用户名: 密码: 验证码:
川白芷资源评价与植物激素对其生长发育和产量品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白芷为川产道地大宗药材之一,生产中存在优良品种缺乏,以及种植过程中容易出现早期抽薹等现象,严重影响其产量品质。一般地,良种配良法是获取优质高产的重要途径。本试验利用ISSR分子标记技术对主产于四川的不同白芷栽培类群进行了遗传多样性分析,并开展了川白芷不同品系在不同地点的农艺性状、产量和主要有效成分含量分析。同时利用高效液相色谱技术考察了激素在白芷早期抽薹过程中的动态变化,探讨了川白芷早薹与内源激素间内在联系。在此基础上,采用不同植物生长调节剂在莲座期对川白芷进行处理,以筛选出适宜提高白芷药材产量和主要有效成分含量的处理。鉴于植物生长发育和次生代谢活动共同受激素特别是生长素和乙烯调节,其中生长素的时空分布和信号转运对植物生长和次生代谢有重大影响。本试验还以模式植物拟南芥为材料,利用反向遗传学对生长素信号转运途径中早期响应因子进行分析,考察其在植物叶片器官生长发育进程和衰老降解过程中的分子作用机理,主要研究结果如下:
     1川白芷资源遗传多样性的ISSR分析
     本试验采用简单序列重复区间(Inter-simple sequence repeat, ISSR)标记技术对来自包括川白芷道地主产区(四川遂宁)各乡镇、以及浙江、重庆等地16份不同白芷种质资源材料进行遗传多样性分析,建立了适用于白芷ISSR反应的优化程序和反应条件,所得结果条带清晰,稳定性好;从35个ISSR引物中共筛选出15个多态性明显、反应稳定的引物。在16份供试材料DNA样本中共扩增出99条谱带,其中多态性条带38条,占总条带的38%。基于地理位置的遗传相似系数分析结果表明,不同地理来源材料间ISSR标记遗传相似性系数(GS)在0.821-0.994之间,各供试材料间遗传差异不大。其中,来源于浙江的杭白芷与主产于四川的川白芷材料间遗传相似系数平均值大于各川白芷材料间遗传相似系数平均值。表明四川各地川白芷材料亲缘关系相对较近。基于ISSR的聚类结果与地理分布有一定关系,16份供试材料共分为两大类,一类全部为遂宁各乡镇白芷材料。另一类包括杭白芷、四川其他地区白芷、重庆南川白芷以及两份来自遂宁涪河以南2个乡镇的白芷材料。
     2川白芷不同品种(系)主要农艺性状、产量及有效成分含量分析
     本试验以“川芷1号”白芷品种为对照,比较了课题组多年来经过混合选择筛选出的4个优良白芷品系(编号CX08-2,CX08-5,CX08-7和CX08-9)在5个不同种植地点的主要农艺性状、产量及欧前胡素和异欧前胡素含量。结果表明,品系和环境对川白芷的产量和质量均有显著影响。筛选出的白芷新品系CX08-2、CX08-9表现较优,其中CX08-2是从来自重庆南川收集的白芷材料中选择出来的新品系。其干重及鲜重均最高,分别达到1773.3kg/667m2及673.2kg/667m2,较对照川芷1号分别增产31.1%和39.2%,其有效成分含量符合《中华人民共和国药典》(2010版一部)要求,是一个高产优质的新品系。遂宁比雅安更适宜川白芷的种植。
     3内源激素提取和高效液相色谱法同步测定
     川白芷生产以栽培为主,早期抽薹率较高是影响其生产的重要因素。为深入理解内源激素在川白芷早期抽薹中的作用,对其不同器官内源激素进行了提取测定方法的优化。建立了一种从川白芷不同器官组织中快速提取纯化并同步测定4种植物内源激素(玉米素、赤霉素、3-吲哚乙酸和脱落酸)的高效液相色谱分析方法,即将川白芷不同器官组织样品经80%甲醇提取后低温浓缩,最后用甲醇定容。采用Tigerkin C18柱(150mm×4.6mm,5μm)以甲醇-0.6%乙酸(50:50)为流动相进行高效液相色谱分离,PDA光电二极管阵列检测器检测,采用峰面积外标法(ESTD)进行定量。结果表明,该方法具有简单快捷,准确灵敏等优点,适合对川白芷内源激素进行快速同步测定。
     4抽薹期内源激素动态变化
     应用上述高效液相色谱法,检测白芷早期抽薹过程中叶片4种植物内源激素(玉米素、赤霉素、3-吲哚乙酸和脱落酸)含量的动态变化。发现白芷早期抽薹叶片中较高浓度赤霉素对其早期抽薹有促进作用,而不同器官中植物内源激素含量差异对白芷早期抽薹也有一定的影响。同时利用外源植物生长调节剂赤霉素及其生物合成抑制剂CCC在莲座期进行叶面喷施,考察这些处理对内源赤霉素含量的影响。结果发现外源赤霉素诱导内源赤霉素升高,而CCC则降低内源赤霉素含量。
     5植物生长调节剂对白芷早期抽薹及其产量品质的影响
     用5种不同植物生长调节剂矮壮素(CCC)、缩节胺(PIX)、赤霉素(GA3)、多效唑(PP333)、马来酰肼(MH)在莲座期处理川白芷,田间调查抽薹率,收获期考察主要农艺性状及产量指标,应用高效液相色谱(HPLC)检测白芷根中欧前胡素和异欧前胡素的含量。研究表明,除较高浓度(100和170mg/L)的外源赤霉素对川白芷早期抽薹有促进作用,其它植物生长调节剂均有不同程度的抑制作用。在较低浓度(30mg/L)时,赤霉素对白芷早期抽薹和主要有效成分含量影响不大。但其对植株生长有较好的促进作用,进而促进了产量的提高(较对照增长30%)。但植物激素在川白芷生长发育和代谢活动中作用的分子机制尚待于进一步深入研究。
     6生长素早期响应因子(SAUR36)调控拟南芥叶片衰老的分子机理
     为更好理解激素时空分布和信号转导对植物生长和次生代谢活动的影响,利用TAIR平台,通过反向遗传学手段在模式植物拟南芥中近500个与衰老进程相关基因中筛选到一个生长素早期响应因子,发现其与植物衰老表型相关。进一步研究表明:1)该生长素早期响应因子(SAUR36)受生长素诱导表达上升。2)拟南芥叶片衰老过程中该基因表达上调。3) SAUR36敲除突变体植株叶片衰老显著延迟,但叶片较野生型大,说明SAG201/SAUR36基因可能抑制细胞伸展。4)诱导型过表达该SAUR36基因导致叶片衰老提前,叶绿素降解加快,离子渗透率增高。这些研究对调控植物器官生物产量和品质有重要作用。但这只是初步的研究,而且只是在模式植物拟南芥中进行了验证。在其他植物特别是药用植物中的深入研究将对改进药用植物产量和品质有重要参考价值。
Angelica dahurica is one of genuine medicinal materials from Sichuan Provience that is commonly used in China. The lack of good varieties and high premature bolting rate in the production of cultivation may seriously affect the yield and quality of the product. Generally, selecting of fine variety as well as optimized cultural technique will be beneficial to the high quality and production of Angelica dahurica. Using molecular marker technology, we analysised the genetic diversity of this plant from various populations which mainly in Sichuan Province. Agronomic characters, yield and the contents of main bioactive constituents of Angelica dahurica were compared among different strains in various locations. We also researched the plant endogenous hormones that regulate premature bolting, which could seriously affect the yield and quality of Radix Angelicae Dahuricae. Then we selected the best of plant growth regulators which would promote the growth and improve the quality of this medical material. The growth and secondary metabolism are both influenced by phytohormone including auxin and ethylene, among which the spatial-temporal distribution and signal transduction of auxin are more interesting. Reverse genetics was used to analyze the SMALL AUXIN UP RNA (SAUR) gene in the auxin signal transduction pathway in Arabidopsis thaliana, and the molecular mechanism of this factor in the leaf growth, development and senescence was elaborated. The main results are as follows:
     1Genetic diversity of Angelica dahuricaaccessions analyzed by ISSR
     Inter-simple sequence repeat (ISSR) method was applied to detect genetic variation of Angelicae dahuricae accessions from Suining of Sichuan Province. ISSR reaction system suitable to Angelicae dahuricae was optimizeded and the results of ISSR annlysis was clear and high stabilization. Fifteen primers were selected from35ISSR primers, and99DNA fragments were amplified from16samples. Of which,38fragments were polymorphic (percentage of polymorphic bands was38%. The analysis of genetic similarity showed that genetic variability among the different populations was low with genetic similarities among all accessions ranged from0.821to0.994. While the average of genetic similarity coefficient between Angelica dahurica var. formosana from Zhejiang provinceand Angelica dahurica var. formosana from Sichuan Province was larger than the data among Angelica dahurica var. formosana from Sichuan Province. The study proved that the phylogenetic relationships among populations of Angelica dahurica var. formosana from Sichuan were relatively closer. UPGMA cluster based on genetic similarity divided the16accessions into two groups, and there was some relation between the results of UPGMA and the geographical distribution of the samples. Samples from one group were all from Suining, and the other group included samples from Zhejiang, Chongqing and other areas in Sichuan.
     2Main agronomic traits, yield and quality of5varieties of Angelica dahurica var. formosana
     Using "chuanzhi N.ol" as the control, four A. dahurica strains bred by mixed selection method by our research group were planted in five different regions, the agronomic traits, yield and quality of the5strains were compared. The results showed that both the strains and the environment had siginificant influence on the yield and quality of A. dahurica. The selected new strains CX08-2and CX08-9were the best of them, and CX08-2is the strain selected from Nanchuan of Chongqing. The fresh weight and the dry weight of CX08-2was1773.3kg/667m2and673.2kg/667m2, increased31.1%and39.2%respectedly, compared with the control. And the chief effective component contents were up to the requirements of pharmacopeia. It was a new high-quality and high-yield strain.
     3Extraction, purification and synchronous determination of endogenous hormones in Angelica Dahurica with HPLC
     For now, purposive cultivation is the main source for the production of A. dahurica in Sichuan Province, and the yield and quality would be reduced destructively for the high rate of premature bolting in this plant. To investigate the role of phytohormone in the process of premature bolting, a simple and rapid High Pressure Liquid Chromatography (HPLC) method for the simultaneous determination of four representative endogenous hormones Gibberellic acid (GA3), Zeatin (ZT), Indoleaceticacid (IAA) and Abscisic acid (ABA) in Angelica dahurica.is described. Endogenous hormones can be extracted using ethanolsolution (80%, V/V) under low-temperature condition. Then theextracting sample were separated by HPLC with a C18ODS column (150mm×4.6mm,5μm) using methanol-0.6%acetic acid (50:50, v/v) as mobile phase. And the signal was detected by Photodiode Array (PDA), the external standard method (ESTD) was employed for quantitative analysis. The experimental results demonstrated this method is an accurate and high-separation-efficiency technique to analyze trace amounts of the four endogenous hormones in various organs of A. dahurica.
     4Dynamic change of hormone during premature bolting
     Four endogenous hormones GA3, ZT, IAAand ABA in leaves during the premature bolting were detected using high pressure liquid chromatography (HPLC). And hormone diversities in different organs during early bolting were illuminated. The results showed that high level of GA3in leaf would prmote premature bolting, The different contents of endogenous hormones in different organs also affected premature bolting to some degree.The exogenous hormones GA and its biosynthesis inhibitor CCC were used to spray on the leaves of A. dahurica, in order to investigate the effect on the content of endogenous GA. The results showed that exogenous GA could increase the endogenous GA3content, while CCC could decrease it.5The effect of plant growth regulators onpremature blotting high-yield and good-quality
     To investigate the role of plant growth regulators on the growth and quality of A. Dahurica, five plant growth regulators:chlormequatchloride (CCC), Mepiquat chloride (PIX), Gibberellic acid (GA3), Paclobutrazol (PP333) andMaleic Hydrazide (MH) were sprayed at rosette stage. The biological traits were first measured and then imperatorin and isoimperatorin contents in its roots were detected using high pressure liquid chromatography (HPLC). The results showed that other plant growth regulators had inhibiting effects to different degree, except that higher concentration of exogenous hormones GA(100and170mg/L) could increase the premature bloting rate. Low concentration GA3can increase the yield while not influence the premature bolting rate and the coumarin content in the root of A. Dahurica.Spraying of GA3(30mg·L-1) could guarantee the growth and development of A. Dahurica to get a higher yield and maintain the active ingredients in the root.6The involvement of auxin in leaf senescence which is important for plant yield and quality
     SAURs, Small Auxin Up RNA genes, are early response genes to auxin, but if any of them is involved in leaf senescence is unknown. Auxin, on the other hand, has been shown to have a role in leaf senescence but if the role is positive or negative remains uncertain. Here we report the identification and characterization of an Arabidopsis leaf senescence-associated gene named SAG201. SAG201is highly up-regulated during leaf senescence and can be induced by1-naphthaleneacetic acid (NAA, a synthetic auxin species). It encodes a functionally uncharacterized SAUR that has been annotated as SAUR36. Leaf senescence in the saur36knockout lines caused by T-DNA insertion was significantly delayed as revealed by analyses of chlorophyll contents, Fv/Fm ratio (a parameter for photosystem II activities), ion leakage, and the expression of leaf senescence marker genes. These data suggest that SAUR36is a positive regulator of leaf senescence and may mediate leaf growth, which may provide guidance for the yield and quality research in medicinal plants.
引文
[1]王梦月,贾敏如.白芷本草考证[J].中药材,2004,27(5):382-385.
    [2]孙星衍,孙冯冀,吴普.神农本草经[M].北京:科学技术文献出版社,1996.
    [3]徐术,胡晋红,全山丛.白芷的活性成分研究与临床应用进展[J].中国药房,2005,16(6):467-469.
    [4]夏黎明,姚成.中药白芷的研究现状[J].中医药研究,2002,18(5):56-58.
    [5]崔秋兵,张艺,兰莎.白芷镇痛作用物质基础研究[J].中国实验方剂学杂志,201'0,16(12):102-104.
    [6]吴媛媛,蒋桂华,马逾英,et al.白芷的药理作用研究进展[J].时珍国医国药,2009,20(3):625-627.
    [7]储鸿,程珊,倪忠斌,et al白芷活性提取物清除自由基与抗氧化作用[J].食品与生物技术学报,2009,28(2):201-205.
    [8]吴绍熙,郭宁如.银屑病治疗研究新进展[J].中华皮肤科杂志,2003,36(4):237-237.
    [9]蒋桂华,张绿明,马逾英et al白芷综合开发利用研究进展及展望[J].时珍国医国药,2008,19(11):2718-2720.
    [10]李隆云,钟国跃,卫莹芳et al中国中药种质资源的保存与评价研究[J].中国中药杂志,2002,27(9):641-645.
    [11]陈秀华,魏胜利,王文全.种质资源与中药材质量[J].中药研究与信息,2003,5(4):11-14.
    [12]黄璐琦,吕冬梅,杨滨et al药用植物种质资源研究的发展——核心种质的构建[J].中国中药杂志,2005,30(20):1565-1568.
    [13]罗光明,邓子超,杨世林,et al药用植物优良品种选育研究现状[J].中药研究与信息,2003,5(9):15-18.
    [14]周志军,武晓阳,孟义江,et al药用植物育种研究进展[J].时珍国医国药,2008,19(7):1694-1698.
    [15]朱新产,王宝维,张庭荣.分子标记及其在生物遗传多样性研究中的应用[J].中国医学生物技术应用,2002,1(2):33-40.
    [16]傅荣昭,邵鹏柱,高文远,et al.DNA分子标记技术及其在药用植物研究上的应用前景[J].生物工程进展,1998,18(4):14-17.
    [17]万兵.中药材的种子与种质资源保护[J].资源开发与市场,1990,6(2):103-105.
    [18]廖立琴.药用植物银杏,重楼的遗传多样性分析和功能基因研究[D];中南大学,2009.
    [19]官玲亮,吴卫,郑有良et al油用型红花主要农艺性状与单株籽粒产量间的相关及通径分析[J].西南农业学报,2007,20(3):486-491.
    [20]吴卫,郑有良,马勇et al鱼腥草不同居群产量和质量分析[J].中国中药杂志,2003,8):718-720.
    [21]吴卫,郑有良,杨瑞武et al国产蕺菜的染色体数目变异及核穿壁现象[J].植物分类学报,2003,41(3):245-257.
    [22]马克平.试论生物多样性的概念[J].生物多样性,1993,1(1):20-22.
    [23]陈媛媛,叶其刚,黄宏文.中华水韭(Isoetes sinensis)等位酶分析的初步研究[J].武汉植物学研究,2003,21(1):91-94.
    [24]周延清.遗传标记的发展[J].生物学通报,2000,35(5):17-18.
    [25]贾继增.分子标记种质资源鉴定末日分子标记育种[J].中国农业科学,1996,29(4):1-10.
    [26]罗志勇,周钢,周肆清et al. AFLP(?)构建人参,西洋参基因组DNA指纹图谱[J].药学学报,2000,35(8):626-629.
    [27]任跃英,高巍,郭影et al黄果及红果人参,西洋参基因组的RAPD分子标记研究[J].吉林农业大学学报,2005,27(1):39-42.
    [28]王宏伟,徐燕,李海龙.岷县,漳县产当归基于ITS序列的变异位点和分子进化分析[J].甘肃中医,2010,23(12):68-69.
    [29]ZIETKIEWICZ E, RAFALSKI A, LABUDA D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification [J]. Genomics, 1994,20(2):176-183.
    [30]危金普,潘学峰,李红权et al简单重复DNA序列在哺乳动物mtDNA D-loop区的分布及进化特征[J]HEREDITAS (Beijing),2011,33(1):67-74.
    [31]谢佳燕,张知彬ISSR标记技术及其在遗传多样性研究中的应用[J].兽类学报,2004,24(1):71-77.
    [32]刘艳荣,刘付红,肖克源et al蠕形螨ISSR-PCR的反应体系优化及引物筛选[J].山东大学学报:医学版,2012,50(1):57-61.
    [33]PREVOST A, WILKINSON M. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars [J]. Theoretical and applied genetics,1999,98(1): 107-112.
    [34]BORNET B, BRANCHARD M. Nonanchored inter simple sequence repeat (ISSR) markers:reproducible and specific tools for genome fingerprinting [J]. Plant molecular biology reporter,2001,19(3):209-215.
    [35]BLAIR M, PANAUD O, MCCOUCH S. Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.) [J]. Theoretical and applied genetics,1999,98(5):780-792.
    [36]吴卫,郑有良,陈黎,et al利用ISSR标记分析鱼腥草种质资源的遗传多样性[J].世界科学技术:中药现代化,2003,5(1):70-77.
    [37]袁昌齐,秦慧贞,舒璞.中药白芷的基原植物研究Ⅳ.白芷的基原植物,栽培历史以及其近缘野生植物演化的讨论[J].中国中药杂志,2001,26(11):733-736.
    [38]闫忠红,李笑然.当归属药用植物的本草学,亲缘关系,化学成分及药理作用相关性研究[D];黑龙江中医药大学硕士论文,2003.
    [39]中国药典.一部[S],2005.
    [40]兰英,阳春英.浅谈划分药材商品规格等级的方法[J].中华现代中西医杂志,2005,3(6):537-537.
    [41]唐声武,王梦月,蒋桂华.川白芷种质的RAPD遗传标记研究[J].世界科学技术-中医药现代化,2004,6(2):76-79.
    [42]陈兴福,丁德蓉,刘岁荣et al生态环境对白芷产量质量的影响[J].生态学杂志,1995,14(3):29.
    [43]郭丁丁.白芷种质资源调查及其评价的研究[D];成都中医药大学,2008.
    [44]兰志琼.白芷香豆素类成分与分泌组织的相关性研究[D];成都中医药大学,2012.
    [45]高颖.白芷配方颗粒质量标准的规范化研究[D];成都中医药大学,2007.
    [46]贾蕾.中等土壤肥力水平下祁白芷的肥料效应及养分积累规律[D];河北农业大学,2006.
    [47]陈郡雯.川白芷氮磷钾配施,苗期抗旱性与传粉生物学研究[D];四川农业大学,2011.
    [48]凤良元,鄢顺琴.五种不同产地白芷药理作用的比较研究[J].安徽中医学院学报,1990,9(2):56-59.
    [49]潘泽惠,秦慧贞,吴竹君,et al白芷的核型研究及其分类意义[J].植物分类学报, 1985,23(3):185.
    [50]黄璐琦,王敏,付桂芳.中药白芷种质资源的RAPD分析[J].中国中药杂志,1999,24(8):1.
    [51]马逾英,熊英,贾敏如,et al川白芷种质的RAPD遗传标记研究[J].世界科学技术-中医药现代化,2004,6(2):4.
    [52]杨滨,王敏,曹春雨et al中药白芷的分子遗传及其原植物分析[J].中国药学杂志:2004,39(9):654-657.
    [53]陈晓亚.植物次生代谢研究[J].世界科技研究与发展,2006,28(5):1-4.
    [54]黄璐琦,郭兰萍.环境胁迫下次生代谢产物的积累及道地药材的形成[J].中国中药杂志,2007,32(4):277-280.
    [55]黄璐琦,高伟,周洁,et al系统生物学方法在药用植物次生代谢产物研究中的应用[J].中国中药杂志,2010,35(1):8-12.
    [56]鲁守平,隋新霞,孙群,et al药用植物次生代谢的生物学作用及生态环境因子的影响[J].天然产物研究与开发,2006,18(6):1027-1032.
    [57]阎秀峰,王洋,李一蒙.植物次生代谢及其与环境的关系[J].生态学报,2007,27(6):2554-2562.
    [58]邱立友,戚元成,王明道et al植物次生代谢物的自毒作用及其与连作障碍的关系[J].土壤,2010,42(1):1-7.
    [59]王智民.中药药效物质基础的系统研究是中药现代化的关键[J].中国中药杂志,2003,28(12):1111-1113.
    [60]王亚星,臧埔,马琳,et al药用植物次生代谢影响因素研究进展[J].中国医药生物技术,2011,6(4):12-291-294.
    [61]何维明,钟章成.绞股蓝种群次生代谢产物的动态及其生态学意义[J].云南植物研究,1998,20(4):434-438.
    [62]熊星,林有润,蒋林.蒿属植物的染色体数目和核型研究(一)[J].热带亚热带植物学报,1995,3(3):23-29.
    [63]吴毓林.青蒿素——历史和现实的启示[J].化学进展,2009,21(11):2365-2371.
    [64]张戈,郭美丽,李颖et al不同品种红花黄酮类成分的HPLC含量测定及其遗传稳定性研究[J].中草药,2004,35(12):1411-1414.
    [65]蔡金娜,周开亚,徐珞珊,et al中国不同地区蛇床的rDNA ITS序列分析[J].药学学 报,2000,35(1):56-59.
    [66]王洋,戴绍军,阎秀峰.光强对喜树幼苗叶片次生代谢产物喜树碱的影响[J].生态学报,2012,24(6):1118-1122.
    [67]姚银安,祖艳群,李元.紫外线B辐射与植物体内酚类次生代谢的关系[J].植物生理学通讯,2003,39(2):179-184.
    [68]张亚妮,董兆麟.一株产紫杉醇真菌发酵条件的研究[J].西北大学学报(自然科学版),2002,32(3):310-312.
    [69]戴均贵,朱蔚华,吴蕴祺,et al前体及真菌诱导子对银杏悬浮培养细胞产生银杏内酯B的影响[J].药学学报,2000,2:151-155.
    [70]苏文华,张光飞,李秀华,et al植物药材次生代谢产物的积累与环境的关系[J].中草药,2005,36(9):1415-1418.
    [71]唐建军,陈欣.培养条件对杜仲愈伤组织形成及次生代谢过程的影响[J].浙江大学学报:工学版,2002,36(2):193-198.
    [72]李明芳,刘选明,刘斌,et al激素对盾叶薯蓣愈伤组织细胞生长和薯蓣皂甙元合成的调控[J].中国生物工程杂志,2002,22(3):71-73.
    [73]唐建军,项田夫.植物次生代谢,离体培养条件下次生代谢生物积累及其调控研究进展[J].中国野生植物资源,17(4):1-6.
    [74]邹冬梅,冯信平,王建荣et al4种外源激素对长春花生物碱积累的影响[J].热带生物学报,2012,3(1):38-41.
    [75]王春丽,梁宗锁.外源刺激对植物次生代谢的调节及其信号转导途径研究进展[J].西北植物学报,2009,29(5):867-873.
    [76]黄远征,徐成基.川白芷挥发油化学成分的研究[J].四川日化,1989,1:16.
    [77]李宏宇,戴跃进,谢成科,et al川白芷的挥发油成分分析[J].华西药学杂志,1990,5(2):79-82.
    [78]张强,李章万.杭白芷挥发油成分的GC-MS分析[J].中药材,1997,20(1):28-30.
    [79]张富强,聂红,韦艺,et al白芷的化学与药理研究进展[J].南京中医药大学学报(自然科学版),2002,18(3):190-192.
    [80]杨涓.川白芷和黑风藤的化学成分研究[D];四川大学,2002.
    [81]梁波,徐丽珍,邹忠梅,et al川白芷化学成分研究[J].中草药,2005,36(8):1132-1135.
    [82]郑虎占,董泽宏,佘靖.中药现代研究与应用[M].北京:学苑出版社,1999.
    [83]梁明金,杨广德,贺浪冲.白芷中欧前胡素的提取方法研究[J].中成药,2000,22(12):829-831.
    [84]徐任生.天然产物化学[M].北京:科学出版社,2004.
    [85]周荣汉,段金廒.植物化学分类学[M].上海:上海科学技术出版社,2005.
    [86]FRITIG B, HIRTH L. Biosynthesis of phenylpropanoids and coumarins in TMV-infected tobacco leaves and tobacco tissue cultures [J]. Acta Phytopathol Acad Sci Hung,1971, 6:21-29.
    [87]SCHALK M, CABELLO-HURTADO F, PIERREL M-A, et al. Piperonylic acid, a selective, mechanism-based inactivator of the trans-cinnamate 4-hydroxylase:a new tool to control the flux of metabolites in the phenylpropanoid pathway [J]. Plant physiology, 1998,118(1):209-218.
    [88]KAUSS H, FRANKE R, KRAUSE K, et al. Conditioning of parsley (Petroselinum crispum L.) suspension cells increases elicitor-induced incorporation of cell wall phenolics [J]. Plant physiology,1993,102(2):459-466.
    [89]中国药典ES,二部.附录XI H,103[J].xI,2010.
    [90]王立人,李宏宇,谢成科.白芷中香豆精类成分的反相高效液相色谱测定[J].药学学报,1990,25(2):131-135.
    [91]王健,刘明浩,徐恩民.薄层扫描法测定白芷中欧前胡素的含量[J].药物分析杂志,1988,8(2):87-88.
    [92]李宏宇,戴跃进,谢成科,et al.川白芷中香豆素类成分的反相高效液相色谱分析[J].华西药学杂志,1990,5(4):231-233.
    [93]董林,邓丽平,杨模坤.薄层荧光扫描法测定中药白芷中欧芹属素乙的含量[J].华西药学杂志,1990,1:9.
    [94]陈郡雯,吴卫,侯凯et al.川白芷生长发育,养分及有效成分的动态研究[J].中国中药杂志,2010,35(21):2812-2818.
    [95]张志梅.白芷质量性状形成及栽培调控研究[D];中国农业大学,2005.
    [96]郭巧生.药用植物栽培学[M].北京:高等教育出版社,2004.
    [97]丁胜.防止白芷早期抽苔的措施[J].中药材,1986,4:3.
    [98]HE Y, GAN S. Molecular characteristics of leaf senescence. [M]. Recent Research Developments in Plant Molecular Biology. Kerala, India; Research Signpost.2003:1-17.
    [99]KANT S, BI Y-M, ZHU T, et al. SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice [J]. Plant physiology,2009,151(2):691-701.
    [100]孔祥海.植物次生代谢物的细胞培养技术研究进展[J].龙岩学院学报,2005,23(6):60-63.
    [101]GLAWISCHNIG E, HANSEN B G, OLSEN C E, et al. Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(21):8245-8250.
    [102]王丽丽.改变源-库比对花生籽仁品质和叶片衰老的影响[D];山东农业大学,2005.
    [103]GAN S-S. The hormonal regulation of senescence [M]//DAVIES P J. Plant Hormones: Biosynthesis,signal transduction, action! New York; Springer.2010:597-617.
    [104]LIM P O, LEE I C, KIM J, et al. Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity [J]. J Exp Bot,2010,61(5):1419-1430.
    [105]ELLIS C M, NAGPAL P, YOUNG J C, et al. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana [J]. Development,2005,132(20):4563-4574.
    [106]KANT S, BI Y-M, ZHU T, et al. SAUR39, a Small Auxin-Up RNA Gene, Acts as a Negative Regulator of Auxin Synthesis and Transport in Rice [J]. Plant Physiol,2009, 151(2):691-701.
    [107]KIM J I, MURPHY A S, BAEK D, et al. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana [J]. J Exp Bot,2011,62(11): 3981-3992.
    [108]QUIRINO B F, NORMANLY J, AMASINO R M. Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes [J]. Plant Mol Biol,1999,40(2):267-278.
    [109]VAN DER GRAAFF E, SCHWACKE R, SCHNEIDER A, et al. Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence [J]. Plant Physiol,2006,141(2):776-792.
    [110]KAWAKAMI T, CHIBA T, SUZUKI T, et al. NEDD8 recruits E2-ubiquitin to SCF E3 ligase [J]. The EMBO journal,2001,20(15):4003-4012.
    [111]MURRAY M, THOMPSON W F. Rapid isolation of high molecular weight plant DNA [J]. Nucleic Acids Research,1980,8(19):4321-4326.
    [112]NAGAOKA T, OGIHARA Y. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers [J]. Theoretical and applied genetics,1997,94(5):597-602.
    [113]李海生ISSR分子标记技术及其在植物遗传多样性分析中的应用[J].生物学通报,2004,39(2):19-21.
    [114]季维智,宿兵,生物学.遗传多样性研究的原理与方法[M].浙江科学技术出版社,1999.
    [115]肖龙骞,葛学军,龚洵,et al.贵州苏铁遗传多样性研究[J].云南植物研究,2003,25(6):648-652.
    [116]姬广海,钱君,张世光et al.(?)云南水稻抗白叶枯病品种的遗传多样性初报[J].中国水稻科学,2003,17(2):118-122.
    [117]黄璐琦.中药白芷种质资源的系统研究[J].江西中医学院学报,2004,16(6):5-7.
    [118]马逾英,熊英,贾敏如et al.(?)(?)白芷种质的RAPD遗传标记研究[J].世界科学技术:中药现代化,2004,6(2):76-79.
    [119]申明亮,卢进,陈兴福.早期抽薹白芷的遗传性观察[J].中草药,2000,31:163.
    [120]王年鹤,秦慧贞,黄璐琦et al中药白芷的基原植物研究Ⅰ,中药白芷及其野生近缘植物的形态解剖[J].中国中药杂志,2001,26(8):529.
    [121]赵晓燕,王竹,沈建华,et al39个贵州玉米品种农艺性状与产量的相关性[J].贵州农业科学,2011,39(8):21-23.
    [122]翟凤林,农学家.作物品质育种[M].农业出版社,1991.
    [123]罗高玲,林盛宗,陈燕华et al广西绿豆种质资源农艺性状分析[J].广西农业科学,2010,41(12):1259-1261.
    [124]薛应征,胡宁,孙建权et al粳稻新品种新稻19号产量构成及相关农艺性状分析[J].中国种业,2010,4):52-53.
    [125]赖运平,李俊,刘新春et al小麦南大2419及其衍生品种(系)主要农艺性状的关联分析[J].分子植物育种,2011,9(5):536-546.
    [126]陈向东,兰进,李先恩et al不同种植模式下丹参质量研究[J].中药材,2011,34(1):8- 11.
    [127]郑立红,李卫敏,陈志峰et al.不同产地白芷中欧前胡素的含量测定[J].世界中医药2012,7(1):79-80.
    [128]HOU S, ZHU J, DING M, et al. Simultaneous determination of gibberellic acid, indole-3-acetic acid and abscisic acid in wheat extracts by solid-phase extraction and liquid chromatography-electrospray tandem mass spectrometry [J]. Talanta,2008,76(4):798-802.
    [129]DOBREV P, HAVL CEK L, V GNER M, et al. Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography [J]. Journal of Chromatography A,2005,1075(1): 159-166.
    [130]陈远平,杨文钰.卵叶韭休眠芽中GA3,IAA,ABA和ZT的高效液相色谱法测定[J].四川农业大学学报,2005,23(4):498-500.
    [131]DAVIES P J. The plant hormones:their nature, occurrence, and functions [M]. Plant hormones. Springer.2010:1-15.
    [132]POOL R, POWELL L. The use of pellicular ion-exchange resins to separate plant cytokinins by high-pressure liquid chromatography [J]. HortScience,1972,7(330):14.
    [133]陈雪梅,王沙生HPLC法定量分析植物组织中ABA,LAA和NAA[J].植物生理学通讯,1992,28(5):368-371.
    [134]杨途熙,魏安智,郑元,et al高效液相色谱法同时分离测定仁用杏花芽中8种植物激素[J].分析化学,2007,35(9):
    [135]刘冬PVPP吸附余甘果汁中多酚物质的研究[J].果树学报,2007,24(2):176-179.
    [136]曾庆钱,陈厚彬,鲁才浩et al. HPLC测定荔枝不同器官中内源激素流程的优化[J].果树学报,2006,23(1):145-148.
    [137]陈昆松,徐昌杰,李方et al. HPLC法检测果实组织中内源IAA,ABA方法的改进[J].果树学报,2003,20(1):4-7.
    [138]罗光明,肖宏浩,刘能俊.白芷的栽培技术[J].中国野生植物资源,1996,2:40.
    [139]杨富荣,杨海莹,郭敦志.白芷早薹及防止方法初探[J].中药材,2000,24(10):708.
    [140]陈兴福,卢进.播种期对白芷早期抽苔影响的研究[J].中国中药杂志,1999,24(4):211-212.
    [141]蒲盛才,申明亮,邓才富et al氮磷钾施用量及其配比对白芷早期抽苔的影响[J].西南大学学报(自然科学版),2011,33(11):168-172.
    [142]丁德蓉,卢进.肥料种类对白芷早期抽苔与产量的影响研究[J].中国中药杂志,1999,24(1):23-24.
    [143]董志强,舒文华,翟学军et al棉株不同器官中几种内源激素的变化及相关关系[J].核农学报,2005,19(1):62-67.
    [144]夏广清,何启伟,王翠花,et al不同生态型大白菜抽薹时内源激素含量比较[J].中国蔬菜,2005,2:21-22.
    [145]王淑芬,徐文玲,何启伟et al春化深度对萝卜抽薹的影响及抽薹过程中GA_3和IAA含量的变化[J].山东农业科学,2003,6:20-21.
    [146]马秀峰,王丽华.甜菜当年抽薹株与不抽薹株内源激素含量及平衡状况的动态变化[J].中国糖料,1997,1:1-4.
    [147]彭桂群,王力华.平阴玫瑰花芽分化期叶片内源激素的变化[J].植物研究,2006,26(2):206-210.
    [148]朱玉野.防风抽薹期激素变化规律的研究[M].东北师范大学.2007.
    [149]宋贤勇,柳李旺,龚义勤et al春萝卜抽薹过程中内源激素含量变化分析[J].植物研究,2007,27(2):182-185.
    [150]戴忠良,潘跃平,肖燕et al不同浓度赤霉素处理对结球甘蓝抽薹和开花的影响[J].上海农业学报,2010,26(4):69-71.
    [151]夏广清,何启伟,王翠花.赤霉素处理对大白菜开花的诱导效应[J].中国蔬菜,2006,5:19-20.
    [152]曾群,赵仲华,赵淑清.植物开花时间调控的信号途径[J].遗传,2006,28(8):1031-1036.
    [153]PENG J, RICHARDS D E, HARTLEY N M, et al.'Green revolution'genes encode mutant gibberellin response modulators [J]. Nature,1999,400(6741):256-261.
    [154]SASAKI A, ASHIKARI M, UEGUCHI-TANAKA M, et al. Green revolution:a mutant gibberellin-synthesis gene in rice [J]. Nature,2002,416(6882):701-702.
    [155]BOSS P K, THOMAS M R. Association of dwarfism and floral induction with a grape 'green revolution' mutation [J]. Nature,2002,416(6883):847-850.
    [156]MUANGPROM A, THOMAS S G, SUN T-P, et al. A novel dwarfing mutation in a green revolution gene from Brassica rapa [J]. Plant physiology,2005,137(3):931-938.
    [157]毛景英,闫振领.植物生长调节剂调控原理与实用技术[M].北京:中国农业出版社,2005.
    [158]张恩和.生长抑制剂对当归早期抽苔阻抑效应研究[J].中国中药杂志,1999,24(1):18-20.
    [159]蒲盛才,张兴翠,丁德蓉et al氮,磷,钾施用量及其配比对白芷产量的影响[J].中国生态农业学报,2006,14(1):136-138.
    [160]张志梅,郭玉海,翟志席et al白芷栽培措施研究[J].中药材,2006,29(11):1127-1128.
    [161]蔡葛平.光周期,土壤水分及外源激素对黄芩中黄酮类成分累积的影响及其分子机制[D];复旦大学,2008.
    [162]小东.喷施赤霉素可提高黄连产量[J].中药材,1985,3:46.
    [163]周光来.多效唑在黄连生产上的应用研究[J].湖北民族学院学报:医学版,2002,19(2):34-34.
    [164]崔辉梅,樊新民,舒清.赤霉素对胡萝卜生长及产量的影响[J].北方园艺,2007,02):9-11.
    [165]常立.生长素通过调节赤霉素应答反应促进拟南芥根伸长[J].植物学通报,2003,4:20.
    [166]FU X, RICHARDS D E, FLECK B, et al. The Arabidopsis mutant sleepy1gar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates [J]. The Plant Cell Online,2004,16(6):1406-1418.
    [167]ACHARD P, GENSCHIK P. Releasing the brakes of plant growth:how GAs shutdown DELLA proteins [J]. Journal of experimental botany,2009,60(4):1085-1092.
    [168]WILLIGE B C, GHOSH S, NILL C, et al. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis [J]. The Plant Cell Online,2007,19(4):1209-1220.
    [169]FU X, HARBERD N P. Auxin promotes Arabidopsis root growth by modulating gibberellin response [J]. Nature,2003,421(6924):740-743.
    [170]袁媛,黄璐琦,崔光红,et al.赤霉素及其合成抑制剂对丹参酮类活性物质含量的影响[J].中国实验方剂学杂志,2008,14(6):1-3.
    [171]温国泉.植物生长调节剂对南方地区淮山药生长及品质的影响[D];广西大学,2008.
    [172]ALONSO J M, STEPANOVA A N, LEISSE T J, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana [J]. Science,2003,301(5633):653-657.
    [173]AOYAMA T, CHUA N H. A glucocorticoid-mediated transcriptional induction system in transgenic plants [J]. The Plant journal:for cell and molecular biology,1997,11(3):605-612.
    [174]HE Y, GAN S. A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis [J]. Plant Cell,2002,14(4):805-815.
    [175]ULMASOV T, LIU Z B, HAGEN G, et al. Composite structure of auxin response elements [J]. Plant Cell,1995,7(10):1611-1623.
    [176]HAGEN G, GUILFOYLE T. Auxin-responsive gene expression:genes, promoters and regulatory factors [J]. Plant Mol Biol,2002,49(4):373-385.
    [177]KNAUSS S, ROHRMEIER T, LEHLE L. The auxin-induced maize gene ZmSAUR2 encodes a short-lived nuclear protein expressed in elongating tissues [J]. J Biol Chem, 2003,278(26):23936-23943.
    [178]NEWMAN T C, OHME-TAKAGI M, TAYLOR C B, et al. DST sequences, highly conserved among plant SAUR genes, target reporter transcripts for rapid decay in tobacco [J]. Plant Cell,1993,5(6):701-714.
    [179]ZHAO Y. The role of local biosynthesis of auxin and cytokinin in plant development [J]. Current Opinion in Plant Biology,2008,11:16-22.
    [180]SACHER J A. Senescence and postharvest physiology [J]. Annu Rev Plant Physiol,1973, 24(1):197-224.
    [181]KIM J I, MURPHY A S, BAEK D, et al. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana [J]. J Exp Bot,2011,62(11): 3981-3992.
    [182]GAN S-S. Hormonal control of plant senescence [M]//DAVIES P J. Plant Hormones: Biosynthesis, Signal Transduction, Action! (Revised 3rd edition). Netherlands; Springer. 2010:597-617.
    [183]NOH Y S, AMASINO R M. Identification of a promoter region responsible for the senescence-specific expression of SAG12 [J]. Plant Mol Biol,1999,41(2):181-194.
    [184]GAN S-S, AMASINO R M. Inhibition of leaf senescence by autoregulated production of cytokinin. [J]. Science,1995,270(5244):1986-1988.
    [185]WOO H R, KIM J H, KIM J, et al. The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis [J]. J Exp Bot,2010,61(14):3947-3957.
    [186]XU F, MENG T, LI P, et al. A soybean dual-specificity kinase, GmSARK, and its Arabidopsis homolog, AtSARK, regulate leaf senescence through synergistic actions of auxin and ethylene [J]. Plant Physiol,2011,157(4):2131-2153.
    [187]LI Y, LIU Z B, SHI X, et al. An auxin-inducible element in soybean SAUR promoters [J]. Plant Physiol,1994,106(1):37-43.
    [188]NGUYEN BA A N, POGOUTSE A, PROVART N, et al. NLStradamus:a simple Hidden Markov Model for nuclear localization signal prediction [J]. BMC bioinformatics,2009, 10(1):202.
    [189]NARSAI R, LAW S R, CARRIE C, et al. In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis [J]. Plant Physiol,2011, 157(3):1342-1362.
    [190]ABEL S, NGUYEN M D, CHOW W, et al. ASC4, a primary indoleacetic acid-responsive gene encoding I-Aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana [J]. J Biol Chem,1995,270(32):19093-19099.
    [191]MCCLURE B A, GUILFOYLE T. Characterization of a class of small auxin-inducible soybean polyadenylated RNAs [J]. Plant Mol Biol,1987,9(6):611-623.
    [192]FELDBRUGGE M, ARIZTI P, SULLIVAN M L, et al. Comparative analysis of the plant mRNA-destabilizing element, DST, in mammalian and tobacco cells [J]. Plant Mol Biol, 2002,49(2):215-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700