酶活性的影响。结果表明,N沉降浓度的增加促进了根系生长,根系密度增大、生物量提高,在土壤中分布空间增大,而高浓度N沉降则对根系造成伤害。N沉降初期,低磷环境下,木荷根系的根尖分生组织形成受到抑制,根系的增粗生长明显。试验中还发现了N沉降浓度增高促进了木荷根毛形成和伸长现象。在低磷环境下,木荷根系分泌的有机酸和Apase含量均比相应高磷环境高,且N沉降对木荷根系分泌有机酸的含量具有显著的促进作用。在分泌的有机酸中,乙酸所占比例高达50%以上,其次为苹果酸,低浓度N沉降能够促进其含量的增加,而中、高浓度N沉降则具有抑制作用;随着N沉降处理时间延长和苗龄的增大,乙酸和苹果酸含量增加明显,且分泌物中新增酒石酸和丙二酸两种有机酸成分,起到活化土壤固定态磷的作用。草酸则作为一种常量次生代谢酸大量存在于根系分泌物中,对提高根际磷的有效性起到辅助作用。
     3.模拟N沉降对木荷光合作用及叶片可溶性蛋白和Apase活性的影响研究
     氮素直接影响植物体内叶绿素和可溶性蛋白含量及光合酶类的合成与活性,对植物的光合作用产生影响。本研究通过对光合光响应参数、叶绿素组成、叶片可溶性蛋白及相关酶活性等研究,进一步揭示N沉降对木荷生长、根系形态变化及养分吸收等产生影响的机理。研究结果表明,N沉降初期,木荷潜在光合能力提高,净光合速率增加,光合能力增强,物质能量消耗减少,光合产物更容易积累,有利于在贫瘠环境下提高生长量;随着N沉降浓度的提高和处理时间的延长,木荷叶片的光合能力下降,光合速率降低,物质与能量消耗增加,对弱光环境的适应性降低。N沉降明显增加了木荷叶片叶绿素含量,木荷叶片捕光能力提高,有利于光合作用的高效进行,而类胡萝卜素含量和可溶性蛋白含量减少,Apase活性降低,MDA含量下降,N沉降初期的氮素增加对提高木荷的氧化损伤具有一定的作用,高浓度N沉降下,叶绿素含量降低。长期N沉降影响下,叶片可溶性蛋白含量和Apase活性下降更为显著,总叶绿素含量和叶绿素a/b值较N沉降初期也明显下降,但总叶绿素含量和叶绿素a/b值和该水平对照相比又有所增加,说明木荷通过提高叶绿素a/b值来弥补部分因叶绿素下降引起的光合作用下降,从而提高了自身抗性。
     4.模拟N沉降对木荷生长特征及体内养分含量变化的影响研究
     采用盆栽模拟试验研究了低磷(5.49mg·kg-1)和正常磷(60mg·kg-1)条件下,喷施NH4NO3浓度升高和时间延长对木荷生长、生物量和不同器官N、P养分含量变化的影响。结果表明,无论缺磷与否,N添加均能对木荷地上部及根系生长产生不同程度的促进作用。低浓度N沉降增加了木荷幼苗的苗高、地径的生长及地上部和总生物量的积累,而高浓度N沉降则抑制了木荷苗的生长。木荷植株地上部生长在低磷低N沉降下表现出明显的生长势,而地下部根系生长发育较地上部反应滞后。低磷环境下,木荷体内N、C素含量和NAE随着N沉降浓度的增加而提高,P素含量和PAE变化不明显。PAE和NAE与生长、干物质量积累呈正相关,有效的元素吸收能迅速增加植株的生长和干物质积累,增加了C储量。PUE随着N沉降浓度的增加而增高,但在高浓度N处理下增长不大;NUE随着N沉降浓度的提高和处理时间的延长而降低。N沉降初期,木荷根冠比降低,随着N处理时间延长和苗龄的增大,低磷环境下,木荷根冠比提高,PAE增强,叶片P含量增高,根系PUE增强,说明大苗增强了对恶略环境的适应能力,抗瘠薄能力提高。
     5.模拟N沉降对不同种源木荷生长发育影响研究
     N沉降初期,木荷不同种源材料生长表现为:浙江龙泉>福建建瓯>福建古田>湖南桂阳>江西信丰和浙江杭州。木荷北部边缘产区的杭州种源光合能力最强,N沉降初期,该种源地上部生长即已表现出优势,叶片叶绿素和可溶性蛋白含量增加,光合能力增强,但同化物不易积累,地下根系生长缓慢。随着N沉降浓度的提高,杭州种源苗木的光合作用下降,呼吸消耗持续增强,地上部生长下降,而根系开始加速生长。中南部中心产区的浙江龙泉和福建建瓯种源,光合能力较强,呼吸消耗最低,同化物最易积累,对N沉降的适应性也最强,在低浓度N沉降时>0.5mm直径根系的生长较快,根系生长旺盛,根系发育健壮,生长潜力增大;随N沉降水平的提高光合能力增强,在中等浓度N沉降影响下,其地上部表现出旺盛的生长势,生产力最大,而高浓度N沉降下该区域种源虽然光合作用最大,但此时呼吸消耗也大,生物量不易积累,生产力降低。南部次中心产区的福建古田、江西信丰和湖南桂阳种源在N沉降作用下,地上部的表现与浙江杭州种源相似,光合能力较低,呼吸消耗适中,地上部生物量积累不大;这些种源的地下部根系生长迟缓,甚至出现了抑制状态。
     另外,高海拔地区立地较为瘠薄,气温较低,长期适应于该立地和气候的种源,根系较为发达,地上部的生长较差,N沉降作用促进了其根系发育;低海拔种源生长立地环境较优,水肥充裕,温度适宜,根系较不发达而地上部生长旺盛,在N沉降影响下其根系增粗,氮磷吸收率增大,干物质积累增多。
Schima superba is a representative and widely distributed and dominant evergreenbroadleaf tree species in the subtropical forests in southern China. The timber of this species istough, dense and glossy, which can be used for both architecture and furniture. S.superba isalso an important biological fire-resisting and ecological protection species. Nowadays, lowsoil P content in southern China is serious and the forest soil fertility recession has seriouslyaffected the productivity of plantation and management. So forest phosphorus efficiency hasbeen studied more. More recently, the rate of deposition of nitrogen (N) is high in subtropicalforests in southern China. The soil N increased and much more environment factors changedand improved the plant growth. However, the changes of plant growth, root growth, leafphotosynthetic and phosphrous efficiency of S.superba under different N-deposition andP-limitation conditions have not been documented. The factorial design of the experimentincluded S.superba seedlings of eight provenances of different producting areas and and levelsof N addition using NH4NO3(0,50,100, and200kg N ha-1year-1). The results may reveal themechanisms of plant growth, biomass, root growth, phosphrouse absorpt and photosyntheticunder N deposition. It may reflect the difference in response to N and P among differentprovenances. The objectives of this study were to provide insight for selecting and breeding offavorite genotypes with higher P efficiency. The main results obtained from experiments are asfollows:
     1. Effects of simulated N deposition on the soil pH, N and P availability
     The N dposition could cause the soil acidification. The effect of soil acidification wasmore significant on low P soil than in high P soil. The soil pH decreased and the soilacidification increased as the increasing of the N dposition content and treatment time. In theinitial stage of N dposition, the available P decreased as the strengtherning of plant absorptionand the chelation of iron and aluminum ion with available phosphorus. Then the available
     phosphorus reduced slowly with N addition, which is related to the transformation of the fixedP as the aggravating of the soil acidfication and the plant growth restriction. The content ofhydrolyzable nitrogen in soil increased with increasing of N concentration and treatment time.The accumulation effect of the N deposition on soil N may in crease the forest productivity, buton the other hand, it may increase the potential of the loss of soil available N.
     2. Effects of simulated N deposition on plant root morphological characteristic and rootexudation in S.superba
     The effects of elevated N deposition on root morphological characteristic, organic acidcontent and Apase activity in root exudation were studied by carrying out a pot experimentwith conditions of P deficiency and normal P suplly. The results showed that root growth,density, biomass and spatial distribution of S. superba were increased with N addition, but highconcentrations of N deposition would do harm on root. In the early time, the root apicalmeristem formation is inhibited, the root become thicken under P deficiency. It was discoveredthat N addition also significantly improved root hair development and elogation. The organicacid and Apase content were higher in P deficienvy than in normal P. Meanwhile, the Ndeposition had a promoting role on secretion of organic acids. Among the organic acid, theamount of acetic acid accounted for more than50%, and followed by malic acid. The oganicacid content was increased under50N deposition, but inhibited under100or200treatment.The acetic acid and malic acid were sharp increased with the treatment time and seedlings age,and there were another two new compositions, which was tartaric acid and malonic acid,involved in the activation of fixed soil P. Oxalic acid as a constant and a large number ofsecondary metabolites acid presented in the root exudates, and played a role to improve theeffectiveness of the rhizosphere P.
     3. Effects of simulated N deposition on photosynthetic character, leaf solube protein andApase activity in S.superba
     The synthesis and activity of plant chlorophyⅡ, soluble protein and photosyntheticenzymes are directly effected by N, so N addition have an impact on plant photosynthesis. Inthis study, the photosynthetic light response curve, leaf pigments and soluble protein contents were determined and further reveal the mechanism of N deposition impact on plant growth,root morphology and nutrient absorption. The results showed that N addition increased the leafphotosynthesis and maximum net photosynthetic rate (Pmax), but reduced the material andenergy consumption, so the products were easier accumulated and the plant was easy to growthin the barren environment. However, when the N concentration was higher and the treatmenttime was longer, the leaf photosynthesis was reduced and material and energy consumptionwere increased, and the adaptability to low light conditions was reduced. N depositionincreased in leaf pigments contents and capacity of leaves light-harvesting, so it was beneficialto photosynthesis. But the carotenoid and solube protein content were reduced, the activity ofApase was decreased and MDA content reduced ether. N deposition had a certain effect onoxidative damage, but high concentrations of N deposition inhibited the plant chlorophyⅡcontent. The leaf solube protein content and activity of Apase were reduced significantly underlonger N deposition, and so as to the totle chlorophy content and chlorophy a/b. whencompaired with the comparison in longer time treatment, the totle chlorophy content andchlorophy a/b were increased, that means S.superba could increas the chlorophy a/b ratio tocompensate the photosynthesis decreased, thereby imroving the resistance.
     4. Effects of simulated N deposition on the plant growth and nutrients content inS.superba
     The effects of NH4NO3evevated from0to200kg N ha-1year-1on plant growth, biomassand N or P content in different organ were studied by carrying out a pot experiment withconditions of P deficiency (5.49mg·kg-1) and normal P suplly (60mg·kg-1). The resultsshowed that N addition had a positive effect on the growth of shoot and root of seedlings of S.superba no matter P was deficient or not. Early on, plant height, SBD, shoot biomass and totlebiomass were the highest among specimens subjected to N50treatment, but a decreasing trendwas observed when N treatment was increased to N200levels. The shoot growth was found tobe more sensitive to added N than root growth was under P deficiency. Roots showed a delayedresponse to N addition, and their growth and PUE increased at higher levels of added N. The N and C content and NAE were increased with N addition, while P content and PAE had nochange. The PAE and NAE were positively correlated with plant growth, dry matteraccumulation, and effective elements absorbtion could increase plant growth and biomass andfurther increasing of C reserves. The PUE was increased with N addition, but no increasingunder higher N concentration. However, NUE was decreased with N addition and treatment oftime. In the early time, RAR of S.superba was decreased under P deficiency; however, it wasincreased with the treatment time and seedlings age. The PAE, leaf P content and PUE of rootwere increased also, which means aged seedlings enhanced ability to adapt to the evilenvironment and increased the anti-barren capacity.
     5. Effects of simulated N deposition on growth and development of different provenancesof S.superba
     Under N deposition, the growth of different provenances was showed as:ZJLQ>FJJO>FJGT>HNGY>JXXF and ZJHZ. The ZJHZ provenance in the northern edge ofthe producing areas had stronger photosysthetic capacity. The shoot growth was increasedunder low concentration of N deposition and the leaf pigment and solube protein contentincreased. But the assimilation was not easy to accumulate and the root growth was slow. Thephotosynthesis of ZJHZ provenance was reduced under higher N concentration. The respirationcontinued increasing and shoot growth was reduced, whereas root was rapid developed. TheZJLQ and FJJO provenances in the central and southern central areas had strongerphotosynthetic ability and lower respiratory consumption, so the assimilation was easier toaccumulate and more adaptive to N deposition. Under low concentration N deposition,the>0.5mm diameter root growth was growth fast and root had stronger development. Thephotosynthetic ability was increased with N addition. The aboveground grown strongly andhad largest productivity under100N deposition, while the respiration was largest, so thebiomass could not accumulated and the production was lowest under200N deposition. Theaboveground growth of FJGT, JXXF and HNGY from southern sub-centers producing areashad similar performance as ZJHZ, such as lower photosynthetic capacity, moderate respirationand lower biomass accumulation. The root growth of these provenances was slow and even inhibited under N deposition. In addition, the provenances in the high altitudes had a developedroot system but a poor shoot growth because of the barren site and low temperatures in thatareas. N addition promoted root growth of these provenances and changed the root intothinning. The provenances in the low-altitude had better site environment, which has amplewater and fertilizer and suitable temperature. The suitable environment resulted in lessdeveloped root system and vigorous shoot growth. The root turn to be thicker and strongerunder N deposition and N and P absoption efficiency increased, so there was more dry matteraccumulated.
引文
Amy K, Veronica C, Neal B, et al. Ecophysiological responses of Schizachyrium scoparium to water andnitrogen manipulations. Great Plains Research,2006,16,29-36.
    Bauer GA, Bazzaz FA, Minocha R, et al. Effects of chronic N additions on tissue chemistry, photosyntheticcapacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE UnitedStates. Forest Ecology and Management,2004,196(1):173-186.
    Beebe SE, Pierce MR, Yan XL. Quantitative trait loci for root architecture traits correlated with phosphorusacquisition in common bean. Crop Science,2006,46:413-423.
    Boxman P, Blanck K, Brandrud TE, et a1. Vegetation and soil biota response to experimentally-changednitrogen inputs in coniferous forest ecosystems of the NITREX project. For Ecol Manage,1998,101:65-79.
    Brown KR, Thompson WA, Camm EL. Effects of N addition rates on the productivity of Picea sitchensis,Thuja plicata, and Tsuga heterophylla seedlings (Ⅱ): Photosynthesis,13C discrimination and Npartitioning in foliage. Trees,1996,10:198-205.
    Compton JE, Watrud LS, Porteous LA, et al. Response of soil microbial biomass andcommunitycomposition to chronic nitrogen additions at Harvard forest. For Ecol Manage,2004,196:143–158.
    Cole DW, Rapp M. Elemental cycling in forest ecosystems. In: Reichle DE ed. Dynamicproperties of forestecosystems. London: Cambridge University Press,1981,341-409.
    Cheng L, Fuchigami LH. Rubisco activation state decreases with increasing nitrogen content in apple leaves.Journal of Experimental Botany,2000,51:1687-1694.
    Chiera J, Thomas J, Rufty T. Leaf initiation and development in soybean under Phosphoms stress. J. Exp.Bot,2002,53:473-481.
    Crafts-Brandner SJ. Phosphorus nutrition influence on leaf senescence in soybean. Plant Physiol,1992,98:1128-1132.
    Craine JM, Fargione J, Sugita S. Supply pre-emption,not concentration reduction,is the mechanism ofcompetition for nutrients. New Phytol,2005,166:933-940.
    Desnos T. Root branching responses to phosphate and nitrate. Plant Biology,2008,11:82-87.
    Dordas CA, Sioulas C. Safflower yield, chlorophyll content, photosynthesis, and water use efficiencyresponse to nitrogen fertilization under rainfed conditions. Indus-trial Crops and Products,2008,27:75-85.
    Lauer MJ, Pallardy SG,Blevins DG, et al. Whole Leaf Carbon Exehange Characteristies of PhosphateDefieient Soybeans (Glycine max L.). Plant Physiology,1989,91:848-854.
    Lichtenthaler HK. ChlorophyⅡand carotenoids: Pigments of photosynthetic biomembrances. Methods inEnzymology,1987,148:349-382.
    Linkohr BI, Williamson LC, Fitter AH, et al. Nitrate and phosphate availability and distribution havedifferent effects on root system architecture of Arabidopsis. Plant Journal,2002,29:751-760.
    Emmett BA. Nitrogen Saturation of terrestrial ecosystems: some recent findings and their implications forour conceptual framework. Water Air Soil Pollut: Focus,2007,7:99-109.
    Evans JR. Nitrogen and Photosynthesis in the Flag Leaf of Wheat (Triticum aestivum L.). plant Physiol.1983,72:297-302.
    Evans JR. Developmental constraints on photosynthesis: effects of light and nutrition. In: Baker N.R. ed.Photosynthesis and the Environment. Netherlands: Kluwer Academic Publisher,1996,281-304.
    Foyer C, Spencer C. The relationship between phosphate status and photosynthesis in leaves. Effects ofintracellular orthophosphate distribution, photosynthesis and assimilate partitioning. Planta,1986,167:369-375.
    Furbank RT, Foyer CH, Walker DA. Regulation of photosynthesis in isolated spinach chloroplasts during orthophosphate limitation. Biochem, Biophysical Acta.,1987
    Fredeen AL, Rao IM, Terry N. Influence of Phosphorus nutrition on growth and carbon partitioning inGlycine max. Plant Physiology,1989,89:225-230.
    Friedrich JW, Huffaker RC. Photosynthesis, leaf resistances, and ribulose-1,5-bisphosphate carboxylasedegradation in senescing barley leaves. Plant Physiol,1980,65:1103-1107.
    Galloway JN, Cowling EB. Reactive nitrogen and the world:200years of change. Ambio,2002,31:64-71.
    Gniazdowska A, Rychter AM. Nitrate uptake by bean (Phaseolus vulgaris L.) roots under phosphatedeficiency. Plant and Soil,2000,226:79-85.
    Güsewell S. N:P ratios in terrestrial plants: variation and functional significance. New Phytologist,2004,164,243-260.
    Han WX, Fang JY, Guo DL, et al. Leaf nitrogen and phosphorus stoichiometry across753terrestrial plantspecies in China. New Phytologist,2005,168:377-385.
    Hall DO, Rao KK. Photosynthesis.4th ed. Edward Arnold Press Ltd.1988,98-123.
    Heineke D, Stitt M, Heldt HW. Effects of inorganic phosphate on the light deendent thylakoid energizationof intact spinach chloroplasts. Plant Physiology,1989,91:221-226.
    Hermans C, Hammond JP, White PJ, et al. How do plants respond to nutrient shortage by biomass allocation?Trends in Plant Science,2006,11:610-617.
    Ibrahim L, Proe MF, Cameron AD. Interactive effects of nitrogen and water availabilities on gas exchangeand whole-plant carbon allocation in popular. Tree Physiology,1998,18:481-487.
    Jackson RB, Mooney HA, Schulze ED. A global budget for fine root biomass, surface area and nutrientcontents. Proceedings of the National Academy of Sciences of USA,1997,94:7362-7366.
    Jacob J, Lawlor DW. Stomatal and mesophyⅡ limitations of photosynthesis in phosphate deficientsunflower, maize and wheat plants. Journal of Experimental Botany,1991,42(8):1003-1011.
    Johnson DW. Effects of forest management on soil carbon storage. Water, Air, Soil Pollution,1992,64:83-120.
    Johansson O, Nordin A, Olofsson J, et al. Responses of epiphytic lichens to an experimental whole-treenitrogen-deposition gradient. New Phytologist,2010,188:1075-1084.
    Hammond JP, Broadley MR, White PJ. Genetic responses to phosphorus deficiency. Annals of Botany,2004,94:323-332.
    Huang CY, Shirley N, Genc Y, et al. Phosphate utilization efficiency conrrelates with expression oflow-affinity phosphate transporters and noncoding RNA, IPS1, in Barley. Plant Physiology,2011,156:1217-1229.
    Hunt HW, Morgan JA, Read JJ. Simulation growth and root-shootpartitioning in prairie grasses underelevated atmospheric CO2and water stress. Annals of Botany.1998,81:489-501.
    Keene WC, Montag JA, Maben JR, et al. Organic nitrogen in p recip itation over Eastern North America.Atmos pheric Environment,2002,36:4529-4540.
    Khamis S, Chailous S, Lamze T. CO2assimilation and partitioning of carbon in maize plants deprived oforthophosphate. J. Experim. Bot.,1990,41:1619-1625.
    Koerselman W, Meuleman AFM. The vegetation N:P ratio: a new tool to detect the nature of nutrientlimitation. Journal of Applied Ecology,1996,33:1441-1450.
    Kondracha A, Rychter AM. The role of P recycling processes during photosynthesis in phosphate-deficientplant. J. Exp. Bot,1997,48:1461-1468.
    Lawlor DW, Kontturi M, Young AT. Photosynhtesis by flag levaes of wheat in relation to Protein, ribulosebisphosphate carboxylase activity and nitrogen supply. Jounral of Experimental Botany.1989,40:43-52.
    Lee M, Phillips RL. The chromosomal basis of soma clonal variation. An n Rec Plant Physical Plant MolBiol,1988,39:413-437.
    Li RM, Ckeand SE, Allen HL, et al. Genetic variation in nitrogen use efficiency of loblolly pine seedlings.Forest Science,1991,37(2):613-626.
    Li LH, Qiu XH, Li XH, et al. The expression profiles of genes in rice roots under low phosphorus stress.Science in China Series C: Life Sciences,2009,52(11):1055-1064.
    Liao HX, Yan G, Rubio SE, et al. Genetic mapping of basal root gravitropism and phosphorus acquisitionefficiency in common bean. Plant Biology,2004,31:959-970.
    Lindahl BD, Ihrmark K, Boberg J, et al. Spatial separation of litter decomposition and mycorrhizal nitrogenuptake in a boreal forest. New Phytologist.2007,173(3):611-620.
    Linkohr BI, Williamson LC, Fitter AH, et al. Nitrate and phosphate availability and distribution havedifferent effects on root system architecture of Arabidopsis. The Plant Journal.2002,29:751-760.
    Liu PW, Ivanov II, Filleur S, et al. Nitrogen regulation of root branching. Annals of Botany,2006,97:875-881.
    Maga a RH, Adamowicz S, Pag s L. Diel changes in nitrogen and carbon resource status and use for growthin young plants of tomato (Solanum lycopersicum). Annals of Botany.2009,103:1025-1037.
    Magill AH, Aber JD, Bernstson GM, et al. Long-term nitrogen additions and nitrogen saturation in twotemperate forests. Ecosystems,2000,3:238-253.
    Maillard P, Guehl JM, Muller JF, et al. Interactive effects of elevated CO2concentration and nitrogen supplyon partitioning of newly fixed C and N between shoots and roots pedunculate oak seedlings (Quercusrobur). Tree Physiology.2001,21:163-172.
    Majdi H, Nylund JE. Does liquid fertilization affect fine root dynamics and lifespan of mycorrhizal shortroots. Plant and Soil.1996,185:305-309.
    Majdi H. Changes in fine root production and longevity in relation t water and nutrient availability in aNorway spruce stand in northern Sweden. Tree Physiology.2001,21:1057-1061.
    Mari S, Jansson G, Jonsson A. Genetic variation in nutrient utilization and growth traits in Picea abiesseedlings. Scandinavian Journal of Forest Research.2003,18:19-28.
    Marschner H, Kirkby EA, Cakmak T. Effect of mineral nutritional statuson shoot-root partitioning ofphotoassilates and cycling of mineral nutrients. J Exp Bot,1996,47:1255-1263.
    Marschner P. Marschner's Mineral Nutrition of Higher Plants.3th edn. Academic Press.2012.
    Mattos DJ, Graets DA, Alva AK. Biomass distribution and nitrogen-15partitioning in citrus trees on a sandyentisol. Soil Sci. Ameri. J.2003,67:555-563.
    Miller AJ, Smith SJ. Cytosolic nitrate ion homeostasis: could it have a role in sensing nitrogen status?Annals of Botany,2008,101:485-489.
    Mo JM, Li DJ, Gundersen P. Seedling growth response of two tropical tree species to nitrogen deposition insouthern China. European Journal of Forest Research,2008,127:275-283.
    Mollier A, Pellerin S. Maize root system growth and development as influenced by phosphorous deficiency.J. Experim. Bot.,1999,50:487-497.
    Nakaji T, Fukami M, Dokiya Y, et al. Effects of high nitrogen load on growth, photosynthesis and nutritrientstatus of Cryptomeria japonica and Pinus densiflra seedlings. Trees,2001,15:4533-461.
    Nakaji T, Takenaga S, Kuroha M, et al. Photosynthetic response of Pinus densiflora seedlings to highnitrogen load. Environmental Sciences,2002,9(4):269-282.
    Nakano H, Makino A, Mae T. The effects of elevated partial pressures of CO2on the relationship betweenphotosynthetic capacity and N content in rice leaves. Plant Physiology,1997,115:191-198.
    Nielsen KL. Root architecture and phosphorus acquisition efficiency in common bean (Phaseolus vulgarisL.). Dissertation in the Pennsylvania State University, USA. London: Academic Press.1997,69-94.
    Usuda H, Shimogawara K. Phosphate deficiency in Maize, I. leaf phosphate status, growth, photosynthesisand carbon partitioning. Plant Cell Physiology,1991,2:497-504.
    Pearse SJ, Veneklaas EJ, Cawthray G, et al. Triticum aestivum shows a greater biomass response to a supplyof alurninium phosphate than Lupinus albus, despite releasing fewer carboxylates into the rhizosphere.New Phytologist,2006,169:515-524.
    Persson H, Ahlstr m K, Clemensson AL. Nitrogen addition and removal at G rdsj n-effects on fine-rootgrowth and fine-root chemistry. Forest Ecology and Management,1998,101:199-206.
    Prioul IL, Chartier P. Partitioning of transfer and carboxylation components of intracellular resistance tophotosynthetic CO2fixation: a critical analysis of the methods used. Annals of botany,1977,41(4):789-800.
    Ray D, Sheshshayee MS, Mukhopadhyooy K, et al. High nitrogen use efficiency in rice genotypis isassociated with higher net photosynthetic rate at lower rubisco content. Biologia plantarum,2003,46:251-256.
    Rao IM, Terry N. Leaf phosphate status and photosynthesis in vivo in sugar beet. I changes in growth,photosynthesis and calvin cycle enzymes. Plant Physiology,1989,90:814-819.
    Remans T, Nacry P, Pervent M, et al. A central role for the nitrate transporter NRT2.1in the integratedmorphological and physiological responses of the root system to nitrogen limitation in Arabidopsis.Plant physiology,2006,140:909-921.
    Reich PB, Walters MB, Ellsworth DS, et al. Photosynthesis-nitrogen relations in Amazonian tree speciesⅠ.Patterns among species and communities. Oecologia,1994,97:73-81
    Richardson AD, Berlyn GP. Spectral reflectance and photosynthetic properties of Betula papyrifera(Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA. American Journalof Botany,2002,89,88-94.
    Ristvey AG, Lea-Cox JD, Ross DS. Nitrogen and phosphorus uptake effciency and partitioning ofcontainer-grown azalea during spring growth. Journal of the American Society for HorticulturalScience,2007,132:563-571.
    Ruan JY, Gerend s J, H rdter R, et al. Effect of nitrogen form and root-zone pH on growth and nitrogenuptake of Tea (Camellia sinensis) plants. Annals of Botany,2007,99:301-310.
    Sas L, Rengel Z, Tang CX. The effect of nitrogen nutrition on cluster root formation and proton extrusion byLupinus albus. Annals of Botany,2002,89:435-442.
    Schulze J, Temple G, Temple SJ, Beschow H, Vance CP. Nitrogen fixation by White Lupin under phosphorusdeficiency. Annals of Botany,2006,98:731-740.
    Shu L, Shen J, Rengel Z, et al. Formation of cluster roots and citrate exudation by Lupinus albus in responseto localized application of different phosphorus sources. Plant Science,2007,172:1017-1024.
    Sickman JO, LeydeckerA, Melack JM. Nitrogen mass balances and abi otic contr ols on N retention andyield in high2elevati on catchments of theSierra Nevada, California, United States. Water Res ourcesResearch,2001,37:1452-1461.
    Sinclair TR. Nitrogen influence on the physiology of crop yield. In: Theoretical production Ecology:Reflections and Prospects. Rabbing, R.,1990,41-55.
    Sivak MN, Walker DA. Photosynthesis in vivo can be limited by phosphate supply. New Phytol,1986,102:499-512.
    Sollins P, Robertson GP, Uehara G. Nutrient mobility in variable-and permanent-charge soils.Biogeochemistry,1988,6:181-199.
    Stanford G, Smith SJ. Nitrogen mineralization potentials of soils. Soil Sci Soc Amer Proc,1972,36:465-472.
    Theobald JC, Mitchell RAC, Parry MAF, et al. Estimating the excess investment inribulose-l,5-bisphosphate carboxylase/oxygenase in levaes of spring wheat grown under elevated CO2.Plant Physiology,1998,118:945-955.
    Thomas DS, Montagu KD, Conroy JP. Leaf inorganic phosphorus as a potential indicator of phosphorusstatus, hotosynthesis and growth of Eucalyptus grandis seedlings. Forest Eeology and Management,2006,223:267-274.
    Vance CP. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a wet tropical forest.Ecosystem,2004,7:404-419.
    Vander WA, Nagel OW. Carbon allocation to shoots and roots in relation to nitrogen supply is mediated bycytokinins and sucrose: Opinion. Plant and Soil.1996,185:21-32.
    Walley F, Yates T, Groenigen JW, et al. Relationships between soil nitrogen availability indices, yield, andnitrogen accumulation of wheat. Soil Science Society of America Journal,2002,66(5):1549-1561.
    Walker DA, Robinson SP. Chloroplast and cell. A comtemporary view of photosynthetic carbon assimilation.Ber. Dtsch. Bot. Ges,1978,91:1147-1157.
    Warren CR, Dreyer E, Adams MA. Photosynthesis-Rubisco relationships in foliage of Pinus sylvestris inresponse to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stores. Tree,2003,17:359-366.
    Wang L, Mou PP, Jones RH. Nutrient foraging via physiological and morphological plasticity in three plantspecies. Canadian Journal of Forest Research,2006,36,164-173.
    Welker JM, Gordon DR, Rice KJ. Capture and allocation of nitrogen by Quercus douglasii seedlings incompetition with annual and perennial grasses. Oecologia,1991,87(4):459-466.
    Wittenbach VA. Ribulose bisphosphate carboxylase and proteolytic activity in wheat leaves from anthesisthrough senescence. Plant Physiol,1979,64:884-887.
    Wu C, Wang ZQ, Fan ZQ, et al. Effects of different concentrations and form ratios of nitrogen onchlorophyll biosynthesis, photosynthesis, and biomass partitioning in Fraxinus mandshurica seedlings.Chinese Journal of Plant Ecology,2003,27(6):771-779.
    Xu ZZ, Zhou GS. Nitrogen metabolism and photosynthesis in Leymus chinensis in respponse to longtermsoil drought. Journal of Plant Growth Regulation,2006,25(3):252-266.
    Yang XJ, Finnegan PM. Regulation of phosphate starvation responses in higher plants. Annals of Botany,2010,105:513-526.
    Zerhun A, Gutschick VP, Bassirirad H. Compensatory roles of nitrogen uptake and photosynthetic N-useefficiency in determining plant growth response to elevated CO2: evaluation using a functional balancemodel. Annals of Botany,2000,86:723-730.
    Zhang FC, Kang SZ, Zhang JH, et al. Nitrogen fertilization on uptake of soil inorganic phosphorus fractionsin the Wheat root zone. Soil Science Society of America Journal,2004,68:1890-1895.
    Zhang HM, Jennings A, Barlow PW, et al. Dual pathways for regulation of root branching by nitrate.Proceedings of the National Academy of Sciences of the USA,1999,96:6529-6534.
    Zhang Y, Zhou ZC, Ma XH, et al. Foraging ability and growth performance of four subtropical tree speciesin response to heterogeneous nutrient environments. Journal of Forest Research,2010,15(2):91-98.
    Zhang Y, Zhou ZC, Ma XH. Genetic variations in root morphology and phosphorus efficiency of Pinusmassoniana under heterogeneous and homogeneous low phosphorus conditions. Plant Soil,2012a,8.
    Zhang Y, Ma XH, Zhou ZC. The influence of light conditions and interspecific competition on the rootforaging traits and seedling growth of two tree species. Plant Biosystem,2012b,15:1-8.
    敖雪,谢甫绨,张惠君,等.磷素处理对不同磷效率基因型大豆根系性状的影响.大豆科学.2008,27(5):787-791.
    陈锦强,李明启.不同氮素营养对叶片的光合作用、光呼吸的影响及光呼吸与硝酸还原的关系.植物生理学报,1983,3:251-259.
    陈琳,曾杰,徐大平,等.氮素营养对西南桦幼苗生长及叶片养分状况的影响.林业科学,2010,46(5):35-40.
    陈义,唐旭,杨生茂,等.杭州稻麦菜轮作地区大气氮湿沉降.生态学报,2009,29(11):6102-6109.
    代向阳,徐程扬,马履一.氮磷配比对水曲柳光合作用的影响.山东林业科技,2006,2:1-6.
    段巍巍,赵红梅,郭程瑾,等.夏玉米光合特性对氮素用量的反应.作物学报,2007,33(6):949-954.
    樊明寿,孙亚卿,邵金旺,等.不同形态氮素对燕麦营养生长和磷素利用的影响.作物学报,2005,31(1):114-118.
    樊瑞怀,杨水平,周志春,等.氮素营养对马褂木家系苗木生长效应分析.林业科学研究,2009,22(1):85-90.
    高家合,邓碧儿,曾秀成,等.烟草磷效率的基因型差异及其与根系形态构型的关系.西北植物学报.2010,30(8):1606-1613.
    葛体达,唐东梅,芦波,等.番茄根系分泌物、木质部和韧皮部汁液组分对矿质氮和有机氮营养的响应.园艺学报,2008,35(1):39-46.
    郭程瑾,李宾兴,王斌,等.不同磷效率小麦品种的光合特性及其生理机制.作物学报,2006,32(8):1209-1217.
    郭盛磊,阎秀峰,白冰,等.供氮水平对落叶松幼苗光合作用的影响.生态学报,2005,25(6):1291-1298.
    龚子同.红壤研究的土壤地球化学方向.见:中国科学院南京土壤所.李庆逵与我国土壤科学的发展.南京:江苏科学技术出版社,1992:19-27.
    江俐妮,魏红旭,刘勇,等.长白落叶松播种苗根系形态可塑性与氮素空间异质性关系.东北林业大学学报,2010,38(1):24-27.
    康利允,李世清.分层供水施磷对冬小麦生长及水分利用效率的影响.中国农业科学,2012:45(1):85-92.
    李德军,莫江明,方运霆,等.模拟氮沉降对三种南亚热带树苗生长和光合作用的影响.生态学报,2004,24(5):876-882.
    李德军,莫江明,方运霆,等.模拟氮沉降对南亚热带良种乔木幼苗生物量及其分配的影响.植物生态学报,2005,19(4):543-549.
    李丹,付玉嫔,杨卫,等.不同氮磷水平对云南松幼苗光合生理及生物量的影响.安徽农业科学,2010,6:3217-3219.
    李海波,王小兵,夏铭,等.不同氮、磷状况对水稻根生长及细胞周期蛋白激酶(CDKs)基因表达的影响.植物生理与分子生物学学报,2002,28(1):59-64.
    李键,黄锦湖,洪滔,等.低磷胁迫对雷公藤幼苗形态指标及生物量的影响.亚热带植物学报,2012,20(5):482-488.
    廖红,严小龙.菜豆根构型对低磷胁迫的适应性变化及基因型差异.植物学报,2000,42:158-163.
    廖红,严小龙.菜豆根形态特性的基因型差异与磷效率.植物学报,2001,43:1161-1166.
    林磊,周志春.水分和磷素对木荷不同种源苗木生长和磷效率的影响.应用生态学报,2009°,20(11):2617-2623.
    林磊,周志春,范辉华,等.木荷稳定碳同位素分辨率的种源差异.应用生态学报,2009b,20(4):741-746.
    林晓明,徐程扬,王奇峰,等.氮、磷对107杨苗木生物量的影响.东北林业大学学报,2011,2:13-16.
    李明启.作物光合效率与产量的关系及影响光合效率的内在因子.植物生理学通讯,1980,2:1-8.
    刘菊秀,周国逸,褚国伟,等.鼎湖山季风常绿阔叶林土壤酸度对土壤养分的影响.土壤学报,2003,40(5):763-767.
    刘希华,丁昌俊,张伟溪,等.不同基因型欧洲黑杨幼苗氮素利用效率差异及其机理初探.林业科学研究,2010,23(3):368-374.
    李振声,朱兆良,章申,等.挖掘生物高效利用土壤养分潜力保持土壤环境良性循环.北京:中国农业出版社,2004
    李志刚,谢甫绨,张玉玲,等.磷胁迫对大豆不同磷素基因型光合作用的影响.内蒙古民族大学学报(自然科学版),2004,19(3):297-309.
    刘青华,金国庆,张蕊,等.24年生马尾松生长、形质和木材基本密度的种源变异与种源区划.林业科学,2009,45:55-61.
    鲁显楷,莫江明,李德军,等.鼎湖山主要林下层植物光合生理特性对模拟氮沉降的响应.北京林业大学学报,2007,29(6):1-9.
    鲁如坤.我国土壤氮、磷、钾的基本状况.土壤学报,1989,26(3):280-286.
    陆文龙,曹一平,张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用.应用生态学报,1999,10(3):379-382.
    何萍,金继运,林葆.氮肥用量对春玉米叶片衰老的影响及其机理研究.中国农业科学,1998,31(3):66-71.
    胡正华,李涵茂,杨燕萍,等.模拟氮沉降对北亚热带落叶阔叶林土壤呼吸的影响.环境科学,2010,31(8):1726-1732.
    何园球.我国热带亚热带森林土壤肥力状况与利用途径.见红壤生态研究(第二集)南昌:江西科学技术出版社,1993:16-22.
    马祥庆,刘爱卿,黄宝龙.氮素高效基因型杉木无性系的选择研究.林业科学,2002,38(6):53-57.
    马祥庆,梁霞.植物高效利用磷机制的研究进展.应用生态学报,2004,15(4):712-716.
    马雪华.在杉木林和马尾松林中与水的养分淋溶作用.生态学报,1989,9(1):15-20.
    马雪红,周志春,金国庆,等.竞争对马尾松和木荷觅取异质分布养分行为的影响.植物生态学报,2009,33(1):81-88.
    孟范平,李桂芳.酸雨对土壤元素化学行为的影响.中南林学院学报,1998,18(1):27-33.
    彭明俊,郎南军,吴涛,等.不同供氮水平对膏桐幼苗生长的影响.西北林学院学报,2010,25(3):97-100.
    祁瑜,黄永梅,王艳,等.施氮对几种草地植物生物量及其分配的影响.生态学报,2011,31(18):5121-5129.
    曲文章,菜伯岩,高妙真,等.氮素水平对甜菜光合速率的影响.中国甜菜糖业,1999,4:1-4.
    史正军,樊小林, D KLAUS,等.根系局部供氮对水稻根系形态的影响及其机理.中国水稻科学,2005,19(2):147-152.
    史建伟,王孟本,于立忠,等.土壤有效氮及其相关因素对植物细根的影响.生态学杂志,2007,26(10):1634-1639.
    孙成志,谢国恩,李萍.杉木地理种源材性变异及建筑材优良种源评估.林业科学,1993,29:429-436.
    遆超普,颜晓元.基于氮排放数据的中国大陆大气氮素湿沉降量估算.农业环境科学学报,2010,29(8):1606-1611
    王剑,周志春,饶龙兵,等.马褂木种源磷效率特性差异研究.林业科学研究,2006a,19(2):211-215.
    王琪,徐程扬.氮磷对植物光合作用及碳分配的影响.山东林业科技,2005,160:59-62.
    王政权,张彦东,王庆成.氮、磷对胡桃楸幼苗根系生长的影响.东北林业大学学报,1999,27(1):1-4.
    王体键,刘倩,赵恒,等.江西红壤地区农田生态系统大气氮沉降通量的研究.土壤学报,2008,45(2):280-287.
    王树起,韩晓增,乔云发,等.低分子量有机酸对大豆根系形态和磷素吸收积累的影响.大豆科学,2009,28(2):210-216.
    王小治,朱建国,高人,等.太湖地区氮素湿沉降动态及生态学意义:以常熟生态站为例,2004,15(9):1616-1620
    王秀花,陈柳英,马丽珍,等.7年生木荷生长和木材基本密度地理遗传变异及种源选择.林业科学研究,2011,24(3):307-313.
    王月福,于振文,潘庆民.不同水分处理对耐旱性不同小麦品种旗叶衰老的影响.西北植物学报,2002,22(2):303-308.
    王月福,于振文,李尚霞,等.不同施肥水平对不同品种小麦籽粒蛋白质和地上器官游离氨基酸含量的影响.西北植物学报,2003,23(3):417-421.
    吴茜,丁佳,闫慧,等.模拟降水变化和土壤施氮对浙江古田山5个树种幼苗生长和生物量的影响.植物生态学报,2011,35:256-267.
    徐永健,陆开宏,管保军.不同氮磷浓度及氮磷比对龙须菜生长和琼胶含量的影响.农业工程学报,2006,22(8):209-213.
    肖辉林.大气氮沉降对森林土壤酸化的影响.林业科学,2001,37(4):111-116.
    肖庆礼.南阳烟区不同磷含量土壤施磷对烤烟生长发育和产质量的影响.河南农业大学,2009.
    谢迎新,张淑利,冯伟,等.大气氮素沉降研究进展.中国生态农业学报,2010,18(4):897-904.
    薛璟花,莫江明,李炯,等.氮沉降对外生菌根真菌的影响.生态学报,2004,24(8):1785-1792.
    尹逊霄,华珞,张振贤,等.土壤中磷素的有效性及其循环转化机制研究.首都师范大学学报,2005,26(3):95-101.
    殷秀敏,伊力塔,余树全,等.酸雨胁迫对木荷叶片气体交换和叶绿素荧光参数的影响.生态环境学报,2010,19:1556-1562.
    余琳,张萍,周志春,等.木荷种源苗期干物质积累和分配差异.林业科学研究,2005,18(1):91-94.
    赵俊晔,于振文,李延奇,等.施氮量对小麦氮磷钾养分吸收利用和产量的影响.西北植物学报,2006,26(1):98-103.
    赵琼,曾德慧.林木生长氮磷限制的诊断方法研究进展.生态学杂志.2009,28(1):122-128.
    张福锁,林翠兰,曹一平.植物磷营养基因型差异的机理.北京农业大学学报,1992:23-27.
    张福锁,崔振岭,王激清.中国土壤和植物养分管理现状与改进策略.植物学通报,2007,24(6):687-694.
    张俊英,王敬国,许永利,等.氮素对不同大豆品种根系分泌物中有机酸的影响.植物营养与肥料学报,2007,13(3):398-403.
    张岁岐,山仑.土壤干旱条件下氮素营养对玉米内源激素含量影响.应用生态学报,2003,14(9):503-506.
    张志良.植物生理学试验指导.高等教育出版社,北京,1990.
    张萍,金国庆,周志春,等.木荷苗木性状的种源变异和地理模式.林业科学研究,2004,17(2):192-198.
    张萍,周志春,金国庆,等.木荷种源遗传多样性和种源区初步划分.林业科学,2006,42(2):38-42.
    张睿.半湿润农田生态系统不同施肥处理对小麦籽粒中氮、磷、钾含量和累积量的效应.西北植物学报,2005,25(1):150-154.
    张蕊,王艺,金国庆,等.施氮对木荷3个种源幼苗根系发育和氮磷效率的影响.生态学报,2013.33(12).
    郑利霞,刘学军,张福锁.大气有机氮沉降研究进展.生态学报,2007,27(9):3828-3834.
    周建朝,范晶,王孝纯,等.磷胁迫下不同基因型甜菜的光合特征.植物营养与肥料学报,2009,4:910-916.
    周志春,谢钰容,金国庆,等.马尾松磷效率及相关性状的家系遗传和变异.北京林业大学学报,2004,26(6):1-5.
    周志春,谢钰容,金国庆,等.马尾松种源磷效率研究.林业科学,2005,41(4):25-30.
    周志春,范辉华,金国庆,等.木荷地理遗传变异和优良种源初选.林业科学研究,2006,19,718-724.
    朱明,刘兆普,徐军田,等.不同氮磷水平对缘管浒苔生长及光合作用的影响.海洋湖沼通报,2011,3:57-61
    朱兆良,文启孝主编.中国土壤氮素.南京:江苏科学技术出版社,1992.
    庄文化,吴普特,冯浩,等.土壤中施用聚丙烯酸钠保水剂对冬小麦生长及产量影响.农业工程学报,2008,24:37-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700