用户名: 密码: 验证码:
种植密度和施氮量对东北特早熟棉区棉花生物量和氮素累积的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东北特早熟棉区是我国短季棉育种与生产的重要基地,短季棉产量与品质是制约该地区棉花产业发展的主要因素,通过合理的种植密度与氮肥运筹建立高效的群体结构是棉花产量提高的基本途径。我们以自育的品种辽棉19号和美棉33B两个品种为材料,于2007-2009年在东北特早熟棉区(辽宁辽阳,41026'N,123°14'E)开展了“种植密度和施氮量对东北特早熟棉区棉花生物量和氮素累积的影响”的研究,设置了棉花种植密度和施氮量试验,研究了棉花群体生物量与氮素动态累积特征的差异及其与产量品质形成的关系,建立了不同群体棉花的临界氮稀释模型,并对不同群体棉花生长的氮营养状况进行诊断。主要研究结果如下:
     1.种植密度对东北特早熟棉区棉花生物量和氮素累积的影响
     棉花群体生物量和氮素的累积动态随生育进程的变化符合“S”型曲线,氮素累积快速起始期及终止期均较生物量的累积提前10d左右。两品种均以97500株/hm2密度下的棉花生物量、氮素动态累积过程最为优化,皮棉产量最高,纤维品质最优;密度过高条件下尽管群体生物量、氮素累积量较高,但经济产量下降。
     2.施氮量对东北特早熟棉区棉花生物量和氮素累积的影响
     棉花生物量和氮素累积量随生育进程的动态变化符合“S”型曲线,氮素的快速累积起始日较生物量早10~12d;辽棉19号和美棉33B均以240kg/hm2施氮量棉花生物量和氮素累积速率峰值出现时间最早,累积速率最高,生物量、氮素累积量和皮棉产量最高,纤维品质最优,同时氮素利用效率较高。480kg/hm2施氮量不仅降低棉花生物量和氮素累积速率及累积量,而且降低了生殖器官分配系数,导致产量较低。
     3.施氮量和种植密度对东北特早熟棉区棉花生物量和氮素累积及氮素利用率的影响
     棉花生物量和氮素累积量随生育进程的动态变化符合“S”型曲线,种植密度和施氮量显著影响其动态特征,进而影响棉花产量与品质;氮素的快速累积起始日较生物量早13d左右;两个品种均以97500株/hm2密度、240kg/hm2施氮量的棉花生物量、氮素动态累积模型的特征参数最为协调,皮棉产量最高,纤维品质最优,同时氮素利用效率较高。
     4.施氮量和种植密度对东北特早熟棉区棉花棉铃生物量和氮素累积分配的影响
     棉铃各组分生物量和氮素累积随生育进程的动态变化符合“S”型曲线,种植密度和施氮量可显著影响其动态特征,并进而影响棉花产量与品质;当单铃、棉籽、纤维均达到生物量累积最大时:(1)生物量累积对应的快速累积起始时间和终止时间较其他处理提前但快速累积持续期较短,同时快速累积最大速率较高、出现时间提前;(2)氮素累积对应的快速累积起始时间和终止时间亦提前,快速累积持续期较短、累积速率较平缓;(3)生物量和氮素在铃壳中的分配系数最低,在棉籽和纤维中最高,当纤维生物量最大时纤维品质最优。本研究推荐东北特早熟棉区种植密度97500株/hm2和施氮量240kg/hm2处理最适宜。
     5.东北特早熟棉区不同群体棉花临界氮浓度稀释模型的建立及应用
     棉花的临界氮浓度与最大生物量间均符合幂函数关系(Nc=αWmax-b),模型参数口值和b值在不同群体和不同品种间存在差异表明,同一种植密度下生产相同的生物量美棉33B的氮吸收量高于辽棉19号,而同一品种下随着种植密度的增大生产相同的生物量需氮量逐渐增加。基于临界氮浓度稀释条件下的异速生长参数、氮素营养指数及动态临界氮素累积量等指标得到的东北特早熟棉区不同群体适宜施氮量的结果一致。本研究中,当种植密度和施氮量组合分别为75000株/hm2和360kg/hm2、97500株/hm2和240kg/hm2、120000株/hm2和360kg/hm2时,氮稀释曲线较适宜棉花的生长。
     综上所述,棉花生物量和氮素的累积动态随生育进程的变化符合“S”型曲线,棉花生物量和氮素存在异速累积现象,生物量的快速累积是以氮素的大量累积为前提,较早的生物量和氮素快速累积起始日以及较高的累积速率有利于产量的形成。通过协调种植密度和施氮量使生物量和氮素快速累积起始时间和终止时间适当、提高累积最大速率,同时提高棉铃生物量向纤维中的分配以获得高产优质。基于临界氮浓度稀释条件下的异速生长参数、氮营养指数及动态临界氮素累积量等指标得到的东北特早熟棉区不同群体适宜施氮量的结果一致。结合产量和品质因素,东北特早熟棉区最为适宜的种植密度和施氮量组合为97500株/hm2和240kg/hm2。
Cotton is an important crop in our national economy. The cotton extremely early-maturation region in the Northeast China is one important base for early-season cotton breeding and planting. Optimizing of planting population and nitrogen application rate are two key ways to improve fiber yield and fiber quality. To determine the effects of planting population and nitrogen rates on accumulation and distribution of biomass and nitrogen for short-season cotton, field experiments with three nitrogen levels and different population were carried out in Liaoyang using two cotton cultivars Liaomian19and NuCTON33B as materials from2007to2009. Based on the critical N dilution model and the plant biomass accumulation model, the critical N accumulation model, the critical N demanding model, the N absorption model and the N diagnosis model were developed. And subsequently, plant nutrition status of the cotton in different population was diagnosed.
     1. Effects of planting population on cotton biomass and nitrogen accumulation in the cotton extremely early-maturation region in the northeast China.
     The dynamic of cotton plant biomass and nitrogen accumulation followed the "S" shape curve, and planting population variation might change the characters of the biomass and nitrogen accumulation progress, and subsequently influenced fiber yield and fiber quality. The beginning time or the ending time of the high speed accumulation stage for nitrogen was about10days earlier than that for the biomass. Fiber yield and fiber quality was the highest in the97500plant/hm2population for both the two cultivars, and reduction of fiber yield would be caused in excessive higher population though biomass and nitrogen accumulation would be increased. The results suggested that nitrogen was not synchro-accumulated with biomass in cotton plants, mass accumulation of plant biomass would started in condition that mass nitrogen had already been accumulated. Reproductive growth stage could be advanced by set fitting planting population, and the97500plant/hm2population setting could lead to higher fiber yield than that in the two other population conditions by advancing the reproductive growth stage in the cotton extremely early-maturation region.
     2. Effects of nitrogen application rates on biomass and nitrogen accumulation of cotton in the cotton extremely early-maturation region in the northeast China.
     The accumulated dynamic of biomass and nitrogen of cotton were described by logistic curve equation. The beginning time of speed accumulation for nitrogen was10-12days earlier than that for biomass. At nitrogen240kg·hm-2, the biomass and nitrogen accumulation amount were the highest, the eigenvalues of the dynamic accumulation model of cotton were the most harmonious, the nitrogen recovery rate was the highest, thus the lint yield was highest and the cotton fiber quality was the best. At nitrogen480kg·hm-2, the accumulation amount and rate of biomass and nitrogen decreased, the distributive indices of biomass in reproductive organ and lint yield reduced.
     3. Effect of nitrogen application rates and planting population on biomass, nitrogen accumulation and nitrogen fertilization recovery rate of cotton in the cotton extremely early-maturation region in the northeast China.
     The total dry matter and nitrogen uptake amount continuously increased with the progress of plant growth, and the general pattern of crop growth followed a sigmoid function of time. Plant densities and nitrogen application rate might change the characters of biomass and nitrogen accumulation progress, and subsequently influenced fiber yield and fiber quality. The beginning times of speed accumulation period for nitrogen were about13days earlier than that for dry matter in all treatments. The eigenvalues of the dynamic accumulation model in the treatment of97500plant·hm-2×240kg/hm2were more harmonious than that of other treatments. Earlier beginning time of speed accumulation period is in favor of accumulating biomass and nitrogen, and higher yield.
     4. Effect of nitrogen application rates and planting population on biomass, nitrogen accumulation and nitrogen fertilization recovery rate in cotton boll in the cotton extremely early-maturation region in the northeast China.
     The characters of accumulation and distribution of biomass and nitrogen were influenced by population and nitrogen rates of cotton. The biggest biomass of cotton boll, cotton seed and cotton fiber were based on the following,(1) The earlier time when speed biomass or nitrogen accumulation started (t1), the earlier time when speed biomass or nitrogen accumulation terminated (t2), the earlier time when the rate of speed biomass or nitrogen accumulation reached the maximum (tm), the shorter duration of the rapid biomass or nitrogen accumulation period (T, T=t2-ti) and the higher maximal rate of speed biomass or nitrogen accumuation (Vm).(2) There was a similar regularity in eigenvalue for accumulation between nitrogen and biomass.(3) The distribution indices in cotton shell were the lowest in cotton seed and the highest in cotton fiber. Higher biomass accumulation of fiber was positively correlating to higher fiber quality. So we could try to improve fiber quality by altering the emergence time of t1, t2, tm and Vm to improve biomass accumulation. Based on the results of this study, we recommended that97500plant/hm2×240kg/hm2treatment was the best application in the cotton extremely early-maturation region.
     5. Development and application of critical nitrogen concentration dilution model for cotton grown in the cotton extremely early-maturation region in the northeast China. The relationship between the shoot dry matter and critical N concentration can be described by power equation. The difference of the coefficients a and b between the two genotype showed that, the NuCOTN plant had a higher capacity of N accumulation in shoot biomass than that of Liaomian19. The coefficients a increased with the increasing plant population also showed that the cotton plant in higher plant population had a higher capacity of N accumulation in shoot biomass than that in lower ones. The different estimate of b in the critical dilution curve indicates that genotypes and plant population affect the slope of the critical N dilution curve. Based on the critical N dilution model and the allometric relationships between N uptake and dry matter accumulation in shoot, the model for N nutrition index (NNI) and the model for N demand at different growth stages for potential growth and yield were developed. According to the allometric growth coefficient, NNI and N accumulation rate under critical N concentration, it could be conclude that the optimal rate of N application in97500plant/hm2should be lower than that in75000and120000plant·hm-2, and240kg/hm2was the optimal N application rate in97500plant/hm2in the cotton extremely early maturity in the northeast china.
引文
[1]Roger N, Yves D, Nicolas T, et al. A mathematical model for nitrogen demand quantification and a link to broccoli (Brassica oleracea var. italica) glutamine synthetase activity[J]. Plant Science. 2003,165:483-496.
    [2]Jeuffroy M H, Meynard J M. Azote:production agricole et environnement. In:Morot-Gaudry JF, ed. Assimilation de l'azote chez les plantes.1997. INRA,369-380.
    [3]Jeuffroy M H, Ney B, Oury A, et al. Integrated physiological and agronomic modeling of N capture and use within the plant [J]. Journal of Experimental Botany.2002,809-823.
    [4]Fu Q L, Yu J Y, Chen Y X, et al. Effect of nitrogen applications on dry matter and nitrogen partitioning in rice and nitrogen fertilizer requirements for rice production[J]. Journal of Zhejiang University,2000,26 (4):399-403.
    [5]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000.178-197.
    [6]Addiscott T M, Whitmore A P, Powlson D S, et al. Farming, fertilizers and the nitrate problem. Wallingford:CAB International.1991.
    [7]张旺锋,王振林,余松烈,等.种植密度对新疆高产棉花群体光合作用、冠层结构及产量形成的影响[J].植物生态学报,2004,28(2):164-171.
    [8]王克如,李少昆,曹连莆,等.新疆高产棉田氮、磷、钾吸收动态及模式初步研究[J].中国农业科学,2003,36(7):775-778.
    [9]张旺峰,李蒙春,勾玲,等.北疆高产棉花养分吸收特性的研究[J].棉花学报,1998,10(2):88-95.
    [10]李蕾,娄春恒,文如镜,等.新疆不同密度下棉花干物质累积及其分配规律研究[J].西北农业学报,1996,5(2):10-14.
    [11]吕新,张伟,曹连莆,等.不同密度对新疆高产棉花冠层结构光和特性和产量形成的影响[J].西北农业学报,2005,14(1):142-148.
    [12]Ingestad T, Agren G I. Theories and methods on plant nutrition and growth[J]. Physiologia Plantarum.1992,84:177-184.
    [13]杨京平,姜宁,陈杰,等.施氮水平对两种水稻产量影响的动态模拟及施肥优化分析[J].应用生态学报.2003,14(10):1654-1660.
    [14]上官周平,李英,陈培元,等.氮肥与底墒对小麦同化产物累积与运转的调节效应模型[J].西北农业学报.1994,3(2):63-68.
    [15]Damisch W. Biomass yield-A topical issue in modern wheat breeding programmers [J]. Plant Breeding,1996,107:11-17.
    [16]Michaels S, Watt, Peter W, et al. Leckie. Above-ground biomass accumulation and nitrogen fixation of broom (Cytisus scoparius L.) growing with juvenile Pinus radiata on a dryland site[J]. Forest Ecology and Management,2003,184:93-104.
    [17]Shibu J, Sara M, Craig L, et al. Growth, nutrition, photosynthesis and transpiration responses of longleaf pine seedlings to light, water and nitrogen[J]. Forest Ecology and Management,2003,180: 335-344.
    [18]肖世和,陈孝,吴兆苏,等.小麦开花后生物产量及其组分的动态分析[J].作物学报,1995,21(2):155-160.
    [19]张洪全,齐沛君,连成才,等.春玉米子粒灌浆及产量构成因素与追氮量关系研究[J].玉米科学,1994,2(4):56-58.
    [20]金继云,何萍.氮钾互作对春玉米生物产量及其组分动态的影响[J].玉米科学.1999,7(4):57-60.
    [21]陈德华,陈源,周桂生,等.长江流域棉区高产棉花干物质生产与产量及群体构成的关系[J].中国棉花.2001,28(10):9-11.
    [22]张旺锋,王振林,余松烈,等.氮肥对新疆高产棉花群体光合性能和产量形成的影响[J].作物学报.28(6):789-796.
    [23]Gayler S, Wang E, Priesack E, et al. Modeling biomass growth, Nuptake and phynological development of potato crop[J]. Geoderma,2002,105:367-383.
    [24]Michael S, Watt, Peter W, et al. Above-ground biomass accumulation and nitrogen fixation of broom (Cytisus scoparius L.) growing with juvenile Pinus radiata on a dryland site[J]. Forest Ecology and Managemen,2003,184:93-104.
    [25]张旺峰,李蒙春,勾玲,等.北疆高产棉花养分吸收特性的研究[J].棉花学报1998,10(2):88-95.
    [26]张旺峰,李蒙春,杨新军,等.北疆高产棉花干物质积累的模拟[J].石河子大学学报(自然科学版).1998,2(2):87-92.
    [27]孟亚利,曹卫星,柳新伟,等.水稻地上部干物质分配动态模拟的初步研究[J].作物学报,2004,30(4):376-381.
    [28]何萍,金继运,林葆,等.不同氮磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究[J].植物营养与肥料学报,1998,4(2):123-130.
    [29]陈继红,祖元刚,倪红伟,等.松嫩草原放牧地主要植物群落地上生物量的增长规律[J].东北林业大学学报.1998,26(5):49-52.
    [30]李少昆,王崇桃,汪朝阳,等.北疆高产棉花根系生长规律的研究:Ⅰ根系的构型与动态建成[J].石河子大学学报(自然科学版).1999,增刊:15-25.
    [31]Bondada B R, Oosterhuis D M, Norman R J. Canopy photosynthesis growth yield and boll15N accumulation under nitrogen stress in cotton[J]. Crop Science,1996,36(1):127-133.
    [32]董钻,谢甫娣.大豆氮磷钾吸收动态及模式的研究[J].作物学报,1996,21(2):155-160.
    [33]张智猛,戴良香,郭景伦,等.施肥量对高产下玉米需肥规律的影响[J].玉米科学,1995,3(4):56-61.
    [34]王月福,于振文,李尚霞,等.施氮量对小麦籽粒蛋白质组分含量及加工品质的影响[J].中国农业科学.2002,35(9):1071-1078.
    [35]Grindlay D J C. Towards an explanation of crop nitrogen demand based on the optimization of leaf nitrogen per unit leaf area[J]. Journal of Agricultural Science.1997,128:377-396.
    [36]Hunt R. Plant growth curves:the functional approach to plant growth analysis. London:Edwards Arnold.1982.
    [37]Ratkowsky D A. Nonlinear regression modeling. New York:Marcel Dekker.1983.
    [38]France J, Thornley J H M. Mathematical models in agriculture. London:Butterworths.1984.
    [39]Charles-Edwards D A, Doley D, Rimmington G M, et al. Modeling plant growth and development. Orlando, Florida:Academic press.1986.
    [40]Tilman D. Plant strategies and the dynamics and structures of plant communities. Princeton, New Jersey:Princeton University Press.1988.
    [41]Greenwood J, Draycott A. Experimental validation of an N-response model for widely different crops[J]. Fertilizer Research.1989,18:153-174.
    [42]Tremblay N. Effect of nitrogen sources and rates on yield and hollow stem development in broccoli. Canadian Journal of Plant Sciences.1989,69:1049-1053.
    [43]Cerrato M E, Blackmer A M. Comparisons of models for describing corn yield response to nitrogen fertilize[J]r. Agronomy Journal.1990,82:138-143.
    [44]Hanks J, RiTchie J T. Modeling plant and soil systems. Madison, Wisconsin:American Society of Agronomy.1991.
    [45]Zebarth B J, Bowen P A, Toivonen P M, et al. Influence of nitrogen fertilization on broccoli yield, nitrogen accumulation and apparent fertilizer-nitrogen recovery [J]. Canadian Journal of Plant Science.1995,75:717-725.
    [46]Plenet D, Lemaire G. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration[J]. Plant and Soil.1999, 216:65-82.
    [47]Lemaire G, Salette J. Relation entre dynamique de croissance et dynamique de prelevement d'azote pour un peuplement de gramine! es fourrageres I. Etude de l'eeffet du milieu. Agronomie 1984 (4): 423-430.
    [48]Lemaire G, Gastal F. N uptake and distribution in plant canopies. In:Lemaire G,ed. Diagnosis of the nitrogen status in crops. Berlin Heidelberg:Spring-Verlag 1997,3-44.
    [49]Clarkson D T. Regulation of the absorption and release of nitrate by plant cells:a review of current ideas and methodology. In:Lambers H, Neeteson J J, Stulen I,eds. Fundamental, ecological and agricultural aspects of nitrogen metabolism in higher plants. Dordrecht:Martinus Nijhoff, 1986,3-27.
    [50]Clement C R, Hopper M J, Jones L H P, et al. The uptake of nitrate by Lolium perenne from flowing nutrient solution. Ⅰ-Effect of NO3- concentration. Journal of Experimental Botany.1978,29: 453-464.
    [51]Glass A D M. Nitrogen uptake by plant roots[J].ISI Atlas Science.1988,1:151-156.
    [52]Greenwood D J, Lemaire G, Gosse G, et al. Decline in percentage N of C3 and C4 crops with increasing plant mass[J]. Annals of Botany.1990,67:181-190.
    [53]Caloin M, Yu O. Relationship between nitrogen dilution and growth-kinetics in GraminaefJ]. Agronomie.1986,6:167-174.
    [54]Andriolo J L. Analyse des flux de NO3, H2O et CO2 au cours de la culture et du nycthemere chez la tomate (Lycopersicon esculentum Mill.) adulte hors-sol. These de Doctorat, Universite de Montpellier Ⅱ.1995, pp.101.
    [55]Le Bot J, Adamowicz S, Robin P, et al. Modelling plant nutrition of horticultural crops:a review. Sci. Hortic.1998,74,47-82.
    [56]Bellert C, Le Bot J, Dorais, et al. Nitrogen accumulation and growth of fruiting tomatoplants in hydroponics[J]. Acta Horticulturae.1998,458:293-302.
    [57]Tei F, Onofri A, Guiducci M.. Relationship between N-concentration and growth in sweet pepper. In:Proceedings fourth ESA-Congress, Veldhoven-Wageningen, The Netherlands,7-11 July 1996, pp.602-603.
    [58]Greenwood D J, Gastal F, Lemaire G, et al. Growth rate and %N of field grown crops:theory and experiments. Ann. Bot.1991,67:181-190.
    [59]Lemaire G, Salette J. Croissance estivale en matiere seche de peuplements de fetuque elevee (Festuca arundinacea Schreb) et de dactyle (Dactylis glomerata L.) dans l'ouest de la France:Ⅰ. Etude en conditions de nutrition azotee et d'alimentation hydrique non limitantes[J]. Agronomie. 1984,7:381-389.
    [60]Lemaire G, Gastal F, Cruz P, et al. Relationships between plant-N, plant mass and relative growth rate for C3 and C4 crop. Proceedings first ESA Congress, Paris,1990.1-5.
    [61]Justes E, Mary B, Meynard J M, et al. Determination of a critical nitrogen dilution curve for winter wheat crops[J]. Annals of Botany,1994, (74):397-407.
    [62]Colnenne C, Meynard J M, Reau R,et al. Determination of a critical nitrogen dilution curve for winter oilseed rape[J]. Annals of Botan,1998, (81):311-317.
    [63]Plenet D, Lemaire G, Relationship between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical concentration[J]. Plant Soil.2000.216: 65-/82.
    [64]Riley H, Guttormsen G, Alternative equations for critical N-concentration in cabbage. In:Burns, I.G., Bending, G.D., Mulholland, B. (Eds.), Proceedings of the Workshop on Eco. Aspects Veg. Fert. Integr. Crop Prod, in the Field. Acta Horticulturae, vol.1999.506, pp.123-128.
    [65]Lemaire G, Gastal F, Salette J, et al. Analysis of the effect of N nutrition on dry matter yield of a sward by reference to potential yield and optimum N content. In:Proceedings of the 16th International Grassland Congress. Nice, France.1989,179-180.
    [66]Lemaire G, Meynard J M. Use of the nitrogen nutrition index for the analysis of agronomical data. In:Lemaire G, ed. Diagnosis of the nitrogen status in crops. Berlin Heidelberg:Springer-Verlag. 1997,45-55.
    [67]Justes E, Jeuffroy M H, Mary B, et al. Wheat, barley and durum wheat. In:Lemaire G, ed. Diagnosis of the nitrogen status in crops. Berlin Heidelberg:Springer-Verlag.1997,73-89.
    [68]Lemaire G, Gastal F. N uptake and distribution in plant canopies. In:Lemaire G, ed. Diagnosis of the nitrogen status in crops. Berlin Heidelberg:Springer-Verlag.1997,3-4.
    [69]Clement C R, Hopper M J, Jones L H P, et al. The uptake of nitrate by Lolium perenne from flowing nutrient. I. Effect of nitrate concentration. J. Exp. Bot.1978,29:453-464.
    [70]Gregory P J, Crawford D V, Mcgowan M, et al. Nutrient relations of winter wheat.2. Movement of nutrients to the root and their uptake, J. Agri. Sci. Cambridge.1979,93:495-504.
    [71]Wild A, Breeze V G. Nutrient uptake in relation to growth, in:C.B. Johnson (Ed.), Physiological Processes Limiting Plant Productivity, Butterworths, London.1981, pp.331-344.
    [72]Rodgers C O, Barneix A J.Cultivars differences in the rates of nitrate uptake by intact wheat plants as related to growth rate, Physiol. Plant.1988,72:121-126.
    [73]Grindlay D J C.Towards an explanation of crop nitrogen demand based on the optimization of leaf nitrogen per unit area, J. Agri. Sci. Cambridge.1997,128:377-396.
    [74]Overman A R, Robinson D, Wilkinson S R, et al. Coupling of dry matter and nitrogen accumulation in ryegrass [J]. Fertilizer Research,1995,40:105-108.
    [75]Hansen S, Jensen H E, Nielsen N E, et al. Simulation of nitrogen dynamics and biomass production in winter wheat using the danish simulation model DAISY [J]. Fertilizer Research,1991, 27:245-259.
    [76]Hunt L A, Pararajasingham S. CROPSIM-Wheat:A model describing the growth and development of wheat [J]. Canadian Journal of Plant Science,1995,75:619-632.
    [77]Greenwood DJ, Lemaire G, Gosse G, et al. Decline in percentage N of C3 and C4 crops with increasing plant mass [J]. Annals of Botany,1990,67:181-190.
    [78]蒋国柱,邓绍华,吴同礼,等.棉花高产优质栽培措施优化决策模型研究[J].棉花学报,1990,2(1):51-57.
    [79]吕新,魏亦农,李少昆,等.基于GIS的土壤肥力信息管理及棉花施肥推荐支持决策系统研究[J].中国农业科学,2002,35(7):883-887.
    [80]李俊义,刘荣荣,王润珍,等.棉花平衡施肥的研究[J].棉花学报,1990,2(2):58-65.
    [81]Nkoa R, Desjardins Y, Tremblay N, et al. A mathematical model for nitrogen demand quantification and a link to broccoli (Brassica oleracea var. italica) glutamine synthesize activity [J]. Plant Science,2003,165:483-496.
    [82]傅庆林,俞劲炎,王兆骞,等.易旱农田生态系统养分循环的研究[J].应用生态学报,1993,4(2):146-149.
    [83]傅庆林,俞劲炎,王建红,等.氮素营养对杂交稻518的氮素吸收、贮运和利用影响[J].浙江农业学报,1999,11(4):174-177.
    [84]Colnenne C, Meynard J M, Roche R, ef al. Effects of nitrogen deficiencies On autumnal growth of oilseed rape[J]. European Journal of Agronomy,2002,17:11-28.
    [85]Devienne-Barret F, Justes E, Machet J M, et al. Integrated control of nitrate uptake by crop growth rate and soil nitrate availability under field conditions[J]. Annals of Botany,2000,86:995-1005.
    [86]娄善伟,高云光,郭仁松,等.不同栽培密度对棉花植株养分特征及产量的影响[J].植物营养与肥料学报,2010,16(4):953-958.
    [87]张冬梅,李维江,唐薇,等.种植密度与留叶枝对棉花产量和早熟性的互作效应[J].棉花学报,2010,22(3):224-230.
    [88]刘绍东,张思平,张立祯,等.不同基因型棉花地上部干物质积累对氮素的响应[J].棉花学报,2010,22(1):77-82.
    [89]刘瑞显,陈兵林,王友华,等.氮素对花铃期干旱再复水后棉花根系生长的影响[J].植物生态学报,2009,33(2)405-413.
    [90]郭文琦,陈兵林,刘瑞显,等.施氮量对花铃期短期渍水棉花叶片抗氧化酶活性和内源激素含量的影响[J].应用生态学报,2010,21(1):53-60.
    [91]Hutmacher R B, Travis R L, Nichols R L. et al. Response of Acala cotton to nitrogen rates in the San Joaquin Valley of California[J]. The Scientific World Journal.2001,1 (2):691-698.
    [92]Blaise D, Singh J V, Bonde A N, et al. Effects of farmyard manure and fertilizers on yield, fibre quality and nutrient balance of rainfed cotton (Gossypium hirsutum) [J]. Bioresource Technology. 2005,96:345-349.
    [93]Bondada B R, Oosterhuis D M, Tugwell N P, et al. Cotton growth and yield as influenced by different timing of late-season foliar nitrogen fertilization. Nutrient Cycling in Agroecosystems. 1999,54:1-8.
    [94]Wells W, Merdith Jr W R. Comparative growth of obsolete and modern cotton cultivars. Ⅲ. Relationship of yield to observed growth characteristics[J]. Crop Sci.1984,24:868-872.
    [95]Hearn. A B. Effect of preceding crop on the nitrogen requirements of irrigated cotton (Gossypium hirsutum L.) on a vertisol[J]. Field Crops Res.1986,13:159-175.
    [96]Bange M P, Milroy S P, Thongbai P, et al. Growth and yield of cotton in response to waterlogging[J]. Field Crops Research.2004,88:129-142.
    [97]Sadras V O, Milroy S P. Reproductive allocation of cotton in response to plant and environmental factors. Ann. Bot.1997,80:75-81.
    [98]Rochester I J, Peoples M B, Constable G A, et al. Estimation of the N fertilizer requirement of cotton grown after legume crops[J]. Field Crops Research.2001,70:43-53.
    [99]Constable G A, Hearn A B. Irrigation for crops in a subhumid environment. Ⅵ. Effect of irrigation and nitrogen fertilizer on growth, yield and quality of cotton[J]. Irrig. Sci.1981,3:17-28.
    [100]胡尚钦,杨哓,张相琼,等.色土壤施氮对棉花产量品质的效应[J].棉花学报.2001,13(1):6-41.
    [101]Singnh V, Nagwekar S N, Singh V, et al. Effect of weed control and nitrogen levels on quality characters in cotton. J. Indian Soc.1989,14:60-64.
    [102]Jambunathan L R, Mehta N P.Sanandia C J, et al. Study of the effects of the application of nitrogen, phosphorus and potash on the economic and quality characteristics of the cotton-Hybrid 4.J. Indian Soc. Cotton Improv.1986,11:26-29.
    [103]Boquet D J, Breitenbeck G A, Coco A B, et al. Fertilizer nitrogen rates to optimize cotton yield and fibre quality. Louisiana Agric.1991,35:10-11.
    [1]邢朝柱,靖深蓉,邢以华,等.中国棉花杂种优势利用研究回顾和展望[J].棉花学报,2007,19(5):337-345.
    [2]张旺锋,王振林,余松烈,等.种植密度对新疆高产棉花群体光合作用、冠层结构及产量形成的影响[J].植物生态学报,2004,28(2):164-171.
    [3]Damisch W. Biomass yield-A topical issue in modern wheat breeding programmers [J]. Plant Breeding,1996,107:11-17.
    [4]Watt M S, Clinton P W, Whitehead D, et al. Above-ground biomass accumulation and nitrogen fixation of broom (Cytisus scoparius L.) growing with juvenile Pinus radiata on a dryland site [J]. Forest Ecology and Management,2003,184:93-104.
    [5]郭文琦,张思平,陈兵林,等.水氮运筹对棉花花后生物量和氮素利用率的影响[J].西北植物学报,2008,28(11):2270-2277.
    [6]王克如,李少昆,曹连莆,等.新疆高产棉田氮、磷、钾吸收动态及模式初步研究[J].中国农业科学,2003,36(7):775-778.
    [7]张旺峰,李蒙春,勾玲,等.北疆高产棉花养分吸收特性的研究[J].棉花学报,1998,10(2):88-95.
    [8]Bange M P, Milroy S P. Growth and dry matter partitioning of diverse cotton genotypes [J]. Field Crops Res.2004,87:73-87.
    [9]Mullines G L, Burmester C H. Dry matter, nitrogen, phosphorus, and potassium accumulation by four cotton varieties [J]. Agro J.1990,82:729-736.
    [10]Blaise D, Singh J V, Bonde A N, et al. Effects of farm yard manure and fertilizers on yield, fibre quality and nutrient balance of rainfed cotton (Gossypiumhirsutum L.) [J]. Bioresource Tech.2005, 96:345-349.
    [11]薛晓萍,陈兵林,郭文琦,等.棉花临界需氮量动态定量模型[J].应用生态学报,2006,17(12):2362-2370.
    [12]刘瑞显,郭文琦,陈兵林,等.棉花花铃期短期干旱条件下氮素对干物质及氮素累积分配的影响[J].西北植物学报,2008,28(6):1179-1187.
    [13]薛晓萍,王建国,郭文琦,等.氮素水平对初花后棉株生物量、氮素累积特征及氮素利用率动态变化的影响[J].生态学报,2006,26(11):3631-3640.
    [14]李蕾,娄春恒,文如镜,等.新疆不同密度下棉花干物质累积及其分配规律研究[J].西北农业学报,1996,5(2):10-14.
    [15]吕新,张伟,曹连莆,等.不同密度对新疆高产棉花冠层结构光和特性和产量形成的影响[J].西北农业学报,2005,14(1):142-148.
    [16]赵中华,刘德章,郭美丽,等.棉花群体冠层结构与干物质生产及产量的关系[J].棉花学报,1997,9(2):90-94.
    [17]赵中华,刘德章,南建福,等.棉花各器官干物质分配规律的数学模型[J].华北农学报,1997,12(3):53-59.
    [18]Goudriaan J, Van Laar H H. Modeling potential crop growth processes [M]. Dordrecht, The Netherlands:Kluwer Academic Publishers,1994.
    [19]Bonesmo H, Belanger G. Timothy yield and nutritive value by the CATIMO model:Ⅰ. Growth and nitrogen [J].Agro J.2002,94 (2):337-345.
    [20]何萍,金继运,林葆,等.不同氮磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究[J].植物营养与肥料学报,1998,4(2):123-130.
    [21]Plenet D, Lemaire G. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops:determination of critical N concentration [J]. Plant and Soil,2000,216: 65-82.
    [I]Roger N, Yves D, Nicolas T, et al. A mathematical model for nitrogen demand quantification and a link to broccoli (Brassica oleracea var. italica) glutamine synthetase activity [J]. Plant Science, 2003,165:483-496.
    [2]Fu Qing-lin, Yu Jing-yan, Chen Ying-xu, et al. Effect of nitrogen applications on dry matter and nitrogen partitioning in rice and nitrogen fertilizer requirements for rice production [J]. Journal of Zhejiang University,2000,26 (4):399-403.
    [3]王克如,李少昆,曹连莆,等.新疆高产棉田氮、磷、钾吸收动态及模式初步研究[J].中国农业科学,2003,36(7):775-778.
    [4]薛晓萍,陈兵林,郭文琦,等.棉花临界需氮量动态定量模型[J].应用生态学报,2006,17(12):2363-2370.
    [5]薛晓萍,王建国,郭文琦,等.氮素水平对初花后棉株生物量、氮素累积特征及氮素利用率动态变化的影响[J].生态学报,2006,26(11):3631-3640.
    [6]Jiang Guo-zhu, Deng Shao-hua, Wu Tong-li, et al. An optimal policy decision model on agronomic measures for cotton with high yield and high quality [J]. Acta Gossypii Sin,1990,2 (1):51-57.
    [7]吕新,魏亦农,李少昆,等.基于GIS的土壤肥力信息管理及棉花施肥推荐支持决策系统研究[J].中国农业科学,2002,35(7):883-887.
    [8]杨俐苹,姜诚,金继运,等.棉田土壤养分精准管理初探[J].中国农业科学,2000,33(6):66-72.
    [9]Lutrick M C, Peacock H A, Cornell J A, et al. Nitrate monitoring for cotton lint production on a typic plaudit [J].Agron J,1986,78 (3):1042-1046.
    [10]李俊义,刘荣荣,王润珍,等.棉花平衡施肥模型研究[J].棉花学报,1990,2(2):58-65.
    [11]Rochhester I J, Peoples M B, Constable G A, et al. Estimation of the N fertilizer requirement of cotton grown after legume crops [J]. Field Crop res,2001, (70):43-54.
    [1]Jeuffroy MH, Ney B, Oury A, et al. Integrated physiological and agronomic modeling of N capture and use within the plant. Journal of Experimental Botany,2002:809-823
    [2]Read JJ, Reddy KR, Jenkins JN, et al. Yield and fiber quality of Upland cotton as influenced by nitrogen and potassium nutrition. European Journal of Agronomy,2006,24:282-290
    [3]Manderscheid R, Pacholski A, Friihau C, et al. Effects of free air carbon dioxide enrichment and nitrogen supply on growth and yield of winter barley cultivated in a crop rotation. Field Crops Research,2009,110 (3):185-196
    [4]Gayler S, Wang E, Priesack E, et al. Modeling biomass growth, Nuptake and physiological development of potato crop. Geoderma,2002,105:367-383
    [5]Michael S, Watt, Peter W, et al. Above-ground biomass accumulation and nitrogen fixation of broom (Cytisus scoparius L.) growing with juvenile Pinus radiata on a dryland site. Forest Ecology and Managemen,2003,184:93-104
    [6]Ferrise R, Triossi A, Stratonovitch P, et al. Sowing date and nitrogen fertilization effects on dry matter and nitrogen dynamics for durum wheat:An experimental and simulation study. Field Crops Research,2010,117 (3):245-257
    [7]Sokhansanj S, Mani S, Turhollow A, et al. Large-scale production, harvest and logistics of switchgrass (Panicum virgatum L.)-current technology and envisioning a mature technology. Biofuels, Bioproducts and Biorefining,2009,3(2):124-141
    [8]孟亚利,曹卫星,柳新伟,等.水稻地上部干物质分配动态模拟的初步研究[J].作物学报,2004,30(4):376-381.
    [9]李少昆,王崇桃,汪朝阳.北疆高产棉花根系生长规律的研究:Ⅰ根系的构型与动态建成.石河子大学学报(自然科学版).1999,增刊:15-25.
    [10]薛晓萍,王建国,郭文琦,等.氮素水平对初花后棉株生物量、氮素累积特征及氮素利用率动态变化的影响[J].生态学报,2006,26(11):3631-3640.
    [11]张旺锋,王振林,余松烈,等.氮肥对新疆高产棉花群体光合性能和产量形成的影响[J].作物学报,28(6):789-796.
    [12]Gayler S, Wang E, Priesack E, et al. Modeling biomass growth, Nuptake and phynological development of potato crop. Geoderma,2002,105:367-383
    [13]Michael S, Watt, Peter W, et al. Clinton, David Whitehead, Brian Richardson, Euan G, Mason, Alan C., Leckie. Above-ground biomass accumulation and nitrogen fixation of broom (Cytisus scoparius L.) growing with juvenile Pinus radiata on a dryland site. Forest Ecology and Management,2003,184:93-104
    [14]Pozo AD, Pereza P, Gutierrez D, et al. Gas exchange acclimation to elevated CO2 in upper-sunlit and lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat grown in field chambers. Environ Exp Bot,2007,59:371-380
    [15]Feil B, Moser SB, Jampatong S, et al. Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization. Crop Science,2005,45: 516-523
    [16]何萍,金继运,林葆,等.不同氦磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究[J].植物营养与肥料学报,1998,4(2):123-130.
    [17]冷锁虎,左青松,戴敬,等,油料高产群体质量指标研究,中国油料作物学报,2004,26(4):38-48.
    [18]赵新华,王友华,束红梅,等.棉(Gossypium hirsutum L.)株生理年龄对棉铃生物量和氮素累‘积的影响[J].中国农业科学,2010,43(22):4605-4613
    [19]李秀章,陈祥龙,徐立华,等.氮素营养水平对小麦后移栽棉氮代谢的影响[J].棉花学报,1994,6(4):223-228
    [20]Hearn AB. Effect of preceding crop on the nitrogen requirements of irrigated cotton (Gossypium hirsutum L.) on a vertisol. Field Crop research,1986,13:159-175
    [21]Singh V, Nagwekar SN. Effect of weed control and nitrogen levels on quality characters in cotton. J Indian Soc Cotton Improvement,1989,14:60-64
    [22]Boquet DJ, Breitenbeck GA, Coco AB, et al. Fertilizer nitrogen rates to optimize cotton yield and fiber quality. Louisiana Agriculture,1991,35:10-11
    [23]Boquet D, Breitenbeck GA. Nitrogen rate effect on partitioning of nitrogen and dry matter by cotton. Crop Science,1999,40 (6):1685-1693
    [24]Scheer C, Wassmann R, Kienzler K, et al. Nitrous oxide emissions from fertilized, irrigated cotton (Gossypium hirsutum L.)in the Aral Sea Basin, Uzbekistan:Influence of nitrogen applications and irrigation practices. Soil Biology and Biochemistry,2008,40 (2):290-301
    [25]Hou Z, Li P, Li B, et al. Effects of fertigation scheme on N uptake and N use efficiency in cotton. Plant and Soil,2007,290:115-126
    [1]Gwathmey CO, Clement JD. Alteration of cotton source-sink relations with plant population population and mepiquat chloride. Field Crops Res,2010,116:101-107.
    [2]关保华,安树青,蔡颖,等.在磷浓度不同的基质中种植密度对野菱生长的影响.植物资源与环境学报,2009,18:42-47.
    [3]Dong H Z, Li W J, Zhang D M. Late planting of short-season cotton in saline fields of the Yellow River Delta. Crop Sci,2010,50:292-300.
    [4]刘瑞显,陈兵林,王友华,等.氮素对花铃期干旱再复水后棉花根系生长的影响.植物生态学报,2009,33(2)405-413.
    [5]郭文琦,陈兵林,刘瑞显,等.施氮量对花铃期短期渍水棉花叶片抗氧化酶活性和内源激素含量的影响,.应用生态学报,2010,21(1):53-60.
    [6]赵新华,王友华,束红梅,等.棉(Gossypium hirsutum L.)株生理年龄对棉铃生物量和氮素累积的影响.中国农业科学,2010,43(22):4605-4613.
    [7]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用.应用生态学报,2006,26(6):1782-1791
    [8]胡宏标,张文静,王友华,等.棉纤维加厚发育相关物质对纤维比强度的影响.西北植物学报,2007,27(4):0726-0733.
    [9]张文静,胡宏标,王友华,等.棉纤维发育相关酶活性的基因型差异与纤维比强度的关系,中国农业科学,2007,40(10):2177-2184.
    [10]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响.植物生态学报,2006,30:335-343.
    [11]蒋光华,周治国,陈兵林,等.棉株生理年龄对纤维加厚发育及纤维比强度形成的影响.中国农业科学,2006,39:265-273.
    [12]Leffler H R. Development of cotton fruit accumulation and distribution of dry matter. Agron J, 1976,68:855-857.
    [13]陈兵林,曹卫星,周治国.棉花单铃干物质积累分配的分期动态模拟及检验.中国农业科学,2006,39(3):487-493.
    [14]周可金,江厚旺,吴宁,等.不同开花期棉铃干物质积累规律研究.棉花学报,1996,8(3):145-150.
    [15]单世华,孙学振,周治国,等.温度对棉纤维干物质积累动态变化的影响.山东农业大学学报 (自然科学版,2001,32(1):6-10.
    [16]郑红丽,邵金旺,樊明寿,等.种植密度对甜菜同化物质分配的影响.中国甜菜糖业,2003,2:1-3.
    [17]赵新华,束红梅,王友华,等.播期对棉铃生物量和氮累积与分配的影响及其与棉铃品质的关系.作物学报,2010,36(10):1707-1714.
    [18]胡宏标,张文静,陈兵林,等.棉铃对位叶C/N的变化及其与棉铃干物质积累和分配的关系.作物学报,2008,34(2):254-260.
    [19]马溶慧,许乃银,李文峰.氮素水平对棉铃干物质积累分配和纤维品质性状的影响.棉花学报2009,21(2):115-120.
    [20]张培通,徐立华,杨长琴,等.施氮量对科棉3号干物质积累及分配,产量和纤维品质的效应.棉花学报,2008,20(4):295-299.
    [21]束红梅,王友华,陈兵林,等.棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系,作物学报,2007,33(6):921-926.
    [1]Lemaire G, Salette J. Croissance estivale en matiere seche de peuplements de fetuque elevee (Festuca arundinacea Schreb) et de dactyle (Dactylis glomerata L.) dans l'ouest de la France:Ⅰ. Etude en conditions de nutrition azotee et d'alimentation hydrique non limitantes[J]. Agronomie. 1984,7:381-389.
    [2]Greeenwood D J, Lemaire G, Gosse G, et al. Decline in percentage N of C3 and C4 crops with increasing plant mass [J].Annals of Botany.1990,67:181-190.
    [3]Lemaire G, Salette J. Croissance estivale en matiere seche de peuplements de fetuque elevee (Festuca arundinacea Schreb) et de dactyle (Dactylis glomerata L.) dans l'ouest de la France:Ⅰ. Etude en conditions de nutrition azotee et d'alimentation hydrique non limitantes[J]. Agronomie. 1984,7:381-389.
    [4]Lemaire G, Gastal F, Cruz P, et al. Relationships between plant-N, plant mass and relative growth rate for C3 and C4 crop[J]. Proceedings first ESA Congress, Paris,1990,1-5.
    [5]Greenwood D J, Lemaire G, Gosse G, et al. Decline in percentage N of C3 and C4 crops with increasing plant mass[J].Annals of Botany.1990,67:181-190.
    [6]Justes E, Mary B, Meynard J M, et al. Determination of a critical nitrogen dilution curve for winter wheat crops[J]. Annals of Botany,1994, (74):397-407.
    [7]Colinenne C, Meynard J M, Reau R,et al. Determination of a critical nitrogen dilution curve for winter oilseed rape[J]. Annals of Botany,1998, (81):311-317.
    [8]Plenet D, Lemaire G. Relationship between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical concentration[J]. Plant Soil,2000,216: 65-82.
    [9]RileyY H, Guttormsen G. Alternative equations for critical N-concentration in cabbage. In:Burns, I G, Bending, G D, Mulholland B (Eds), Proceedings of the Workshop on Eco. Aspects Veg. Fert. Integr. Crop Prod, in the Field[J]. Acta Horticulturae,1999,506:123-128.
    [10]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J].生态学报,2006,26(6):1781-1791.
    [11]Nkoa R, Desjardins Y, Tremblay N, et al. A mathematical model for nitrogen demand quantification and a link to broccoli (Brassica oleracea var. italica)glutamine synthesize activity[J]. Plant Science, 2003,165:483-496.
    [12]Lemaire G, Gastal F. N uptake and distribution in plant canopies. In:Lemaire G,ed. Diagnosis of the nitrogen status in crops[J]. Berlin Heidelberg:Spring-Verlag,1997,3-44.
    [13]Greenwood D J, Lemaire G, Gosse G, et al. Decline in percentage N of C3 and C4 crops with increasing plant mass[J].Annals of Botany.1990,67:181-190.
    [14]Lemaire G, Gastal F, Salette J, et al. Analysis of the effect of N nutrition on dry matter yield of a sward by reference to potential yield and optimum N content[J]. In proceedings of the 16th international Grassland Congress, Nice, France,1989:179-180.
    [15]Lemaire G, Gastal F, Salette J, et al. N uptake and distribution in plant canopies[J]. In:Diagnosis of the nitrogen status in crops. Springer:Berlin,1997:3-45.
    [16]Devienne F B, Justes E, Machet J M, et al. Integrated control of nitrate uptake by crop growth rate and soil nitrate availability under field conditions[J]. Annals of Botany,2000,86:995-1005.
    [1]张旺锋,王振林,余松烈,等.种植密度对新疆高产棉花群体光合作用、冠层结构及产量形成的影响[J].植物生态学报,2004,28(2):164-171.
    [2]赵中华,刘德章,南建福,等.棉花各器官干物质分配规律的数学模型[J].华北农学报,1997,12(3):53-59.
    [3]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J].生态学报,2006,26(6):1781-1791.
    [4]Lemaire G, Gastal F, Salette J, et al. Analysis of the effect of N nutrition on dry matter yield of a sward by reference to potential yield and optimum N content. In proceedings of the 16th international Grassland Congress, Nice, France,1989:179-180.
    [5]何萍,金继运,林葆,等.不同氮磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究[J].植物营养与肥料学报,1998,4(2):123-130.
    [6]Plenet D, Lemaire G. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops:determination of critical N concentration [J]. Plant and Soil,2000, 216:65-82.
    [7]薛晓萍,陈兵林,郭文琦,等.棉花临界需氮量动态定量模型[J].应用生态学报,2006,17(12):2363-2370.
    [8]薛晓萍,王建国,郭文琦,等.氮素水平对初花后棉株生物量、氮素累积特征及氮素利用率动态变化的影响[J].生态学报,2006,26(11):3631-3640.
    [9]张旺峰,李蒙春,杨新军,等.北疆高产棉花干物质积累的模拟[J].石河子大学学报:自然科学版,1998,2(2):87-92.
    [10]娄善伟,高云光,郭仁松,等.不同栽培密度对棉花植株养分特征及产量的影响[J].植物营养与肥料学报,2010,16(4):953-958.
    [11]张冬梅,李维江,唐薇,等.种植密度与留叶枝对棉花产量和早熟性的互作效应[J].棉花学报,2010,22(3):224-230.
    [12]刘绍东,张思平,张立祯,等.不同基因型棉花地上部干物质积累对氮素的响应[J].棉花学报,2010,22(1):77-82.
    [13]刘瑞显,陈兵林,王友华,等.氮素对花铃期干旱再复水后棉花根系生长的影响[J].植物生态学报,2009,33(2)405-413.
    [14]郭文琦,陈兵林,刘瑞显,等.施氮量对花铃期短期渍水棉花叶片抗氧化酶活性和内源激素 含量的影响[J].应用生态学报,2010,21(1):53-60.
    [15]吴兰云,李煌,刘宪,等.钾肥和密度对淮北地区高品质棉产量及品质的效应研究[J].中国农学通报,2009,25(10):151-155.
    [16]胡宏标,张文静,王友华,等.棉纤维加厚发育相关物质对纤维比强度的影响[J].西北植物学报,2007,27(4):0726-0733.
    [17]张文静,胡宏标,王友华,等.棉纤维发育相关酶活性的基因型差异与纤维比强度的关系[J].中国农业科学,2007,40(10):2177-2184.
    [18]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成过程的生理机制的影响[J].中国农业科学,2006,30:335-343.
    [19]蒋光华,周治国,陈兵林,等.棉株生理年龄对纤维加厚发育及纤维比强度形成的影响[J].中国农业科学,2006,39:265-273.
    [20]Greenwood D J, Lemaire G, Gosse G, et al. Decline in percentage N of C3 and C4 crops with increasing plant mass [J]. Annals of Botany,1990,67:181-190.
    [21]Lemaire G, Gastal F, Salette J, et al. Analysis of the effect of N nutrition on dry matter yield of a sward by reference to potential yield and optimum N content. In proceedings of the 16th international Grassland Congress, Nice, France,1989:179-180.
    [22]Lemaire G, Gastal F, Salette J, et al. N uptake and distribution in plant canopies. In:Diagnosis of the nitrogen status in crops. Springer:Berlin,1997:3-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700