用户名: 密码: 验证码:
以HSA为模型评价几类典型农用化学品的潜在生物效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,我国在巨大的人口压力下,农产品一直围绕着高产为主,从而大量施用各种农用化学品,包括杀虫剂、杀菌剂、除草剂、兽药、着色剂等。残留在农产品或环境中的农用化学品,通过直接或间接途径,最终进入人体蓄积,而大量农用化学品的毒副作用尚不明确。因此,“餐桌污染”问题越来越受到人们关注,农产品安全问题已成为全社会的焦点之一。人体内的生物大分子,例如蛋白质、核酸等是生命现象的物质基础,是参与人体内各种生物变化最重要的组分。蛋白质存在于一切细胞中,是构成人体的基本材料,且承担不同的生理功能,虽然核酸携带着人类的遗传信息,在人体的发育、生长、繁殖、遗传变异等生命过程中起极为重要的作用,但研究发现,核酸必须通过蛋白质来实现其生物学功能。所以,外源化合物例如农药、着色剂、兽药等,若干扰人体内蛋白质的正常生理活动过程,必然会导致人体某些器官机能紊乱,宏观表现为引发各种疾病。故而以蛋白质为考察对象,从分子层面研究农用化学品的毒性机理,有助于帮助人们评价这些农用化学品对人体的微观致毒机制,进而全面评估其毒性,为多种疾病的预防、诊断、治疗提供理论依据。
     本论文利用人体内含量最丰富、功能多样的血清白蛋白为模型,借助于多种生物物理方法从蛋白质水平进行了以下4个方面的创新性研究:
     (1)探讨了“低毒”杀虫剂吡虫啉、氯虫酰胺对模型蛋白HSA的毒性机理,并关注了手性农用化学品对非靶标生物的毒性;
     (2)选取某些典型食品着色剂为农用化学品污染物,通过对生物大分子的致毒机理分析,论证了以HSA为模型评价农用化学品毒性作用的有效性;
     (3)讨论了磺酰脲类除草剂对蛋白质毒性的微观信息与宏观生物活性之间的关联性,建立了基于构效关系的农用化学品致毒作用机制的预测模型;
     (4)揭示了人体内蛋白质很可能对某些食品添加剂的生理活性具有调节作用。
     论文分为以下6个部分:
     第一章:概述了农产品污染的现状、危害、影响因素,介绍了农用化学品的分类、毒性评价方法,总结了以蛋白质为靶标评估农用化学品毒性机理的研究手段及进展。
     第二章:研究了当前使用最广泛的农用化学品吡虫啉、氯虫酰胺、手性甲霜灵、氯霉素对模型蛋白质HSA的毒性作用,结果表明,4种农用化学品通过氢键、π-π、T-π、疏水作用与HSA中等强度络合,其中,HSA对(S)-甲霜灵的亲和力大于(R)-甲霜灵;除(R)-甲霜灵外,吡虫啉、氯虫酰胺、(S)-甲霜灵、氯霉素在HSA上只有一个结合位置(ⅡA亚域或ⅢA亚域),与核心氨基酸残基Phe-211、Trp-214、Arg-410、Tyr-411等产生非共价作用;4种农用化学品均能引起蛋白质多肽链伸展、蛋白质结构损伤。
     第三章:以HSA为靶标,考察了4种模型食品着色剂酸性红2、媒介红3、茜素氨羧络合剂、酚藏花红的毒理学机制,4种着色剂都能与靶标HSA形成复合物,因此,生色团荧光寿命几乎无变化,体系的Gibbs自由能变AG°<0,表明靶标-着色剂缔合过程是自发进行的放热反应;分子模型显示,食品着色剂与IIA亚域的Trp-214残基、IIIA亚域的Leu-407、Tyr-411、Phe-488、 Ser-489残基形成氢键、π-π、T-π、疏水作用,这些非共价作用导致多肽链解折叠、靶标蛋白空间构象改变,影响了其生理功能。
     第四章:利用权威环境物理化学和生物化学预测软件估算了44种磺酰脲类除草剂的环境参数,进行环境风险分级(Ⅰ、Ⅱ、Ⅲ级),从中选取了10个除草剂,利用多种生物物理学技术评价其对模型蛋白质HSA的毒性效应。光谱实验结果发现除草剂对HSA的毒性作用强弱与环境风险等级存在关联性,符合Ⅲ级>Ⅱ级>Ⅰ级的顺序;除草剂主要通过非共价作用,例如氢键、T-π、疏水作用缔合在模型蛋白HSA的ⅡA亚域(苄嘧磺隆位于Ⅲ亚域),引起蛋白质结构损伤,这个现象已由同步荧光、圆二色谱、三维荧光光谱所证实;氨基酸残基Lys-195、Trp-214、 Arg-222、Arg-257(ⅡA亚域)和Arg-410、Lys-414、Leu-491(ⅢA亚域)是除草剂-HSA轭合过程中关键氨基酸;构效关系分析可知,除草剂-HSA体系的亲和力与环境风险等级、辛醇-水分配系数密切相关,而且,除草剂分子结构中左、右两侧芳基、杂环电负性是决定其毒性强弱的核心因素。
     第五章:对比考察了天然产物黄烷酮类化合物橙皮苷、橙皮素的生理活性,荧光光谱显示黄烷酮类化合物-HSA的反应过程属于静态机理,这与时间分辨荧光测量结果相符,即形成了非荧光性复合物,生色团荧光寿命为5.32ns左右;橙皮苷、橙皮素通过氢键、T-π等非共价作用结合在HSA的ⅡA、ⅢA亚域,且ⅡA亚域对黄烷酮的亲和力大于ⅢA亚域,同时,络合过程引起HSA的α-螺旋结构含量降低,蛋白质的生理活性、功能发生改变;基于分子动力学模拟,可以看出黄烷酮位于ⅡA亚域时的稳定性强于ⅢA亚域,此外,橙皮苷在ⅡA、ⅢA亚域的稳定性均小于橙皮素,说明橙皮素-HSA复合物亲和力更大,这与分子模型结果非常一致。
     第六章:总结了本论文取得的主要研究结果,揭示了以人体内重要生物大分子HSA为模型进行毒性评价的有效性,并对后续研究进行了几点建议。
Taking the long view, farm products in China always focused on high yielding because of the large pressure of potential population explosion; therefore various agrochemicals, such as insecticides, fungicides, herbicides, veterinary drugs and food colorants have been heavy used in almost every agricultural sector to keep a stable yields. Numerous studies have clearly demonstrated that agrochemicals residues in agricultural commodities or environments will finally be accumulated in critical human organs (e.g. heart, liver and kidney) through direct or indirect route. Worst of all, the toxicity and side effects of large quantity of agrochemicals still preserves opaque. Consequently,"fork contamination" attracted more and more attention and agricultural product safety has become a major concern of the contemporary society. Biomacromolecules such as protein and nucleic acids in the human body are the essential physical foundation of all forms of life, and they usually intervene in all kinds of life processes. Proteins are the most abundant biological macromolecules, occurring in all cells and all parts of cells. It is the basic element of constructing human body and exhibit enormous diversity of biological function. Although nucleic acids stores and transmits genetic information from one generation to the next is a fundamental condition of life, scientific research found that the biological functions of nucleic acids must be achieved by different proteins. If the physiological activities of proteins were disturbed by several ligands such as pesticides, colorants and veterinary drugs, multiple organ dysfunction syndrome would be a direct consequence of the interference, and further various illnesses is the macroscopical representation of this event. Thus the study on toxicity mechanism of agrochemicals using protein as a model at the molecular level will help people see the microscopic poisoning mechanism when these agrochemicals entered human body. Furthermore, such study can also assess the overall toxic action of agrochemicals and provide the rationale for disease prevention, diagnosis and treatment.
     Given the above mentioned background, the main goal of the current thesis was to generate more comprehensive information about the toxicity of several typically agrochemicals by numerous biophysical techniques. Human serum albumin (HSA), which is the most abundant and multifunctional protein in the human body will be used as a model and the innovative results from four aspects were listed as follows:
     (1) The toxic action of "moderately" toxic insecticides imidacloprid and chlorantraniliprole to model HSA was discussed, and the toxicity of chiral agrochemicals to non-target organism was also attracted widely attention from here.
     (2) Through the poisonous mechanistic analyses of some properly selected food contaminant for biological macromolecule, this work demonstrated obviously that the validity of judging the toxic effect of agrochemicals using HSA as a suitable model.
     (3) The relationships between microscopic information and macroscopic biological activities of protein, which was created by the toxicity of sulfonylurea herbicides, were addressed in this thesis. Based on the structure-activity relationship analyses, the predicting modeling was proposed to forecast the poisonous mechanism of agrochemicals.
     (4) This research also brought out the biomacromolecules such as protein in the human body could probably have a significant impact on the physiological activities of some natural food additives.
     On the whole this thesis can be divided into the following six parts:
     Chapter1:In this section, the current situation, potential hazards and the influential factors of the contamination of agricultural products were reviewed. This part also introduced the classification of different agrochemicals and the methods of toxicological evaluation; moreover, the techniques and the recent progresses of toxic assessments for various agrochemicals using protein as a target were summarized herein.
     Chapter2:The assessment of the toxicity of several most widely used agrochemicals, i.e. imidacloprid, chlorantraniliprole,(R)-/(S)-metalaxyl and chloramphenicol for model macromolecule HSA is the subject of this chapter. Experiments show that the conjugation of four chemicals with HSA belongs to moderate strength, but the affinity of (S)-metalaxyl with protein is superior compared with that with (R)-metalaxyl. The primary forces between protein and ligands are hydrogen bonds, π-π, T-π and hydrophobic interactions; furthermore, agrochemicals are only situated within subdomain IIA or ⅢA except for (R)-metalaxyl, and then these compounds can make noncovalent interactions with some key amino acid residues such as Phe-211, Trp-214, Arg-410and Tyr-411. This event eventually led to the destabilization of the HSA spatial structure that is protein damage.
     Chapter3:The focus of this chapter is the inspection of the toxicology of model food colorants C.I. Acid Red2, C.I. Mordant Red3, alizarin complexone and phenosafranin using HSA as an appropriate target. The results display the complex of four food colorants to HSA is the formation of adduct, as a result the fluorescence lifetimes of fluorophore have barely changed in the process. According to the thermodynamics equation, the Gibbs free energy ΔG°<0, which intimates the formation of HSA-food colorants conjugation was an exothermic reaction. From molecular modeling outcomes, food colorants could form hydrogen bonds, π-π, T-π and hydrophobic interactions with several crucial amino acid residues such as Trp-214(subdomain IIA) or Leu-407, Tyr-411, Phe-488and Ser-489(subdomain IIIA). These noncovalent interactions caused the polypeptide chain of HSA partially unfolding with an alteration of protein conformation, which may be correlated with its physiological activity.
     Chapter4:In this chapter,44sulfonylurea herbicides were first divided into three environmental risk rating (Ⅰ,Ⅱ and Ⅲ) by employing some authoritative prediction software such as Estimation Program Interface (EPI) Suite, Toxicity Estimation Software Tool (TEST) and VEGA, and then10representative herbicides were selected and further assess the toxic effects for model protein HSA using multiple biophysical techniques. Spectroscopic experiments exhibited evidently some correlation exists between the toxicity of herbicides for HSA and the environmental risk rating of herbicides, and the correlativity is corresponding to the order:Ⅲ>Ⅱ>Ⅰ. The binding of herbicides to protein primarily took place in subdomain IIA whereas bensulfuron-methyl is located at subdomain IIIA, and the noncovalent interactions such as hydrogen bonds, T-π and hydrophobic interactions were found to be the principal acting force in stabilizing the complex. Molecular modeling indicated that some amino acid residues, e.g. Lys-195, Trp-214, Arg-222and Arg-257(subdomain IIA) and Arg-410, Lys-414and Leu-491(subdomain IIIA) plays an important role in the conjugation, and the intermolecular force between them engendered damage to protein, this corroborates synchronous fluorescence, circular dichroism and three-dimensional fluorescence spectra that the spatial structure of HSA was changed. According to the structure-activity relationship, it may be observed that the affinity between herbicides and HSA is closely related to the environmental risk rating and the octanol-water partition coefficient; and furthermore, electronegativity of the aryl and heterocycle in herbicide molecule could highly probable exert a great impact on its toxicological properties.
     Chapter5:The discussion of this chapter will be limited to the comparative studies of the biological activities of natural flavanones hesperidin and hesperetin. The data of steady state fluorescence expounded the conjugation of flavanone with protein yielded quenching by a static mechanism, which substantiates time-resolved fluorescence measurements that non-fluorescent flavanone-HSA complex formation has a lifetime of5.32ns. Both subdomain IIA and IIIA were earmarked to possess high-affinity for flavanone, and the affinity of subdomain IIA with flavanone is greater than that of subdomain IIIA. Additionally, the primary forces between protein and flavanone are hydrogen bonds and T-π interactions, these intermolecular forces could induce the reduction of α-helix suggesting alterations of the structure and function of protein. In view of the molecular dynamics simulations, one may find that the stability of subdomain IIIA with flavanone is much lower than subdomain IIA. and the stableness of hesperetin in subdomain IIA and IIIA is superior, compared with hesperidin; this coincides perfectly with molecular modeling results that the strength of hesperetin with HSA is bigger than hesperidin.
     Chapter6:This section is a primary conclusion of the preceding chapters, uncovering the credibility of the toxicological risk assessment by exploiting several fundamental biopolymers in the human body such as HSA as a valuable model. Finally, some suggestions for future research are also proposed in this part.
引文
[1]Bernard, A.; Hermans, C.; Broeckaert, F.; et al. Food contamination by PCBs and dioxins. Nature 1999,401,231-232.
    [2]Hunter, K. W. Mouse models of cancer:does the strain matter? Nat. Rev. Cancer 2012,12, 144-149.
    [3]Cassiday, L. Public health:Food-safety sentinels. Nature 2010,468,857-858.
    [4]Godfray, H. C. J.; Beddington, J. R.; Crute,I. R.; et al. Food security:The challenge of feeding 9 billion people. Science 2010,327,812-818.
    [5]Griggs, D.; Stafford-Smith, M.; Gaffney, O.; et al. Policy:Sustainable development goals for people and planet. Nature 2013,495,305-307.
    [6]Zhang, F. S.; Chen, X. P.; Vitousek, P. Chinese agriculture:An experiment for the world. Nature 2013,497,33-35.
    [7]Wolfenbarger, L. L.; Phifer, P. R. The ecological risks and benefits of genetically engineered plants. Science 2000,290,2088-2093.
    [8]Cohen, J. E. Human population:The next half century. Science 2003,302,1172-1175.
    [9]http://www.fao.org/docrep/005/Y2772E/y2772e04.htm
    [10]http://www.wto.org/english/tratop_e/agric_e/ag_intro01_intro_e.htm
    [11]http://www.usda.gov/wps/portal/usda/usdahome?navid=CROP_PRODUCTION
    [12]Hulme, P. E. Environmental health crucial to food safety. Science 2013,339,522.
    [13]Rappaport, S. M.; Smith, M. T. Environment and disease risks. Science 2010,330,460-461.
    [14]Alcorn, T.; Ouyang, Y. D. China's invisible burden of foodborne illness. Lancet 2012,379, 789-790.
    [15]Soto, A. M.; Sonnenschein, C. Environmental causes of cancer:endocrine disruptors as carcinogens. Nat. Rev. Endocrinol.2010,6,363-370.
    [16]Cope, S.; Frewer, L. J.; Houghton, J.; et al. Consumer perceptions of best practice in food risk communication and management:Implications for risk analysis policy. Food Policy 2010,35, 349-357.
    [17]http://www.codexalimentarius.org/
    [18]Bruin, Y. B. D.; Hakkinen, P. B.; Lahaniatis, M.; et al. Risk management measures for chemicals in consumer products:documentation, assessment, and communication across the supply chain.J. Expo. Sci. Environ. Epidemiol.2007,17, S55-S66.
    [19]Dieterle, F.; Sistare, F.; Goodsaid, F.; et al. Renal biomarker qualification submission:a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nat. Biotechnol.2010,28, 455-462.
    [20]Brown, M. E.; Funk, C. C. Food security under climate change. Science 2008,319,580-581.
    [21]Popkin, B. M. Agricultural policies, food and public health. EMBO Rep.2011,12,11-18.
    [22]Cohen, J. E. Population growth and earth's human carrying capacity. Science 1995,269, 341-346.
    [23]Dupont, L. The human factor. Science 2012,335,1180-1181.
    [24]deMenocal, P. B. Climate and human evolution. Science 2011,331,540-542.
    [25]Lubchenco, J. Entering the century of the environment:A new social contract for science. Science 1998,279,491-497.
    [26]Fisher, C. E. Risks from chemicals in food:C.E. Fisher discusses risks and hazards from a UK perspective. Food Control 1992,3,7-9.
    [27]Tylianakis, J. M. Warming up food webs. Science 2009,323,1300-1301.
    [28]Tilman, D.; Cassman, K. G.; Matson, P. A.; et al. Agricultural sustainability and intensive production practices. Nature 2002,418,671-677.
    [29]Woodward, G.; Gessner, M. O.; Giller, P. S.; et al. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 2012,336,1438-1440.
    [30]Brodin, T.; Fick, J.; Jonsson, M.; et al. Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science 2013,339,814-815.
    [31]Steinheimer, T. R.; Ross, L. J.; Spittler, T. D. Agrochemical movement:Perspective and scale-of-study overview. Agrochemical Fate and Movement; American Chemical Society: Washington, D.C.,2000; pp 2-18.
    [32]Oba, S. Agrochemical industry's contribution to sustainable agriculture and environmental health. Environmental Fate and Safety Management of Agrochemicals; American Chemical Society: Washington, D.C.,2005; pp 2-12.
    [33]Alston, J. M.; Beddow, J. M.; Pardey, P. G. Agricultural research, productivity, and food prices in the long run. Science 2009,325,1209-1210.
    [34]Foley, J. A.; Ramankutty, N.; Brauman, K. A.; et al. Solutions for a cultivated planet. Nature 2011,478,337-342.
    [35]ftp://ftp.fao.org/docrep/fao/009/a0220e/a0220e00.pdf
    [36]http://www.niehs.nih.gov/health/topics/agents/pesticides/index.cfm
    [37]http://ec.europa.eu/food/plant/plant_protection_products/index_en.htm
    [38]Stolzenberg, J. E. Simulation of the mobility of arsenic compounds in the environment:A southern Texas case study. Arsenical Pesticides; American Chemical Society:Washington, D.C., 1975; pp 148-171.
    [39]http://www.epa.gov/pesticides/about/types.htm
    [40]Young, A. L. Minimizing the risk associated with pesticide use:An overview. Pesticides American Chemical Society:Washington, D.C.,1987; pp 1-11.
    [41]Gilden, R. C.; Huffling, K.; Sattler, B. Pesticides and health risks. J. Obstet. Gynecol Neonatal Nurs.2010,39,103-110.
    [42]Rao, G. V. R.; Rupela, O. P.; Rao, V. R.; et al. Role of biopesticides in crop protection:Present statue and future prospects. Indian J. Plant Prot.2007,35,1-9.
    [43]Dixon, B. Pushing Bordeaux mixture. Lancet Infect. Dis.2004,4,594.
    [44]Lipnick, R. L.; Muir, D. C. G. History of persistent, bioaccumulative, and toxic chemicals. Persistent, Bioaccumulative, and Toxic Chemicals I; American Chemical Society:Washington, D.C.,2000; pp 1-12.
    [45]Shen, L.; Wania, F. Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides. J. Chem. Eng. Data 2005,50,742-768.
    [46]Metcalf, R. L. Insect Control. Ullmann's Encyclopedia of Industrial Chemistry, John Wiley & Sons, Inc.:Hoboken, New Jersey,2000; pp 263-325.
    [47]Kolbezen, M. J.; Metcalf, R. L.; Fukuto, T. R. Insecticide structure and activity, insecticidal activity of carbamate cholinesterase inhibitors.J. Agric. Food Chem.1954,2,864-870.
    [48]Schechter, M. S.; Laforge, F. B.; Zimmerli, A.; et al. Crystalline allethrin isomer. J. Am. Chem. Soc.1951,73,3541-3542.
    [49]Elliott, M.; Farnham, A. W.; Janes, N. F.; et al. Insecticidally active conformations of pyrethroids. Mechanism of Pesticide Action; American Chemical Society:Washington, D.C.,1974; pp 80-91.
    [50]Kramer, F.; Mencke, N. Imidacloprid. Flea Biology and Control; Springer Science+Business Media:New York,2001; pp 63-162.
    [51]Tomizawa, M.; Casida, J. E. Neonicotinoid insecticides:Highlights of a symposium on strategic molecular designs. J. Agric. Food Chem.2011,59,2883-2886.
    [52]Doucet, D.; Retnakaran, A. Insect chitin:Metabolism, genomics and pest management. Adv. Insect. Physiol.2012,43,437-511.
    [53]Hedin, P. A. New concepts and trends in pesticide chemistry. J. Agric. Food Chem.1982,30, 201-215.
    [54]Russell, P. E. A century of fungicide evolution.J. Agric. Sci.2005,143,11-25.
    [55]Gianessi, L. P. Benefits of triazine herbicides. Triazine Herbicides:Risk Assessment; American Chemical Society:Washington, D.C.,1998; pp 1-8.
    [56]Duke, S. O.; Powles, S. B. Glyphosate:a once-in-a-century herbicide. Pest Manag. Sci.2008,64, 319-325.
    [57]Levitt, G. Discovery of the sulfonylurea herbicides. Synthesis and Chemistry of Agrochemicals Ⅱ; American Chemical Society:Washington, D.C.,1991; pp 16-31.
    [58]Tan, S. Y.; Evans, R. R.; Dahmer, M. L.; et al. Imidazolinone-tolerant crops:history, current status and future. Pest Manag. Sci.2005,61,246-257.
    [59]Duke, S. O.; Abbas, H. K. Natural products with potential use as herbicides. Allelopathy; American Chemical Society:Washington, D.C.,1994; pp 348-362.
    [60]Nickell, L. G. Plant growth regulators in agriculture and horticulture. Bioregulators for Crop Protection and Pest Control; American Chemical Society:Washington, D.C.,1994; pp 1-14.
    [611 Gonzalez-Coloma, A.; Reina, M.; Diaz, C. E.; et al. Natural product-based biopesticides for insect control. Comprehensive Natural Products Ⅱ:Chemistry and Biology; Elsevier Ltd.: Amsterdam, The Netherlands,2010; pp 237-268.
    [62]Balciunas, E. M.; Martinez, F. A. C.; Todorov, S. D.; et al. Novel biotechnological applications of bacteriocins:A review. Food Control 2013,32,134-142.
    [63]Li, Z.-M. Pesticide chemistry and regulation in the People's Republic of China. The Pesticide Chemist and Modern Toxicology; American Chemical Society:Washington, D.C.,1981; pp 523-535.
    [64]Qian, X. H.; Lee, P. W.; Cao, S. China:Forward to the green pesticides via a basic research program. J. Agric. Food Chem.2010,58,2613-2623.
    [65]Qiu, J. Agriculture:Is China ready for GM rice? Nature 2008,455,850-852.
    [66]Wen, D. Z.; Tang, Y. X.; Zheng, X. H.; et al. Sustainable and productive agricultural development in China. Agric. Ecosyst. Environ.1992,39,55-70.
    [67]Yang, Y. Z. The current status of pesticide management in China. Pesticide Chemistry:Crop Protection, Public Health, Environmental Safety; John Wiley & Sons, Inc.:Hoboken, New Jersey, 2007; pp 23-28.
    [68]Schmehling, A. C. Communicating food color effectively with physical color standards. Color Quality of Fresh and Processed Foods; American Chemical Society:Washington, D.C.,2008; pp 2-6.
    [69]http://www.fda.gov/forindustry/coloradditives/default.htm
    [70]http://www.efsa.europa.eu/en/topics/topic/foodcolours.htm
    [71]Gilman, V. Food coloring. Chem. Eng. News 2003,81,34.
    [72]Voith, M. Coloring food, naturally. Chem. Eng. News 2008,86,18-19.
    [73]Burrows, A. Palette of our palates:A brief history of food coloring and its regulation. Compr. Rev. Food Sci. Food Saf.2009,8,394-408.
    [74]Fortin, N. D. Food additives, food colorings, irradiation. Food Regulation:Law, Science, Policy, and Practice; John Wiley & Sons, Inc.:Hoboken, New Jersey,2008; pp 253-320.
    [75]Brightman, R. Perkin and the dyestuffs industry in Britain. Nature 1956,177,815-821.
    [76]Holme, I. Sir William Henry Perkin:a review of his life, work and legacy. Color. Technol.2006, 122,235-251.
    [77]Casida, J. E. The greening of pesticide-environment interactions:Some personal observations. Environ. Health Perspect.2012,120,487-493.
    [78]Kohler, P. M.; Ashton, M. Paying for POPs:Negotiating the implementation of the Stockholm Convention in developing countries. Int. Negot.2010,15,459-484.
    [79]Ritter, L. Report of a panel on the relationship between public exposure to pesticides and cancer. Cancer 1997,80,2019-2033.
    [80]Jurewicz, J.; Hanke, W.; Johansson, C.; et al. Adverse health effects of children's exposure to pesticides:What do we really know and what can be done about it. Acta Paediatr.2006,95, 71-80.
    [81]Nougadere, A.; Reninger, J.-C.; Volatier, J.-L.; et al. Chronic dietary risk characterization for pesticide residues:A ranking and scoring method integrating agricultural uses and food contamination data. Food Chem. Toxicol.2011,49,1484-1510.
    [82]Alavanja, M. C. R.; Ross, M. K.; Bonner, M. R. Increased cancer burden among pesticide applicators and others due to pesticide exposure. CA Cancer J. Clin.2013,63,120-142.
    [83]Jensen, J. K. Managing pesticide wastes. Pesticide Waste Management; American Chemical Society. Washington, D.C.,1992; pp 20-28.
    [84]Swanton, C. J.; Mashhadi, H. R.; Solomon, K. R.; et al. Similarities between the discovery and regulation of pharmaceutical s and pesticides:in support of a better understanding of the risks and benefits of each. Pest Manag. Sci.2011,67,790-797.
    [85]Xue, J. H.; Zhang, W. J. Understanding China's food safety problem:An analysis of 2387 incidents of acute foodborne illness. Food Control 2013,30,311-317.
    [86]Wei, R. C.; Ge, F.; Huang, S. Y.; et al. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere 2011,82,1408-1414.
    [87]Zhang, J. J.; Wang, L. X.; Ruan, W. K.; et al. Investigation into the prevalence of coccidiosis and maduramycin drug resistance in chickens in China. Vet. Parasitol.2013,191,29-34.
    [88]Wu, L. H.; Zhang, Q. Q.; Shan, L. J.; et al. Identifying critical factors influencing the use of additives by food enterprises in China. Food Control 2013,31,425-432.
    [89]Palumbi, S. R. Humans as the world's greatest evolutionary force. Science 2001,293, 1786-1790.
    [90]Heckel, D. G. Insecticide resistance after Silent Spring. Science 2012,337,1612-1614.
    [91]Seiber, J. N.; Kleinschmidt, L. A. Contributions of pesticide residue chemistry to improving food and environmental safety:Past and present accomplishments and future challenges.J. Agric. Food Chem.2011,59,7536-7543.
    [92]Briand, F.; Cohen, J. E. Environmental correlates of food chain length. Science 1987,238, 956-960.
    [93]Fjeld, R. A.; Eisenberg, N. A.; Compton, K. L. Food chain transport. Quantitative Environmental Risk Analysis for Human Health; John Wiley & Sons, Inc.:Hoboken, New Jersey,2006; pp 183-198.
    [94]Chase, J. M. Are there real differences among aquatic and terrestrial food webs? Trends Ecol. Evol.2000,75,408-412.
    [95]Egerton, F. N. Understanding food chains and food webs,1700-1970. Bull. Ecol. Soc. Am.2007, 88,50-69.
    [96]http://eivf.net/blog/2012/06/21/environmental-organochlorine-exposure-may-cause-male-infertili ty/
    [97]Zacharia, J. T. Ecological effects of pesticides. Pesticides in the Modern World-Risks and Benefits; InTech:New York,2011; pp 129-142.
    [98]Mandavilli, A. DDT returns. Nat. Med.2006,12,870-871.
    [99]Eskenazi, B.; Chevrier, J.; Rosas, L. G.; et al. The pine river statement:Human health consequences of DDT use. Environ Health Perspect.2009,117,1359-1367.
    [100]Perry, M. J.; Ouyang, F. X.; Korrick, S. A.; et al. A prospective study of serum DDT and progesterone and estrogen levels across the menstrual cycle in nulliparous women of reproductive age. Am. J. Epidemiol.2006,164,1056-1064.
    [101]Rogan, W. J.; Ragan, N. B. Evidence of effects of environmental chemicals on the endocrine system in children. Pediatrics 2003,112,247-252.
    [102]Rogan, W. J.; Chen, A. M. Health risks and benefits of bis(4-chlorophenyl)-1,1,1-trichloroethane (DDT). Lancet 2005,366,763-773.
    [103]Boerth, D. W.; Eder, E.; Stanks, J. R.; et al. DNA adducts as biomarkers for oxidative and genotoxic stress from pesticides in crop plants. J. Agric. Food Chem.2008,56,6751-6760.
    [104]Turyk, M. E.; Bhavsar, S. P.; Bowerman, W.; et al. Risks and benefits of consumption of Great Lakes fish. Environ. Health Perspect.2012,120,11-18.
    [105]Aylward, L. L.; Kirman, C. R.; Schoeny, R.; et al. Evaluation of biomonitoring data from the CDC National Exposure Report in a risk assessment context:Perspectives across chemicals. Environ. Health Perspect.2013,121,287-294.
    [106]Stellman, J. M.; Stellman, S. D.; Christian, R.; et al. The extent and patterns of usage of Agent Orange and other herbicides in Vietnam. Nature 2003,422,681-687.
    [107]Guillette, L. J. Jr.; Iguchi, T. Life in a contaminated world. Science 2012,337,1614-1615.
    [108]Ferreira, J. D.; Couto, A. C.; Pombo-de-Oliveira, M. S.; et al. In utero pesticide exposure and leukemia in Brazilian children< 2 years of age. Environ. Health Perspect.2013,121, 269-275.
    [109]Kennedy, S. Why can't we test our way to absolute food safety? Science 2008,322, 1641-1643.
    [110]McGlynn, K. A.; Trabert, B. Adolescent and adult risk factors for testicular cancer. Nat. Rev. Urol.2012,9,339-349.
    [111]Harris, S. A.; Villeneuve, P. J.; Crawley, C. D.; et al. National study of exposure to pesticides among professional applicators:An investigation based on urinary biomarkers. J. Agric. Food Chem.2010,58,10253-10261.
    [112]Ragas, A. M. J.; Oldenkamp, R.; Preeker, N. L.; et al. Cumulative risk assessment of chemical exposures in urban environments. Environ. Int.2011,37,872-881.
    [113]Davis, M. A.; Mackenzie, T. A.; Cottingham, K. L.; et al. Rice consumption and urinary arsenic concentrations in U.S. children. Environ. Health Perspect.2012,120,1418-1424.
    [114]La Merrill, M.; Cirillo, P. M.; Terry, M. B.; et al. Prenatal exposure to the pesticide DDT and hypertension diagnosed in women before age 50:A longitudinal birth cohort study. Environ. Health Perspect.2013,121,594-599.
    [115]Carlin, D. J.; Rider, C. V.; Woychik, R.; et al. Unraveling the health effects of environmental mixtures:An NIEHS priority. Environ. Health Perspect.2013,121, A6-A8.
    [116]Hartung, T. Toxicology for the twenty-first century. Nature 2009,460,208-212.
    [117]Goldberg, A. M.; Frazier, J. M. Alternatives to animals in toxicity testing. Sci. Am.1989, 261,24-30.
    [118]Gawade, L.; Dadarkar, S. S.; Husain, R.; et al. A detained study of developmental immunotoxicity of imidacloprid in Wistar rats. Food Chem. Toxicol.2013,51,61-70.
    [119]Phillips, R. D.; Bahadori, T.; Barry, B. E.; et al. Twenty-first century approaches to toxicity testing, biomonitoring, and risk assessment:Perspectives from the global chemical industry. J. Expo. Sci. Environ. Epidemiol.2009,19,536-543.
    [120]Perkel, J. M. Animal-free toxicology:Sometimes, in vitro is better, Science 2012,335, 1122-1125.
    [121]Cook, T. J.; Shenoy, S. S. Intestinal permeability of chlorpyrifos using the single-pass intestinal perfusion method in the rat. Toxicology 2003,184,125-133.
    [122]Yadav, A.; Kumar, A.; Dwivedi, P. D.; et al. In vitro studies on immunotoxic potential of Orange Ⅱ in splenocytes. Toxicol. Lett.2012,208,239-245.
    [123]Kaiser, J. Academy panel mulls ethics of human pesticide experiments. Science 2003,299, 327-329.
    [124]Gewin, V. Epidemiology:The spread of epidemiology. Nature 2003,423,784-785.
    [125]Potter, J. D. Epidemiology informing clinical practice:from bills of mortality to population laboratories. Nat. Clin. Pract. Oncol.2005,2,625-634.
    [126]Rea, D. G.; Nielsen, K. M. A volunteer army for science. Science 2010,329,257.
    [127]Angerer, J.; Aylward, L. L.; Hays, S. M.; et al. Human biomonitoring assessment values: Approaches and data requirements. Int. J. Hyg. Environ. Health.2011,214,348-360.
    [128]Tehrani, M.-S. M.-A.; Soltaninejad, K.; Yazdani, S.; et al. Bilateral loculated pleural effusion as a manifestation of acute parenteral organophosphate intoxication:A case report. J. Emerg. Med.2011,41,630-634.
    [129]Gu, F.; Stillwell, W. G.; Wishnok, J. S.; et al. Peroxynitrite-induced reactions of synthetic oligo 2'-deoxynucleotides and DNA containing guanine:Formation and stability of a 5-guanidino-4-nitroimidazole lesion. Biochemistry 2002,41,7508-7518.
    [130]Lu, K.; Knutson, C. G.; Wishnok, J. S.; et al. Serum metabolomics in a Helicobacter hepaticus mouse model of inflammatory bowel disease reveal important changes in the microbiome, serum peptides, and intermediary metabolism. J. Proteome Res.2012,11, 4916-4926.
    [131]Xiang, G. G.; Li, D. Q.; Yuan, J. Z.; et al. Carbamate insecticide methomyl confers cytotoxicity through DNA damage induction. Food Chem. Toxicol.2013,53,352-358.
    [132]Ramos, K. S. Introduction to Molecular Toxicology. Compr. Toxicol. 2010,2,1-8.
    [133]Spradling, K. D.; Dillman, J. F. III. The molecular toxicology of chemical warfare nerve agents. Adv. Mol. Toxicol.2011,5,111-144.
    [134]Jia, Z. C.; DeLuca, C. I.; Chao, H. M.; et al. Structural basis for the binding of a globular antifreeze protein to ice. Nature 1996,384,285-288.
    [135]Rodwell, V. W.; Kennelly, P. J. Proteins:Higher orders of structure. Harper's Illustrated Biochemistry; McGraw-Hill Companies, Inc.:New York,2003; pp 30-39.
    [136]Nelson, D. L.; Cox, M. M. The three-dimensional structure of proteins. Lehninger Principles of Biochemistry; W. H. Freeman and Company. New York,2004; pp 116-156.
    [137]Pauling, L. C.; Corey, R. B.; Branson, H. R. The structure of proteins:Two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. U.S.A. 1951,37,205-211.
    [138]Pauling, L. C.; Corey, R. B. The polypeptide-chain configuration in hemoglobin and other globular proteins. Proc. Natl. Acad. Sci. U.S.A.1951,37,282-285.
    [139]Dyson, H. J.; Wright, P. E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol.2005,6,197-208.
    [140]Rao, S. T.; Rossmann, M. G. Comparison of super-secondary structures in proteins. J. Mol. Biol.1973,76,241-256.
    [141]Koch, I.; Kreuchwig, A.; May, P. Hierarchical representation of supersecondary structures using a graph-theoretical approach. Protein Supersecondary Structures; Springer Science+ Business Media:New York,2013; pp 7-33.
    [142]http://www.cryst.bbk.ac.uk/PPS2/course/section9/sss/super5.html
    [143]Ouzounis, C. A.; Coulson, R. M. R.; Enright, A. J.; et al. Classification schemes for protein structure and function. Nat. Rev. Genet.2003,4,508-519.
    [144]Dietmann, S.; Holm, L. Identification of homology in protein structure classification. Nat. Struct. Biol.2001,8,953-957.
    [145]Anderson, L.; Anderson, N. G. High resolution two-dimensional electrophoresis of human plasma proteins. Proc. Natl. Acad. Sci. U.S.A.1977,74,5421-5425.
    [146]Adkins, J. N.; Varnum, S. M.; Auberry, K. J.; et al. Toward a human blood serum proteome: Analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteomics 2002,1,947-955.
    [147]Cohn, E. J. The physical chemistry of the proteins. Physiol. Rev.1925,5,349-437.
    [148]Mac William, J. A. Blood pressures in man under normal and pathological conditions. Physiol. Rev.1925,5,303-335.
    [149]Howe, P. E. The function of the plasma proteins. Physiol. Rev.1925,5,439-476.
    [150]Cohn, E. J. Blood proteins and their therapeutic value. Science 1945,101,51-56.
    [151]Fahey, J. L.; Robinson, A. G. Factors controlling serum y-globulin concentration. J. Exp. Med.1963,118,845-868.
    [152]Peters, T. Jr. The albumin molecule:Its structure and chemical properties. All about Albumin: Biochemistry, Genetics, and Medical Applications; Academic Press:San Diego,1995; pp 9-75.
    [153]Koomans, H. A.; Braam, B.; Geers, A. B.; et al. The importance of plasma protein for blood volume and blood pressure homeostasis. Kidney Int.1986,30,730-735.
    [154]Wiegand, U. W.; Hintze, K. L.; Slattery, J. T.; et al. Protein binding of several drugs in serum and plasma of healthy subjects. Ctin. rnarmacot.Iner. 1980,27,297-300.
    155] Chow, B. F.; Mckee, C. M. Interaction between crystalline penicillin and human plasma proteins. Science 1945,101,67-68.
    156] Olsen, G. D. Methadone binding to human plasma albumin. Science 1972,776,525-526.
    157] Talbert, A. M.; Tranter, G. E.; Holmes, E.; et al. Determination of drug-plasma protein binding kinetics and equilibria by chromatographic profiling:Exemplification of the method using L-tryptophan and albumin. Anal. Chem.2002,74,446-452.
    158] Smith, D. A.; Di, L.; Kerns, E. H. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat. Rev. Drug Discov.2010,9,929-939.
    159] Fischer, A. The transformation of serum albumin into serum globulins. Science 1932,75, 443.
    160] Granirer, L. W. A study of the albumin and globulin content in postpartum plasma and its use in rheumatoid arthritis. Science 1950,111,204.
    161] Duff, M. R. Jr.; Kumar, C. V. The metallomics approach:use of Fe(II) and Cu(II) footprinting to examine metal binding sites on serum albumins. Metallomics 2009,1,518-523.
    162] Kaysen, G. A.; Dubin, J. A.; Muller, H.-G.; et al. Inflammation and reduced albumin synthesis associated with stable decline in serum albumin in hemodialysis patients. Kidney Int. 2004,65,1408-1415.
    163] Wong, F. Drug insight:the role of albumin in the management of chronic liver disease. Nat. Rev. Gastroenterol. Hepatol.2007,4,43-51.
    164] Manole, M. D.; Kochanek, P. M.; Foley, L. M.; et al. Polynitroxyl albumin and albumin therapy after pediatric asphyxial cardiac arrest:effects on cerebral blood flow and neurologic outcome. J. Cereb. Blood Flow Metab.2012,32,560-569.
    [165]Carter, D. C.; Ho, J. X. Structure of serum albumin. Adv. Protein Chem.1994,45,153-203.
    [166]Carter, D. C.; He, X.-M; Munson, S. H.; et al. Three-dimensional structure of human serum albumin. Science 1989,244,1195-1198.
    [167]Carter, D. C.; He, X.-M. Structure of human serum albumin. Science 1990,249,302-303.
    [168]He, X. M.; Carter, D. C. Atomic structure and chemistry of human serum albumin. Nature 1992,358,209-215.
    [169]Miller, T. Y.; He, X.-M.; Carter, D. C. A comparison between protein crystals grown with vapor diffusion methods in microgravity and protein crystals using a gel liquid-liquid diffusion ground-based method. J. Cryst. Growth 1992,122,306-309.
    [170]He, X. M.; Carter, D. C. Atomic structure and chemistry of human serum albumin. Nature 1993,364,362.
    [171]Carter, D. C.; Chang, B.; Ho, J. X.; et al. Preliminary crystallographic studies of four crystal forms serum albumin. Eur. J. Biochem.1994,226,1049-1052.
    [172]Zvelebil, M. J.; Barton, G. J.; Taylor, W. R.; et al. Prediction of protein secondary structure and active sites usine the alignment of homologous sequences. J. Mol. Biol.1987,195,957-961.
    [173]Sudlow, G.; Birkett, D. J.; Wade, D. N. The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol.1975,11,824-832.
    [174]Sudlow, G.; Birkett, D. J.; Wade, D. N. Spectroscopic techniques in the study of protein binding. A fluorescence techniuqe for the evaluation of the albumin binding and displacement of warfarin and warfarin-alcohol. Clin. Exp. Pharmacol. Physiol.1975,2,129-140.
    [175]Ghuman, J.; Zunszain, P. A.; Petitpas, I.; et al. Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol.2005,353,38-52.
    [176]Wanwimolruk, S.; Birkett, D. J.; Brooks, P. M. Protein binding of GP53,633:A basic non-steroidal anti-inflammatory drug. Biochem. Pharmacol.1982,31,3737-3743.
    [177]Sudlow, G.; Birkett, D. J.; Wade, D. N. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol.1976,12,1052-1061.
    [178]Wanwimolruk, S.; Brooks, P. M.; Birkett, D. J. Protein binding of non-steroidal anti-inflammatory drugs in plasma and synovial fluid of arthritic patients. Br. J. Clin. Pharmacol. 1983,15,91-94.
    [179]Brodersen, R.; Sjodin, T.; Sjoholm, I. Indepecdent binding of ligands to human serum albumin.J. Biol. Chem.1977,252,5067-5072.
    [180]Sudlow, G.; Birkett, D. J.; Wade, D. N. Spectroscopic techniques in the study of protein binding:The use of 1-anilino-8-naphthalenesulphonate as a fluorescent probe for the study of the binding of iophenoxic and iopanoic acids to human serum albumin. Mol. Pharmacol.1973,9, 649-657.
    [181]Birkett, D. J.; Kapitulnik, J. The interactions between iophenoxic acid, iopanoic acid, bilirubin and human serum albumin as studied by fluorescence and Sephadex gel filtration. Clin. Chim.Acta 1976,71,129-135.
    [182]Birkett, D. J.; Myers, S. P.; Sudlow, G. The fatty acid content and drug binding characteristics of commercial albumin preparations. Clin. Chim. Acta 1978,85,253-258.
    [183]Birkett, D. J.; Myers, S. P.; Sudlow, G. Effects of fatty acids on two specific drug binding sites on human serum albumin. Mol. Pharmacol.1977,13,987-992.
    [184]Curry, S.; Mandelkow, H.; Brick, P.; et al. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat. Struct. Biol. 1998,5,827-835.
    [185]Sengupta, A.; Hage, D. S. Characterization of minor site probes for human serum albumin by high-performance affinity chromatography. Anal. Chem.1999,71,3821-3827.
    [186]Koch-Weser, J.; Sellers, E. M. Drug therapy:Binding of drugs to serum albumin (First of two parts). N. Engl. J. Med.1976,294,311-316.
    [187]Koch-Weser, J.; Sellers, E. M. Drug therapy:Binding of drugs to serum albumin (Second of two parts). N. Engl. J. Med.1976,294,526-531.
    [188]Geisow, M. Serum albumin structure and function. Nature 1977,270,476-477.
    [189]Weber, G. Energetics of ligand binding to proteins. Adv. Protein Chem.1975,29,1-83.
    [190]Willumsen, L. Hydrogen isotope exchange in the study of protein conformation. A quantitative test of an exchange mechanism. C. R. Trav. Lab. Carlsberg 1971,38,223-295.
    [191]Peters, T. Jr. Serum albumin:Recent progress in the understanding of its structure and biosynthesis. Clin. Chem.1977,23,5-12.
    [192]Kragh-Hansen, U. Molecular aspects of ligand binding to serum albumin. Pharmacol. Rev. 1981,33,17-53.
    [193]Peters, T. Jr. Serum albumin. Adv. Protein Chem.1985,37,161-245.
    [194]Doumas, B. T.; Peters, T. Jr. Serum and urine albumin:a progress report on their measurement and clinical significance. Clin. Chim. Acta 1997,258,3-20.
    [195]van de Waterbeemd, H.; Gifford, E. ADMET in silico modelling:Towards prediction paradise? Nat. Rev. Drug Discov.2003,2,192-204.
    [196]Oettl, K.; Stauber, R. E. Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. Br. J. Pharmacol.2007,151,580-590.
    [197]Hu, W. B.; Luo, Q.; Wu, K.; et al. The anticancer drug cisplatin can cross-link the interdomain zinc site on human albumin. Chem, Commun.2011,47,6006-6008.
    [198]Martincic, A.; Milacic, R.; Cemazar, M.; et al. The use of CIM-DEAE monolithic chromatography coupled to ICP-MS to study the distribution of cisplatin in human albumin. Anal. Methods 2012,4,780-790.
    [199]Martin, C.; Gil, M.; Cohen, B.; et al. Ultrafast photodynamics of drugs in nanocavities: Cyclodextrins and human serum albumin protein. Langmuir 2012,28,6746-6759.
    [200]Fanali, G.; di Masi, A.; Trezza, V.; et al. Human serum albumin:From bench to bedside. Mol. Aspects Med.2012,33,209-290.
    [201]Yang, Y. D.; Engkvist, O.; Llinas, A.; et al. Beyond size, ionization state, and lipophilicity: Influence of molecular topology on absorption, distribution, metabolism, excretion, and toxicity for druglike compounds. J. Med. Chem.2012,55,3667-3677.
    [202]Cao, D. Y.; Wang, J. M.; Zhou, R.; et al. ADMET evaluation in drug discovery.11. PharmacoKinetics knowledge base (PKKB):A comprehensive database of pharmacokinetic and toxic properties for drugs. J. Chem. Inf. Model.2012,52,1132-1137.
    [203]Skalsky, H. L.; Guthrie, F. E. Binding of insecticides to human serum proteins. Toxicol. Appl. Pharmacol.1978,43,229-235.
    [204]Briand, C.; Sarrazin, M.; Peyrot, V.; et al. Study of the interaction between human serum albumin and some cephalosporins. Mol. Pharmacol.1982,21,92-99.
    [205]Yoon, J.-H.; McKenzie, D.; Prichard, F. E. The binding of food dyes with human serum albumin. Arch. Pharm. Res.1996,19,269-274.
    [206]Cserhati, T.; Forgacs, E. Study of the binding of antibiotics to human serum albumin by charge-transfer chromatography. J. Chromatogr. A 1997,776,31-36.
    [207]Dong, L. J.; Chen, X. G.; Hu, Z. D. Study on the binding of Arsenazo-TB to human serum albumin by Rayleigh light scattering technique and FT-IR. Biochim. Biophys. Acta-Proteins Proteomics 2006,1764,257-262.
    [208]Li, B.; Schopfer, L. M.; Hinrichs, S. H.; et al. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assay for organophosphorus toxicants bound to human albumin at Tyr411. Anal. Biochem.2007,361,263-272.
    [209]Yahia, I. S.; Al-Khedhairy, A. A.; Musarrat, J.; et al. Optical spectroscopy studies of the interaction between thiophanate methyl and human serum albumin for biosensor applications. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc.2011,79,1285-1290.
    [210]Chen, J. B.; Zhou, X. F.; Zhang, Y. L.; et al. Potential toxicity of sulfanilamide antibiotic: Binding of sulfamethazine to human serum albumin. Sci. Total Environ.2012,432,269-274.
    [211]Han, X.-L.; Tian, F.-F.; Ge, Y.-S.; et al. Spctroscopic, structural and thermodynamic properties of chlorpyrifos bound to serum albumin:A comparative study between BSA and HSA. J. Photochem. Photobiol. B:Biol.2012,109,1-11.
    [212]Rengan, K. Cerenkov counting technique for beta particles:advantages and limitations. J. Chem. Educ.1983,60,682.
    [213]Wright, J. D.; Boudinot, F. D.; Ujhelyi, M. R. Measurement and analysis of unbound drug concentrations. Clin. Pharmacokinet.1996,30,445-462.
    [214]Bush, M. T.; Alvin, J. D. Characterization of drug-protein interactions by classic methods. Ann. N. Y. Acad. Sci.1973,226,36-43.
    [215]Waters, N. J.; Jones, R.; Williams, G.; et al. Validation of a rapid equilibrium dialysis approach for the measurement of plasma protein binding. J. Pharm. Sci.2008,97,4586-4595.
    [216]Bao, J. Y.; Krylov, S. N. Volatile kinetic capillary electrophoresis for studies of protein-small molecule interactions. Anal. Chem.2012,84,6944-6947.
    [217]Yurov, V. Y.; Klimov, A. N. Scanning tunneling microscope calibration and reconstruction of real image:Drift and slope elimination. Rev. Sci. Instrum.1994,65,1551-1557.
    [218]Lapshin, R. V. Analytical model for the approximation of hysteresis loop and its application to the scanning tunneling microscope. Rev. Sci. Instrum.1995,66,4718-4730.
    [219]Lambrianou, A.; Demin, S.; Hall, E. A. H. Protein engineering and electrochemical biosensors. Adv. Biochem. Eng./Biotechnol.2008,109,65-96.
    [220]Velazquez-Campoy, A.; Freire, E. Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nat. Protoc.2006,1,186-191.
    [221]Frederick, K. K.; Marlow, M. S.; Valentine, K. G.; et al. Conformational entropy in molecular recognition by proteins. Nature 2007,448,325-329.
    [222]Craig, T. A.; Benson, L. M.; Tomlinson, A. J.; et al. Analysis of transcription complexes and effects of ligands by microelectrospray ionization mass spectrometry. Nat. Biotechnol.1999,17, 1214-1218.
    [223]Yates, J. R. III. A century of mass spectrometry:from atoms to proteomes. Nat. Methods 2011,8,633-637.
    [224]Sykes, B. D.; Hull, W. E. Recent advances in methodology:Nuclear magnetic resonance. Ann. N. Y. Acad. Sci.1973,226,60-68.
    [225]Lindon, J. C.; Nicholson, J. K. Recent advances in high-resolution NMR spectroscopic methods in bioanalytical chemistry. TrAC Trends Anal. Chem.1997,16,190-200.
    [226]Garcia, C. D.; Holman, S. C.; Henry, C. S.; et al. Screening of protein-ligand interactions by affinity chromatography. Biotechnol. Prog.2003,19,575-579.
    [227]Pfaunmiller, E. L.; Paulemond, M. L.; Dupper, C. M.; et al. Affinity monolith chromatography:a review of principles and recent analytical applications. Anal. Bioanal. Chem. 2013,405,2133-2145.
    [228]Chenprakhon, P.; Sucharitakul, J.; Panijpan, B.; et al. Measuring binding affinity of protein-ligand interaction using spectrophotometry:Binding of neutral red to riboflavin-binding protein. J. Chem. Educ.2010,87,829-831.
    [229]Jung, C. Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy. J. Mol. Recognit.2000,13,325-351.
    [230]Kelly, S. M.; Price, N. C. Circular dichroism to study protein interactions. Current Protocols in Protein Science; John Wiley & Sons, Inc.:Hoboken, New Jersey,2006; pp 20.10.1-20.10.18.
    [231]Brown, M. P.; Royer, C. Fluorescence spectroscopy as a tool to investigate protein interactions. Curr. Opin. Biotechnol.1997,8,45-49.
    [232]Royer, C. A.; Scarlata, S. F. Fluorescence approaches to quantifying biomolecular interactions. Methods Enzymol.2008,450,79-106.
    [233]Kitchen, D. B.; Decornez, H.; Furr, J. R.; et al. Docking and scoring in virtual screening for drug discovery:methods and applications. Nat. Rev. Drug Discov.2004,3,935-949.
    [234]Schueler-Furman, O.; Wang, C.; Bradley, P.; et al. Progress in modeling of protein structures and interactions. Science 2005,310,638-642.
    [235]Chen, Y.; Shoichet, B. K. Molecular docking and ligand specificity in fragment-based inhibitor discovery. Nat. Chem. Biol.2009,5,358-364.
    [236]Zaccheroni, N. Spectrophotometry, measurements in solution. The Exploration of Supramolecular Systems and Nanostructures by Photochemical Techniques; Springer Science+ Business Media:New York,2012; pp 39-66.
    [237]Schmid, F.-X. Biological macromolecules:UV-visible spectrophotometry. Encyclopedia of Life Sciences; Macmillan Publishers Ltd.:London, United Kingdom,2001; pp 1-4.
    [238]Nienhaus, K.; Nienhaus, G. U. Probing heme protein-ligand interactions by UV/visible absorption spectroscopy. Protein-Ligand Interactions:Methods and Applications; Humana Press Inc.:Totowa,New Jersey,2005; pp 215-241.
    [239]Zhang, G. C.; Wang, Y. Q.; Zhang, H. M.; et al. Human serum albumin interaction with paraquat studied using spectroscopic methods. Pestic. Biochem. Phys.2007,87,23-29.
    [240]Yue, Y. Y.; Chen, X. G.; Qin, J.; et al. A study of the binding of C.I. Direct Yellow 9 to human serum albumin using optical spectroscopy and molecular modeling. Dyes. Pigm.2008,79, 176-182.
    [241]Chi, Z. X.; Liu, R. T. Phenotypic characterization of the binding of tetracycline to human serum albumin. Biomacromolecules 2011,12,203-209.
    [242]Shechter, E.; Blout, E. R. An analysis of the optical rotator dispersion of polypeptides and proteins. Proc. Nail. Acad. Sci. U.S.A.1964,51,695-702.
    [243]Adler, A. J.; Greenfield, N. J.; Fasman, G. D. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol.1973,27,675-735.
    [244]Shillady, D.; Trindle, C. Circular dichroism and optical rotatory dispersion. Electronic Structure Modeling:Connections Between Theory and Software; CRC Press:Boca Raton, Florida,2008; pp 417-472.
    [245]http://www.accessscience.com/search.aspx?rootID=791826
    [246]Holzwarth, G.; Gratzer, W. B.; Doty, P. The optical activity of polypeptides in far ultraviolet. J. Am. Chem. Soc.1962,84,3194-3196.
    [247]Beychok, S.; Fasman, G. D. Circular dichroism of poly-L-tyrosine. Biochemistry 1964,3, 1675-1678.
    [248]Holzwarth, G.; Doty, P. The ultraviolet circular dichroism of polypeptides. J. Am. Chem. Soc. 1965,87,218-228.
    [249]Townend, R.; Kumosinski, T. F.; Timasheff, S. N. The circular dichroism of the β structure of poly-1-lysine. Biochem. Biophys. Res. Commun.1966,23,163-169.
    [250]Scanu, A.; Hirz, R. Human serum low-density lipoprotein protein:its conformation studied by circular dichroism. Nature 1968,218,200-201.
    [251]Deutsche, C. W.; Lightner, D. A.; Woody, R. W.; et al. Optical activity. Annu. Rev. Phys. Chem.1969,20,407-448.
    [252]Gratzer, W. B.; Cowburn, D. A. Optical activity of biopolymers. Nature 1969,222,426-431.
    [253]Greenfield, N. J.; Davidson, B.; Fasman, G. D. The use of computed optical rotatory dispersion curves for the evaluation of protein conformation. Biochemistry 1967,6,1630-1637.
    [254]Greenfield, N. J.; Fasman, G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 1969,8,4108-4116.
    [255]Chou, P. Y.; Fasman, G. D. Conformational parameters for amino acids in helical,β-sheet, and random coil regions calculated from proteins. Biochemistry 1974,13,211-222.
    [256]Chou, P. Y.; Fasman, G. D. Pridiction of protein conformation. Biochemistry 1974,13, 222-245.
    [257]Johnson, W. C. Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins:Struct. Funct. Genet.1999,35,307-312.
    [258]Sreerama, N.; Woody, R. W. Estimation of protein secondary structure from circular dichroism spectra:Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem.2000,287,252-260.
    [259]Unneberg, P.; Merelo, J. J.; Chacon, P.; et al. SOMCD:Method for evaluating protein secondary structure from UV circular dichroism spectra. Proteins:Struct. Funct. Genet.2001,42, 460-470.
    [260]Lees, J. G.; Smith, B. R.; Wien, F.; et al. CDtool-an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. Anal. Biochem.2004, 332,285-289.
    [261]McPhie, P. Concentration-independent estimation of protein secondary structure by circular dichroism:a comparison of methods. Anal. Biochem.2008,375,379-381.
    [262]Kelly, S. M.; Jess, T. J.; Price, N. C. How to study proteins by circular dichroism. Biochim. Biophys. Acta-Proteins Proteomics 2005,1751,119-139.
    [263]Kelly, S. M.; Price, N. C. The use of circular dichroism in the investigation of protein structure and function. Curr. Protein Pept. Sci.2000,1,349-384.
    [264]Johnson, W. C. Jr. Secondary structure of proteins through circular dichroism spectroscopy. Annu. Rev. Biophys. Biophys. Chem.1988,17,145-166.
    [265]Pribic, R.; van Stokkum, I. H. M.; Chapman, D.; et al. Protein secondary structure from Fourier transform infrared and/or circular dichroism spectra. Anal. Biochem.1993,214,366-378.
    [266]Pancoska, P.; Janota, V.; Keiderling, T. A. Novel matrix descriptor for secondary structure segments in proteins:Demonstration of predictability from circular dichroism spectra. Anal. Biochem.1999,267,72-83.
    [267]Pan, X. R.; Qin, P. F.; Liu, R. T.; et al. Characterizing the interaction between tartrazine and two serum albumins by a hybrid spectroscopic approach. J. Agric. Food. Chem.2011,59, 6650-6656.
    [268]Ding, F.; Zhang, L.; Sun, Y.; et al. Specificity and affinity of phenosafranine protein adduct: Insights from biophysical aspects. J. Lumin.2012,132,629-635.
    [269]MacManus-Spencer, L. A.; Tse, M. L.; Hebert, P. C.; et al. Binding of perfluorocarboxylates to serum albumin:A comparison of analytical methods. Anal. Chem.2010,82,974-981.
    [270]Bischel, H. N.; MacManus-Spencer, L. A.; Luthy, R. G. Noncovalent interactions of long-chain perfluoroalkyl acids with serum albumin. Environ. Sci. Technol.2010,44,5263-5269.
    [271]Hebert, P. C.; MacManus-Spencer, L. A. Development of a fluorescence model for the binding of medium- to long-chain perfluoroalkyl acids to human serum albumin through a mechanistic evaluation of spectroscopic evidence. Anal. Chem.2010,82,6463-6471.
    [272]Bischel, H. N.; MacManus-Spencer, L. A.; Zhang, C. J.; et al. Strong associations of short-chain perfluoroalkyl acids with serum albumin and investigation of binding mechanisms. Environ. Toxicol. Chem.2011,30,2423-2430.
    [273]Das, S.; Powe, A. M.; Baker, G. A.; et al. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal. Chem.2012,84,597-625.
    [274]http://www.photobiology.info/Visser-Rolinski.html
    [275]Chen, R. F. Fluorescence quantum yield measurements:Vitamin B6 compounds. Science 1965,150,1593-1595.
    [276]Fletcher, A. N. Quinine sulfate as a fluorescence quantum yield standard. Photochem. Photobiol.1969,9,439-444.
    [277]Alcala, J. R.; Gratton, E.; Prendergast, F. G. Fluorescence lifetime distributions in proteins. Biophys. J.1987,51,597-604.
    [278]Perrin, F. Polarisation de la lumiere de fluorescence. Vie moyenne des molecules dans l'etat excite. J. Phys. Radium 1926,7,390-401.
    [279]Weber, G. Polarization of the fluorescence of macromolecules. Ⅰ. Theory and experimental method. Biochem. J.1952,51,145-155.
    [280]Weber, G. Polarization of the fluorescence of macromolecules. Ⅱ. Fluorescent conjugates of ovalbumin and bovine serum albumin. Biochem. J.1952,51,155-167.
    [281]Weber, G. Rotational Brownian motion and polarization of the fluorescence of solutions. Adv. Protein Chem.1953,8,415-459.
    [282]Weber, G. Fluorescence-polarization spectrum and electronic-energy transfer in tyrosine, tryptophan and related compounds. Biochem. J.1960,75,335-345.
    [283]Weber, G. Fluorescence-polarization spectrum and electronic-energy transfer in proteins. Biochem. J.1960,75,345-352.
    [284]Lakowicz, J. R. Protein fluorescence. Principles of Fluorescence Spectroscopy; Springer Science+Business Media:New York,2006; pp 529-575.
    [285]Bowen, E. J.; Norton, A. The quenching of fluorescence in solution. Trans. Faraday Soc. 1939,35,44-48.
    [286]Buxbaum, E. Fluorimetry. Biophysical Chemistry of Proteins:An Introduction to Laboratory Methods; Springer Science+Business Media:New York,2011; pp 39-55.
    [287]Stern, O.; Volmer, M. Uber die Abklingungszeit der Fluoreszenz. Phys. Z.1919,20, 183-188.
    [288]Keizer, J. Nonlinear fluorescence quenching and the origin of positive curvature in Stern-Volmer plots. J. Am. Chem. Soc.1983,105,1494-1498.
    [289]Scatchard, G. The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 1949,51,660-672.
    [290]Bi, S. Y.; Song, D. Q.; Tian, Y.; et al. Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc.2005,61, 629-636.
    [291]Wei, X. L.; Xiao, J. B.; Wang, Y. F.; et al. Which model based on fluorescence quenching is suitable to study the interaction between trans-resveratrol and BSA? Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.2010,75,299-304.
    [292]Alarcon, E.; Aspee, A.; Abuin, E. B.; et al. Evaluation of solute binding to proteins and intra-protein distances from steady state fluorescence measurements. J. Photochem. Photobiol. B: Biol.2012,106,1-17.
    [293]Oravcova, J.; Bohs, B.; Lindner, W. Drug-protein binding studies new trends in analytical and experimental methodology. J. Chromatogr. B:Biomed. Sci. Appl.1996,677,1-28.
    [294]Ross, P. D.; Subramanian, S. Thermodynamics of protein association reactions:Forces contributing to stability. Biochemistry 1981,20,3096-3102.
    [295]Gill, S. J.; Downing, M.; Sheats, G. F. The enthalpy of self-association of purine derivatives in water. Biochemistry 1967,6,272-276.
    [296]Gill, S. J.; Nichols, N. F.; Wadso, I. Calorimetric determination of enthalpies of solution of slightly soluble liquids Ⅱ. Enthalpy of solution of some hydrocarbons in water and their use in establishing the temperature dependence of their solubilities. J. Chem. Thermodyn.1976,8, 445-452.
    [297]Pimentel, G. C.; McClellan, A. L. Hydrogen bonding. Annu. Rev. Phys. Chem.1971,22, 347-385.
    [298]Ross, P. D.; Shapiro, J. T. Heat of interaction of DNA with polylysine, spermine, and Mg++. Biopolymers 1974,13,415-416.
    [299]Shiao, D. D. F.; Sturtevant, J. M. Heats of binding protons to globular proteins. Biopolymers 1976,15,1201-1211.
    [300]Kramer, H. E. A.; Fischer, P, The scientific work of Theodor Forster:A brief sketch of his life and personality. ChemPhysChem 2011,12,555-558.
    [301]Forster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys.1948,437, 55-75.
    [302]Forster, T.10th spiers memorial lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc.1959,27,7-17.
    [303]Stryer, L. Intramolecular resonance transfer of energy in proteins. Biochim. Biophys. Acta 1959,35,242-244.
    [304]Stryer, L.; Haugland, R. P. Energy transfer:A spectroscopic ruler. Proc. Natl. Acad. Sci. U.S.A.1967,58,719-726.
    [305]Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem.1978, 47,819-846.
    [306]Horrocks, W. D. Jr.; Collier, W. E. Lanthanide ion luminescence probes. Measurement of distance between intrinsic protein fluorophores and bound metal ions:Quantitation of energy transfer between tryptophan and terbium(Ⅲ) or europium(Ⅲ) in the calcium-binding protein parvalbumin. J. Am. Chem. Soc.1981,103,2856-2862.
    [307]Borkman, R. F.; Phillips, S. R. Tyrosine-to-tryptophan energy transfer and the structure of calt gamma-II crystalline. Exp. Eye Res.1985,40,819-826.
    [308]Grossman, S. H. Resonance energy transfer between the active sites of rabbit muscle creatine kinase:Analysis by steady-state and time-resolved fluorescence. Biochemistry 1989,28, 4894-4902.
    [309]Flora, K.; Brennan, J. D.; Baker, G. A.; et al. Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods. Biophys. J.1998,75, 1084-1096.
    [310]Veatch, W.; Stryer, L. The dimeric nature of the gramicidin A transmembrane channel: Conductance and fluorescence energy transfer studies of hybrid channels. J. Mol. Biol.1917,113, 89-102.
    [311]Shaklai, N.; Yguerabide, J.; Ranney, H. M. Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore. Biochemistry 1977,16,5585-5592.
    [312]Lloyd, J. B. F. Synchronized excitation of fluorescence emission spectra. Nat. Phys. Sci. 1971,231,64-65.
    [313]Lloyd, J. B. F. The nature and evidential value of the luminescence of automobile engine oils and related materials:Part I. Synchronous excitation of fluorescence emission. J. Forensic Sci. Soc.1971,11,83-94.
    [314]Andre, J. C.; Bouchy, M.; Viriot, M. L. Synchronous excitation method for increasing sensitivity in fluorimetry:The limitations caused by Raman and Rayleigh scatter. Anal. Chim. Acta 1979,105,297-310.
    [315]Miller, J. N. Recent advances in molecular luminescence analysis. Proc. Anal. Div. Chem. Soc.1979,16,203-208.
    [316]Burstein, E. A.; Vedenkina, N. S.; Ivkova, M. N. Fluorescence and the location of tryptophan residues in protein molecules. Photochem. Photobiol. 1973,18,263-279.
    [317]Miller, J. N. Recent developments in fluorescence and chemiluminescence analysis. Plenary lecture. Analyst 1984,109,191-198.
    [318]Clark, B. J.; Fell, A. F.; Milne, K. T.; et al. Pharmaceutical applications of variable-angle synchronous scanning fluorescence spectroscopy. Anal. Chim. Acta 1985,170,35-44.
    [319]Pulgarin, J. A. M.; Molina, A. A. Matrix isopotential synchronous fluorescence Direct determination of gentisic acid in urine. Anal. Chim. Acta 1994,296,87-97.
    [320]Weber, G. Enumeration of components in complex systems by fluorescence spectrophotometry. Nature 1961,190,27-29.
    [321]Ding, F.; Diao, J.-X.; Yang, X.-L.; et al. Structural analysis and binding domain of albumin complexes with natural dietary supplement humic acid. J. Lumin.2011,131,2244-2251.
    [322]http://micro.magnet.fsu.edu/primer/techniques/fluorescence/fluorescenceintro.html
    [323]Ding, F.; Liu, W.; Diao, J.-X.; et al. Complexation of insecticide chlorantraniliprole with human serum albumin:Biophysical aspects. J. Lumin.2011,131,1327-1335.
    [324]Fischer, H. E. Einfluss der configuration auf die wirkung der enzyme. Ber. Dt. Chem. Ges. 1894,27,2985-2993.
    [325]Jorgensen, W. L. Rusting of the lock and key model for protein-ligand binding. Science 1991,254,954-955.
    [326]Salo, J.-P.; Yliniemela, A.; Taskinen, J. Parameter refinement for molecular docking. J. Chem. Inf. Comput. Sci.1998,38,832-839.
    [327]Jiang, F.; Kim, S.-H. "Soft docking":Matching of molecular surface cubes. J. Mol. Biol. 1991,219,79-102.
    [328]Goodsell, D. S.; Olson, A. J. Automated docking of substrates to proteins by simulated annealing. Proteins:Struct. Funct. Genet.1990,8,195-202.
    [329]Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; et al. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol.1982,161,269-288.
    [330]Kuntz, I. D. Structure-based strategies for drug design and discovery. Science 1992,257, 1078-1082.
    [331]Kuntz, I. D.; Meng, E. C.; Shoichet, B. K. Structure-based molecular design. Acc. Chem. Res.1994,27,117-123.
    [332]Goodsell, D. S.; Morris, G. M.; Olson, A. J. Automated docking of flexible ligands: Applications of autodock. J. Mol. Recognit.1996,9,1-5.
    [333]http://accelrys.com/
    [334]Morris, G. M.; Lim-Wilby, M. Molecular docking. Molecular Modeling of Proteins; Springer Science+Business Media:New York,2008; pp 365-382.
    [335]Cross, J. B.; Thompson, D. C.; Rai, B. K.; et al. Comparison of several molecular docking programs:Pose prediction and virtual screening accuracy. J. Chem. Inf. Model.2009,49, 1455-1474.
    [336]Wang, C.; Li, Y. Study on the binding of propiconazole to protein by molecular modeling and a multispectroscopic method.J. Agric. Food Chem.2011,59,8507-8512.
    [337]Ding, F.; Liu, W.; Sun, Y.; et al. Analysis of conjugation of chloramphenicol and hemoglobin by fluorescence, circular dichroism and molecular modeling. J. Mol. Struct.2012, 1007,81-87.
    [338]Fang, S. C.; Fallin, E. The binding of various mercurial compounds to serum proteins. Bull. Environ. Contam. Toxicol. 1976,15,110-117.
    [339]Mourik, J.; de Jong, L. P. A. Binding of the organophosphates parathion and paraoxon to bovine and human serum albumin. Arch. Toxicol.1978,41,43-48.
    [340]Maliwal, B. P.; Guthrie, F. E. Interaction of insecticides with human serum albumin. Mol. Pharmacol.1981,20,138-144.
    [341]Cserhati, T.; Forgacs, E. Charge transfer chromatographic study of the binding of commercial pesticides to various albumins. J. Chromatogr. A 1995,699,285-290.
    [342]Rosso, S. B.; Gonzalez, M.; Bagatolli, L. A.; et al. Evidence of a strong interaction of 2,4-dichlorophenoxyacetic acid herbicide with human serum albumin. Life Sci.1998,63, 2343-2351.
    [343]Cserhati, T.; Forgacs, E.; Deyl, Z.; et al. Effect of molecular parameters on the binding of phenoxyacetic acid derivatives to albumins. J. Chromatogr. B:Biomed. Sci. Appl.2001,753, 87-92.
    [344]Purcell, M.; Neault, J. F.; Malonga, H.; et al. Interactions of atrazine and 2,4-D with human serum albumin studied by gel and capillary electrophoresis, and FTIR spectroscopy. Biochim. Biophys. Acta-Protein Struct. Mol. Enzymol.2001,1548,129-138.
    [345]Abu-Qare, A. W.; Abou-Donia, M. B. Binding of pyridostigmine bromide, N,N-diethyl-m-toluamide and permethrin, alone and in combinations, to human serum albumin. Arch. Toxicol.2002,76,203-208.
    [346]Ismaili, L.; Andre, C.; Nicod, L.; et al. Triazine-human serum albumin association: thermodynamic approach and sodium effect. J. Chromatogr. B:Biomed. Sci. Appl.2002,780, 467-474.
    [347]Silva, D.; Cortez, C. M.; Cunha-Bastos, J.; et al. Methyl parathion interaction with human and bovine serum albumin. Toxicol. Lett.2004,147,53-61.
    [348]Mikhailopulo, K. I.; Serchenya, T. S.; Kiseleva, E. P.; et al. Interaction of molecules of the neonicotinoid imidacloprid and its structural analogs with human serum albumin. J. Appl. Spectrosc.2008,75,857-863.
    [349]Yue, Y. Y.; Zhang, Y. H.; Zhou, L.; et al. In vitro study on the binding of herbicide glyphosate to human serum albumin by optical spectroscopy and molecular modeling. J. Photochem. Photobiol. B:Biol.2008,90,26-32.
    [350]Li, J. H.; Liu, X. Y.; Ren, C. L.; et al. In vitro study on the interaction between thiophanate methyl and human serum albumin. J. Photochem. Photobiol. B:Biol.2009,94,158-163.
    [351]Wang, Y.-Q.; Zhang, H.-M.; Zhou, Q.-H. Investigation of the interaction between pentachlorophenol and human serum albumin using spectral methods. J. Mol. Struct.2009,932, 31-37.
    [352]Wang, Y.-Q.; Tang, B.-P.; Zhang, H.-M.; et al. Studies on the interaction between imidacloprid and human serum albumin:Spectroscopic approach. J. Photochem. Photobiol. B: Biol.2009,94,183-190.
    [353]Saquib, Q.; Al-Khedhairy, A. A.; Alarifi, S. A.; et al. Fungicide methyl thiophanate binding at sub-domain IIA of human serum albumin triggers conformational change and protein damage. Int. J. Biol. Macromol.2010,47,60-67.
    [354]Ding, F.; Liu, W.; Zhang, X.; et al. Fluorescence and circular dichroism studies of conjugates between metsulfuron-methyl and human serum albumin. Colloids Surf. B: Biointerfaces 2010,76,441-448.
    [355]Ding, F.; Liu, W.; Zhang, X.; et al. Identification of pyrazosulfuron-ethyl binding affinity and binding site subdomain IIA in human serum albumin by spectroscopic methods. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc.2010,75,1088-1094.
    [356]Ding, F.; Liu, W.; Li, N.; et al. Complex of nicosulfuron with human serum albumin:A biophysical study. J. Mol. Struct.2010,975,256-264.
    [357]Ding, F.; Liu, W.; Zhang, L.; et al. Sulfometuron-methyl binding to human serum albumin: Evidence that sulfometuron-methyl binds at the Sudlow's site I. J. Mol. Struct.2010,968,59-66.
    [358]Ding, F.; Liu, W.; Li, Y.; et al. Determining the binding affinity and binding site of bensulfuron-methyl to human serum albumin by quenching of the intrinsic tryptophan fluorescence. J. Lumin.2010,130,2013-2021.
    [359]Saquib, Q.; Al-Khedhairy, A. A.; Siddiqui, M. A.; et al. Preferential binding of insecticide phorate with sub-domain IIA of human serum albumin induces protein damage and its toxicological significance. Food Chem. Toxicol.2011,49,1787-1795.
    [360]Ding, F.; Li, X.-N.; Diao, J.-X.; et al. Chiral recognition of metalaxyl enantiomers by human serum albumin:Evidence from molecular modeling and photophysical approach. Chirality 2012,24,471-480.
    [361]Li, Y.; Ma, X. R.; Lu, G. H. Systematic investigation of the toxic mechanism of difenoconazole on protein by spectroscopic and molecular modeling. Pestic. Biochem. Phys. 2013,105,155-160.
    [362]Ding, F.; Peng, W.; Diao, J.-X.; et al. Characteristics and essences upon conjugation of imidacloprid with two model proteins. J. Agric. Food Chem.2013,61,4497-4505.
    [363]Zhang, J.; Zhuang, S. L.; Tong, C. L.; et al. Probing the molecular interaction of triazole fungicides with human serum albumin by multispectroscopic techniques and molecular modeling. J. Agric. Food Chem.2013,61,7203-7211.
    [364]Zhang, P.; Li, Z.; Wang, X. R.; et al. Study of the enantioselective interaction of diclofop and human serum albumin by spectroscopic and molecular modeling approaches in vitro. Chirality 2013,25,719-725.
    [365]Bowmer, C. J.; Lindup, W. E. Inverse dependence of binding constants upon albumin concentration:Results for L-tryptophan and three anionic dyes. Biochim. Biophys. Acta-Protein Struct.1980,624,260-270.
    [366]Gao, H.-W.; Xu, Q.; Chen, L.; et al. Potential protein toxicity of synthetic pigments binding of poncean S to human serum albumin. Biophys. J.2008,94,906-917.
    [367]Ding, F.; Li, N.; Han, B. Y.; et al. The binding of C.I. Acid Red 2 to human serum albumin: Determination of binding mechanism and binding site using fluorescence spectroscopy. Dyes Pigm.2009,83,249-257.
    [368]Bose, D.; Sarkar, D.; Chattopadhyay, N. Probing the binding interaction of a phenazinium dye with serum transport proteins:A combined fluorometric and circular dichroism study. Photochem. Photobiol 2010,86,538-544.
    [369]Guo, Y. M.; Yue, Q. Y.; Gao, B. Y. Probing the molecular mechanism of C.I. Acid red 73 binding to human serum albumin. Environ. Toxicol. Pharmacol.2010,30,45-51.
    [370]Li, W.-Y.; Chen, F.-F.; Wang, S.-L. Binding of reactive brilliant red to human serum albumin:Insights into the molecular toxicity of sulfonic azo dyes. Protein Pept. Lett.2010,17, 621-629.
    [371]Ding, F.; Liu, W.; Diao, J.-X.; et al. Characterization of Alizarin Red S binding sites and structural changes on human serum albumin:A biophysical study. J. Hazard. Mater.2011,186, 352-359.
    [372]Bolel, P.; Datta, S.; Mahapatra, N.; et al. Spectroscopic investigation of the effect of salt on binding of tartrazine with two homologous serum albumins:Quantification by use of the Debye-Huckel limiting law and observation of enthalpy-entropy compensation. J. Phys. Chem. B 2012,116,10195-10204.
    [373]Bolel, P.; Mahapatra, N.; Halder, M. Optical spectroscopic exploration of binding of cochineal red A with two homologous serum albumins. J. Agric. Food Chem.2012,60, 3727-3734.
    [374]Ding, F.; Zhang, L.; Diao, J.-X.; et al. Human serum albumin stability and toxicity of anthraquinone dye alizarin complexone:An albumin-dye model. Ecotoxicol. Environ. Saf.2012, 79,238-246.
    [375]Zhang, G. W.; Ma, Y. D. Mechanistic and conformational studies on the interaction of food dye amaranth with human serum albumin by multispectroscopic methods. Food Chem.2013, 136,442-449.
    [376]Saha, I.; Bhattacharyya, J.; Kumar, G. S. Thermodynamic investigations of ligand-protein interactions:Binding of the phenazinium dyes phenosafranin and safranin O with human serum albumin. J. Chem. Thermodyn.2013,56,114-122.
    [377]Zhou, X. M.; Li, X.; Chen, X. G. Binding mechanism of Orange G to human serum albumin: Saturation transfer difference-NMR, spectroscopic and computational techniques. Dyes Pigm. 2013,98,212-220.
    [378]Cheng, Z.-J.; Zhao, H.-M.; Xu, Q.-Y.; et al. Investigation of the interaction between indigotin and two serum albumins by spectroscopic approaches. J. Pharm. Anal.2013,3, 257-269.
    [379]Ding, F.; Zhao, G. Y.; Chen, S. C.; et al. Chloramphenicol binding to human serum albumin: Determination of binding constants and binding sites by steady-state fluorescence. J. Mol. Struct. 2009,929,159-166.
    [380]Dong, C. Y.; Ma, S. Y.; Liu, Y. Studies of the interaction between demeclocycline and human serum albumin by multi-spectroscopic and molecular docking methods. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc.2013,103,179-186.
    [381]Mukherjee, M.; Sardar, P. S.; Ghorai, S. K.; et al. A comparative study of interaction of tetracycline with several proteins using time resolved anisotropy, phosphorescence, docking and FRET. PLOS ONE 2013,8, e60940.
    [382]Scherrer, R. A.; Howard, S. M. Use of distribution coefficients in quantitative structure-activity relations. J. Med. Chem.1977,20,53-58.
    [383]Korten, K.; Miller, K. W. Erythrocyte ghost-buffer partition coefficients of phenobarbital, pentobarbital, and thiopental support the pH-partition hypothesis. Can. J. Physiol. Pharmacol. 1979,57,325-328.
    [384]Miyamoto, S.; Kollman, P. A. What determines the strength of noncovalent association of ligands to proteins in aqueous solution? Proc. Natl. Acad. Sci. U.S.A.1993,90,8402-8406.
    [385]Yang, D. R.; Niu, Y.; He, F. S. Functional changes of nicotinic acetylcholine receptor in muscle and lymphocyte of myasthenic rats following acute dimethoate poisoning. Toxicology 2005,211,149-155.
    [386]Buratti, F. M.; Testai, E. Evidences for CYP3A4 autoactivation in the desulfuration of dimethoate by the human liver. Toxicology 2007,241,33-46.
    [387]Singh, A. K. Kinetic analysis of inhibition of brain and red blood cell acetylcholinesterase and plasma cholinesterase by acephate or methamidophos. Toxicol. Appl. Pharmacol.1985,81, 302-309.
    [388]Spassova, D.; White, T.; Singh, A. K. Acute effects of acephate and methamidophos on acetylcholinesterase activity, endocrine system and amino acid concentrations in rats. Comp. Biochem. Physiol. Part C:Pharmacol. Toxicol. Endocrinol.2000,126,79-89.
    [389]http://www.epa.gov/opptintr/exposure/pubs/episuite.htm
    [390]http://www.epa.gov/nrmrl/std/qsar/qsar.html
    [391]http://www.vega-qsar.eu/
    [392]Erdmanis, L.; O'Reilly, A. O.; Williamson, M. S.; et al. Association of neonicotinoid insensitivity with a conserved residue in the loop D binding region of the tick nicotinic acetylcholine receptor. Biochemistry 2012,51,4627-4629.
    [393]Flores-Cespedes, F.; Figueredo-Flores, C. I.; Daza-Fernandez, I.; et al. Preparation and characterization of imidacloprid lignin-polyethylene glycol matrices coated with ethylcellulose. J. Agric. Food Chem.2012,60,1042-1051.
    [394]Gaddamidi, V.; Scott, M. T.; Swain, R. S.; et al. Metabolism of [14C]chlorantraniliprole in the lactating goat. J. Agric. Food Chem.2011,59,1316-1323.
    [395]Isaacs, A. K.; Qi, S. Z.; Sarpong, R.; et al. Insect ryanodine receptor:Distinct but coupled insecticide binding sites for [N-C3H3]chlorantraniliprole, flubendiamide, and [3H]ryanodine. Chem. Res. Toxicol.2012,25,1571-1573.
    [396]http://nepis.epa.gov/Exe/ZyNET.exe/P100C269.TXT?ZyActionD=ZyDocument&Client=E PA&Index=2006+Thru+2010&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRes trict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldO p=0&ExtQFieldOp=0&XmlQuery=&File=D%3A\zyfiles\Index%20Data\06thru10\Txt\0000002 9\P100C269.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h|-&MaximumD ocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=p|f&D efSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&Max imumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
    [397]http://www.efsa.europa.eu/en/efsajournal/pub/2548.htm
    [398]http://www.hc-sc.gc.ca/cps-spc/pest/part/consultations/_pmr12012-01/pmr12012-01-eng.php
    [399]Perez-Fernandez, V.; Garcia, M. A.; Marina, M. L. Chiral separation of metalaxyl and benalaxyl fungicides by electrokinetic chromatography and determination of enantiomeric impurities. J. Chromatogr. A 2011,1218,4877-4885.
    [400]Hewitt, G. New modes of action of fungicides. Pestic. Outlook 2000,11,28-32.
    [401]Gottlieb, D.; Anderson, H. W. The respiration of Streptomyces griseus. Science 1948,107, 172-173.
    [402]Weisberger, A. S. Inhibition of protein synthesis by chloramphenicol. Annu. Rev. Med.1967, 18,483-494.
    [403]Pilehvar, S.; Mehta, J.; Dardenne, F.; et al. Aptasensing of chloramphenicol in the presence of its analogues:Reaching the maximum residue limit. Anal. Chem.2012,84,6753-6758.
    [404]Berendsen, B.; Pikkemaat, M.; Romkens, P.; et al. Occurrence of chloramphenicol in crops through natural production by bacteria in soil. J. Agric. Food Chem.2013,61,4004-4010.
    [405]Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem.1951,193,265-275.
    [406]Manzini, G.; Ciana, A.; Crescenzi, V. The interaction of serum albumins with various drugs in aqueous solution:Gel permeation, calorimetric, and fluorescence data. Biophys. Chem.1979, 10,389-396.
    [407]Banerjee, C.; Ghatak, C.; Mandal, S.; et al. Curcumin in reverse micelle:An example to control excited-state intramolecular proton transfer (ESIPT) in confined media. J. Phys. Chem. B 2013,117,6906-6916.
    [408]Albreht, A.; Vovk, I.; Simonovska, B. Addition of β-lactoglobulin produces water-soluble shikonin. J. Agric. Food Chem.2012,60,10834-10843.
    [409]Jurasekova, Z.; Marconi, G.; Sanchez-Cortes, S.; et al. Spectroscopic and molecular modeling studies on the binding of the flavonoid luteolin and human serum albumin. Biopolymers 2009,91,917-927.
    [410]Jha, N. S.; Kishore, N. Binding of streptomycin with bovine serum albumin:Energetics and conformational aspects. Thermochim. Acta 2009,482,21-29.
    [411]Kragh-Hansen, U. Structure and ligand binding properties of human serum albumin. Dan. Med. Bull.1990,37,57-84.
    [412]Meyer, E. A.; Castellano, R. K.; Diederich, F. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed.2003,42,1210-1250.
    [413]Qin, P. F.; Liu, R. T.; Pan, X. R.; et al. Impact of carbon chain length on binding of perfluoroalkyl acids to bovine serum albumin determined by spectroscopic methods. J. Agric. Food Chem.2010,58,5561-5567.
    [414]Whitmore, L.; Wallace, B. A. Protein secondary structure analyses from circular dichroism spectroscopy:Methods and reference databases. Biopolymers 2008,89,392-400.
    [415]Chi, Z. X.; Liu, R. T.; Teng, Y.; et al. Binding of oxytetracycline to bovine serum albumin: Spectroscopic and molecular modeling investigations. J. Agric. Food Chem.2010,58, 10262-10269.
    [416]Ibrahim, N.; Ibrahim, H.; Kim, S.; et al. Interactions between antimalarial indolone-N-oxide derivatives and human serum albumin. Biomacromolecules 2010,11,3341-3351.
    [417]Suryawanshi, V. D.; Anbhule, P. V.; Gore, A. H.; et al. Spectroscopic investigation on the interaction of pyrimidine derivative, 2-amino-6-hydroxy-4-(3,4-dimethoxyphenyl)-pyrimidine-5-carbonitrile with human serum albumin:Mechanistic and conformational study. Ind. Eng. Chem. Res.2012,51,95-102.
    [418]De, D.; Santra, K.; Datta, A. Prototropism of [2,2'-bipyridyl]-3,3'-diol in albumin-SDS aggregates. J. Phys. Chem.B 2012,116,11466-11472.
    [419]Zsila, F.; Bikadi, Z.; Malik, D.; et al. Evaluation of drug-human serum albumin binding interactions with support vector machine aided online automated docking. Bioinformatics 2011, 27,1806-1813.
    [420]Ahmad, B.; Ahmed, M. Z.; Haq, S. K.; et al. Guanidine hydrochloride denaturation of human serum albumin originates by local unfolding of some stable loops in domain III. Biochim. Biophys. Acta-Proteins Proteomics 2005,1750,93-102.
    [421]Galantini, L.; Leggio, C.; Pavel, N. V. Human serum albumin unfolding:A small-angle X-ray scattering and light scattering study. J. Phys. Chem. B 2008,112,15460-15469.
    [422]Abou-Zied, O. K.; Al-Shihi, O. I. K. Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. J. Am. Chem. Soc.2008,130,10793-10801.
    [423]Varela, A. S.; Macho, M. I. S.; Minones, J. Spectrofluorimetric study of the binding of 1-anilinonaphthalene-8-sulfonate to bovine serum albumin.J. Pharm. Sci.1992,81,842-844.
    [424]Stryer, L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin:A fluorescent probe of non-polar binding sites. J. Mol. Biol.1965,13,482-495.
    [425]Cattoni, D. I.; Kaufman, S. B.; Flecha, F. L. G. Kinetics and thermodynamics of the interaction of 1-anilino-naphthalene-8-sulfonate with proteins. Biochim. Biophys. Acta-Proteins Proteomics 2009,1794,1700-1708.
    [426]Greenfield, N. J. Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism. Nat. Protoc.2006,1,2733-2741.
    [427]Bertucci, C.; Pistolozzi, M.; De Simone, A. Circular dichroism in drug discovery and development:an abridged review. Anal. Bioanal. Chem.2010,398,155-166.
    [428]Karlsson, B. C. G.; Rosengren, A. M.; Andersson, P. O.; et al. The spectrophysics of warfarin:Implications for protein binding.J. Phys. Chem.B 2007,111,10520-10528.
    [429]Salonen, L. M.; Ellermann, M.; Diederich, F. Aromatic rings in chemical and biological recognition:Energetics and structures. Angew. Chem. Int. Ed.2011,50,4808-4842.
    [430]Feroz, S. R.; Mohamad, S. B.; Bujang, N.; et al. Multispectroscopic and molecular modeling approach to investigate the interaction of flavokawain B with human serum albumin. J. Agric. Food Chem.2012,60,5899-5908.
    [431]Zhou, X.-M.; Lu, W.-J.; Su, L.; et al. Binding of phthalate plasticizers to human serum albumin in vitro:A multispectroscopic approach and molecular modeling. J. Agric. Food Chem. 2012,60,1135-1145.
    [432]De-Llanos, R.; Sanchez-Cortes, S.; Domingo, C.; et al. Surface plasmon effects on the (?) arug emoain to bovine serum albumin.J. Phys. Chem. C 2011,115, 12419-12429.
    [433]Abou-Zied, O. K.; Al-Lawatia, N. Exploring the drug-binding site Sudlow I of human serum albumin:The role of water and Trp214 in molecular recognition and ligand binding. ChemPhysChem 2011,12,270-274.
    [434]Monti, S.; Ottani, S.; Manoli, F.; et al. Chiral recognition of 2-(3-benzoylphenyl)propionic acid (ketoprofen) by serum albumin:an investigation with microcalorimetry, circular dichroism and molecular modelling. Phys. Chem. Chem. Phys.2009,11,9104-9113.
    [435]Lakowicz, J. R.; Weber, G Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry 1973,12,4161-4170.
    [436]Samari, F.; Hemmateenejad, B.; Shamsipur, M.; et al. Affinity of two novel five-coordinated anticancer Pt(II) complexes to human and bovine serum albumins:A spectroscopic approach. Inorg. Chem.2012,51,3454-3464.
    [437]Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc.2006,1,2876-2890.
    [438]Zhang, Y.; Zhong, Q. X. Binding between bixin and whey protein at pH 7.4 studied by spectroscopy and isothermal titration calorimetry. J. Agric. Food Chem.2012,60,1880-1886.
    [439]Jacquemin, D.; Perpete, E. A.; Ciofinl, I.; et al. Accurate simulation of optical properties in dyes. Acc. Chem. Res.2009,42,326-334.
    [440]Abbott, L. C.; Batchelor, S. N.; Moore, J. N. Structure and reactivity of thiazolium azo dyes: UV-visible, resonance Raman, NMR, and computational studies of the reaction mechanism in alkaline solution. J. Phys. Chem. A 2013,117,1853-1871.
    [441]Kobylewski, S.; Jacobson, M. F. Toxicology of food dyes. Int. J. Occup. Environ. Health 2012,18,220-246.
    442] Fonovich, T. M. Sudan dyes:are they dangerous for human health? Drug Chem. Toxicol. 2013,36,343-352.
    443] Axon, A.; May, F. E. B.; Gaughan, L. E.; et al. Tartrazine and sunset yellow are xenoestrogens in a new screening assay to identify modulators of human oestrogen receptor transcriptional activity. Toxicology 2012,298,40-51.
    444] Schummer, C.; Sassel, J.; Bonenberger, P.; et al. Low-level detections of Sudan Ⅰ,Ⅱ,Ⅲ and Ⅳ in spices and chili-containing foodstuffs using UPLC-ESI-MS/MS. J. Agric. Food Chem. 2013,61,2284-2289.
    445] Anguizola, J.; Joseph, K. S.; Barnaby, O. S.; et al. Development of affinity microcolumns for drug-protein binding studies in personalized medicine:Interactions of sulfonylurea drugs with in vivo glycated human serum albumin. Anal. Chem.2013,85,4453-4460.
    446] Zhang, Y. P.; Shi, S. Y.; Chen, X. Q.; et al. Investigation on the interaction between ilaprazole and bovine serum albumin without or with different C-ring flavonoids from the viewpoint of food-drug interference. J. Agric. Food Chem.2011,59,8499-8506.
    [447]Yang, F.; Yue, J. P.; Ma, L.; et al. Interactive associations of drug-drug and drug-drug-drug with IIA subdomain of human serum albumin. Mol. Pharmaceutics 2012,9,3259-3265.
    [448]Rada, M.; Ruiz-Gutierrez, V.; Guinda, A. Determination of triterpenic acids in human serum by high-performance liquid chromatography:Triterpenoid interaction with serum protein. J. Agric. Food Chem.2011,59,2308-2313.
    [449]Pace, T. C. S.; Nishijima, M.; Wada, T.; et al. Photophysical studies on the supramolecular photochirogenesis for the photocyclodimerization of 2-anthracenecarboxylate within human serum albumin. J. Phys. Chem. B 2009,113,10445-10453.
    [450]Abou-Zied, O. K. Revealing the ionization ability of binding site I of human serum albumin using 2-(2'-hydroxyphenyl)benzoxazole as a pH sensitive probe. Phys. Chem. Chem. Phys.2012, 14,2832-2839.
    [451]Raja, D. S.; Bhuvanesh, N. S. P.; Natarajan, K. Effect of N(4)-phenyl substitution in 2-oxo-1,2-dihydroquinoline-3-carbaldehyde semicarbazones on the structure, DNA/protein interaction, and antioxidative and cytotoxic activity of Cu(Ⅱ) complexes. Inorg. Chem.2011,50, 12852-12866.
    [452]Sreerama, N.; Woody, R. W. Computation and analysis of protein circular dichroism spectra. Methods Enzymol.2004,383,318-351.
    [453]Froehlich, E.; Mandeville, J. S.; Jennings, C. J.; et al. Dendrimers bind human serum albumin.J. Phys. Chem. B 2009,113,6986-6993.
    [454]Yeh, L.-C. C.; Falcon, W. E.; Garces, A.; et al. A host-guest relationship in bone morphogenetic protein receptor-Ⅱ defines specificity in ligand-receptor recognition. Biochemistry 2012,51,6968-6980.
    [455]Dyson, H. J.; Wright, P. E.; Scheraga, H. A. The role of hydrophobic interactions in initiation and propagation of protein folding. Proc. Natl. Acad. Sci. U.S.A.2006,103, 13057-13061.
    [456]Zhang, G. W.; Wang, L.; Pan, J. H. Probing the binding of the flavonoid diosmetin to human serum albumin by multispectroscopic techniques. J. Agric. Food Chem.2012,60,2721-2729.
    [457]Zhang, J.; Wang, X.-J.; Yan, Y.-J.; et al. Comparative studies on the interaction of genistein, 8-chlorogenistein, and 3',8-dichlorogenistein with bovine serum albumin. J. Agric. Food Chem. 2011,59,7506-7513.
    [458]Bhattacharya, B.; Nakka, S.; Guruprasad, L.; et al. Interaction of bovine serum albumin with dipolar molecules:Fluorescence and molecular docking studies. J. Phys. Chem. B 2009,113, 2143-2150.
    [459]Abou-Zied, O. K.; Al-Lawatia, N.; Elstner, M; et al. Binding of hydroxyquinoline probes to human serum albumin:Combining molecular modeling and Forster's resonance energy transfer spectroscopy to understand flexible ligand binding. J. Phys. Chem. B 2013,117,1062-1074.
    [460]Naik, D. V.; Paul, W. L.; Threatte, R. M.; et al. Fluorometric determination of drug-protein association constants:The binding of 8-anilino-l-naphthalenesulfonate by bovine serum albumin. Anal. Chem.1975,47,267-270.
    [461]Bagatolli, L. A.; Kivatinitz, S. C.; Aguilar, F.; et al. Two distinguishable fluorescent modes of 1-anilino-8-naphthalenesulfonate bound to human albumin. J. Fluoresc.1996,6,33-40.
    [462]Thumser, A. E. A.; Buckland, A. G.; Wilton, D. C. Monoacylglycerol binding to human serum albumin:Evidence that monooleoylglycerol binds at the dansylsarcosine site. J. Lipid Res. 1998,39,1033-1038.
    [463]Besley, N. A.; Hirst, J. D. Theoretical studies toward quantitative protein circular dichroism calculations. J. Am. Chem. Soc.1999,121,9636-9644.
    [464]Martin, V. I.; Rodriguez, A.; Maestre, A.; et al. Binding of cationic single-chain and dimeric surfactants to bovine serum albumin. Langmuir 2013,29,7629-7641.
    [465]Kumauchi, M.; Kaledhonkar, S.; Philip, A. F.; et al. A conserved helical capping hydrogen bond in PAS domains controls signaling kinetics in the superfamily prototype photoactive yellow protein. J. Am. Chem. Soc.2010,132,15820-15830.
    [466]Yang, M. L.; Wu, Y.; Li, J. B.; et al. Binding of curcumin with bovine serum albumin in the presence of i-carrageenan and implications on the stability and antioxidant activity of curcumin. J. Agric. Food Chem.2013,61,7150-7155.
    [467]Ye, J.-H.; Thomas, E.; Sanguansri, L.; et al. Interaction between whole buttermilk and resveratrol.J. Agric. Food Chem.2013,61,7096-7101.
    [468]Chao, W.-C.; Lu, J.-F.; Wang, J.-S.; et al. Probing ligand binding to thromboxane synthase. Biochemistry 2013,52,1113-1121.
    [469]Genheden, S.; Ryde, U. Improving the efficiency of protein-ligand binding free-energy calculations by system truncation. J. Chem. Theory Comput.2012,8,1449-1458.
    [470]Abou-Zied, O. K. Spectroscopy of hydroxyphenyl benzazoles in solution and human serum albumin:detecting flexibility, specificity and high affinity of the warfarin drug binding site. RSC Adv.2013,5,8747-8755.
    [471]Shcharbin, D.; Klajnert, B.; Mazhul, V.; et al. Dendrimer interactions with hydrophobic fluorescent probes and human serum albumin. J. Fluoresc.2005,15,21-28.
    [472]Patra, A.; Sen, T. K.; Ghorai, A.; et al. Synthesis, structure, spectroscopic characterization, and protein binding affinity of new water-soluble hetero-and homometallic tetranuclear [CuⅡ2ZnⅡ2] and [CuⅡ4] clusters. Inorg. Chem.2013,52,2880-2890.
    [473]Greenfield, N. J. Enzyme ligand complexes:Spectroscopic studies. CRC Crit. Rev. Biochem. 1975,3,71-110.
    [474]Zhao, X. C.; Sheng, F.; Zheng, J. L.; et al. Composition and stability of anthocyanins from purple Solanum tuberosum and their protective influence on Cr(VI) targeted to bovine serum albumin.J. Agric. Food Chem.2011,59,7902-7909.
    [475]Fenoll, J.; Hellin, P.; Sabater, P.; et al. Trace analysis of sulfonylurea herbicides in water samples by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Talanta 2012,101,273-282.
    [476]http://news.agropages.com/News/NewsDetail---4046.htm
    [477]Sauers, R. F.; Levitt, G. Sulfonylureas:New high potency herbicides. Pesticide Synthesis Through Rational Approaches; American Chemical Society:Washington, D.C.,1984; pp 21-28.
    [478]Hay, J. V. Chemistry of sulfonylurea herbicides. Pestic. Sci.1990,29,247-261.
    [479]Blair, A. M.; Martin, T. D. A review of the activity, fate and mode of action of sulfonylurea herbicides. Pestic. Sci.1988,22,195-219.
    [480]Schloss, J. V. Acetolactate synthase, mechanism of action and its herbicide binding site. Pestic. Sci.1990,29,283-292.
    [481]Saha, S.; Kulshrestha, G. Degradation of sulfosulfuron, a sulfonylurea herbicide, as influenced by abiotic factors. J. Agric. Food Chem.2002,50,4572-4575.
    [482]Kah, M.; Beulke, S.; Brown, C. D. Factors influencing degradation of pesticides in soil. J. Agric. Food Chem.2007,55,4487-4492.
    [483]Brown, H. M.; Cotterman, J. C. Recent advances in sulfonylurea herbicides. Herbicides Inhibiting Branched-Chain Amino Acid Biosynthesis; Springer Science+Business Media:New York,1994; pp 47-81.
    [484]Saari, L. L.; Cotterman, J. C.; Primiani, M. M. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia. Plant Physiol.1990,93,55-61.
    [485]Pang, S. S.; Guddat, L. W.; Duggleby, R. G. Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase. J. Biol. Chem.2003,278,7639-7644.
    [486]Kreuz, K.; Fonne-Pfister, R. Herbicide-insecticide interaction in maize:Malathion inhibits cytochrome P450-dependent primisulfuron metabolism. Pestic. Biochem. Physiol.1992,43, 232-240.
    [487]Aneja, V. P.; Schlesinger, W. H.; Erisman, J. W. Farming pollution. Nat. Geosci.2008,1, 409-411.
    [488]Cardinale, B. J.; Duffy, J. E.; Gonzalez, A.; et al. Biodiversity loss and its impact on humanity. Nature 2012,486,59-67.
    [489]Hooper, D. U.; Adair, E. C.; Cardinale, B. J.; et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 2012,486,105-108.
    [490]Grant, S. B.; Saphores, J.-D.; Feldman, D. L.; et al. Taking the "waste" out of "wastewater" for human water security and ecosystem sustainability. Science 2012,337,681-686.
    [491]MacDougall, A. S.; McCann, K. S.; Gellner, G.; et al. Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature 2013,494,86-89.
    [492]Deeb, O.; Goodarzi, M. Predicting the solubility of pesticide compounds in water using QSPR methods. Mol. Phys.2010,108,181-192.
    [493]Leo, A.; Hansch, C.; Elkins, D. Partition coefficients and their uses. Chem. Rev.1971,71, 525-616.
    [494]Chiou, C. T.; Freed, V. H.; Schmedding, D. W.; et al. Partition coefficient and bioaccumulation of selected organic chemicals. Environ. Sci. Technol.1977, 11,475-478.
    [495]Clarkson, T. W. Environmental contaminants in the food chain. Am. J. Clin. Nutr.1995,61, 682S-686S.
    [496]Mailhot, H.; Peters, R. H. Empirical relationships between the 1-octanol/water partition coefficient and nine physicochemical properties. Environ. Sci. Technol.1988,22,1479-1488.
    [497]Harner, T.; Mackay, D. Measurement of octanol-air partition coefficients for chlorobenzenes, PCBs, and DDT. Environ. Sci. Technol.1995,29,1599-1606.
    [498]Mackay, D.; Wania, F. Transport of contaminants to the Arctic:partitioning, processes and models. Sci. Total Environ.1995,160-161,25-38.
    [499]Finizio, A.; Mackay, D.; Bidleman, T.; et al. Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols. Atmos. Environ.1997,31, 2289-2296.
    [500]Calvet, R. Adsorption of organic chemicals in soils. Environ. Health Perspect.1989,83, 145-177.
    [501]Wauchope, R. D.; Yeh, S.; Linders, J. B. H.; et al. Pesticide soil sorption parameters:theory, measurement, uses, limitations and reliability. Pest Manag. Sci.2002,58,419-445.
    [502]Baker, J. R.; Mihelcic, J. R.; Luehrs, D. C.; et al. Evaluation of estimation methods for organic carbon normalized sorption coefficients. Water Environ. Res.1997,69,136-145.
    [503]Kleinow, K. M.; Melancon, M. J.; Lech, J. J. Biotransformation and induction:Implications for toxicity, bioaccumulation and monitoring of environmental xenobiotics in fish. Environ. Health Perspect.1987,71,105-119.
    [504]van Gestel, C. A. M.; Otermann, K.; Canton, J. H. Relation between water solubility, octanol/water partition coefficients, and bioconcentration of organic chemicals in fish:A review. Regul. Toxicol. Pharmacol.1985,5,422-431.
    [505]Lewis, G. N. The law of physico-chemical change. Proc. Am. Acad. Arts Sci.1901,37, 49-69.
    [506]Mackay, D. Finding fugacity feasible. Environ. Sci. Technol.1979,13,1218-1223.
    [507]Anderson, T. F.; Prausnitz, J. M. Computational methods for high-pressure phase equilibria and other fluid-phase properties using a partition function.1. Pure fluids. Ind. Eng. Chem. Process Des. Dev.1980,19,1-8.
    [508]Anderson, T. F.; Prausnitz, J. M. Computational methods for high-pressure phase equilibria and other fluid-phase properties using a partition function.2. Mixtures. Ind. Eng. Chem. Process Des. Dev.1980,19,9-14.
    [509]Kumar, S.; Mukerji, K. G.; Lai, R. Molecular aspects of pesticide degradation by microorganisms. Crit. Rev. Microbiol.1996,22,1-26.
    [510]Porto, A. L. M.; Melgar, G. Z.; Kasemodel, M. C.; et al. Biodegradation of pesticides. Pesticides in the Modern World-Pesticides Use and Management; InTech:New York,2011; pp 407-438.
    [511]http://www.ccohs.ca/oshanswers/chemicals/1d50.html
    [512]Stott, W. T.; Fox, T. R.; Reitz, R. H.; et al. Mechanisms of chemical carcinogenicity. Carcinogenicity and Pesticides; American Chemical Society. Washington, D.C.,1989; pp 43-77.
    [513]Durham, W. F.; Williams, C. H. Mutagenic, teratogenic, and carcinogenic properties of pesticides. Annu. Rev. Entomol.1972,17,123-148.
    [514]Wilson, J. G. Mechanisms of teratogenesis.Am. J. Anat.1973,136,129-131.
    [515]Fishbein, L. Overview of potential mutagenic problems posed by some pesticides and their trace impurities. Environ. Health Perspect.1978,27,125-131.
    [516]Bolognesi, C. Genotoxicity of pesticides:a review of human biomonitoring studies. Mutat. Res./Rev. Mutat. Res.2003,543,251-272.
    [517]Zhou, J. J.; Xie, Q.; Sun, D. M.; et al. Structure-activity relationships on pesticides:A development in methodology and its software system.J. Chem. Inf. Comput. Sci.1993,33, 310-319.
    [518]Price, N. R.; Watkins, R. W. Quantitative structure-activity relationships (QSAR) in predicting the environmental safety of pesticides. Pestic. Outlook 2003,14,127-129.
    [519]Russom, C. L.; Breton, R. L.; Walker, J. D.; et al. An overview of the use of quantitative structure-activity relationships for ranking and prioritizing large chemical inventories for environmental risk assessments. Environ. Toxicol. Chem.2003,22,1810-1821.
    [520]Roncaglioni, A.; Benfenati, E.; Boriani, E.; et al. A protocol to select high quality datasets of ecotoxicity values for pesticides.J. Environ. Sci. Health, Part B 2004,39,641-652.
    [521]Altschuh, J.; Bruggemann, R.; Santl, H.; et al. Henry's law constants for a diverse set of organic chemicals:Experimental determination and comparison of estimation methods. Chemosphere 1999,39,1871-1887.
    [522]Magnuson, M. L.; Speth, T. F. Quantitative structure-property relationships for enhancing predictions of synthetic organic chemical removal from drinking water by granular activated carbon. Environ. Sci. Technol.2005,39,7706-7711.
    [523]Harbers, J. V.; Huijbregts, M. A. J.; Posthuma, L.; et al. Estimating the impact of high-production-volume chemicals on remote ecosystems by toxic pressure calculation. Environ. Sci. Technol.2006,40,1573-1580.
    [524]Hogue, C. Estimating properties of new chemicals:EPA software undergoes peer review. Chem. Eng. News 2006,84,32-33.
    [525]Benfenati, E.; Benigni, R.; DeMarini, D. M.; et al. Predictive models for carcinogenicity and mutagenicity:Frameworks, state-of-the-art, and perspectives. J. Environ. Sci. Health, Part C 2009,27,57-90.
    [526]Barron, M. G.; Jackson, C. R.; Awkerman, J. A. Evaluation of in silico development of aquatic toxicity species sensitivity distributions. Aquat. Toxicol.2012,116-117,1-7.
    [527]Bakhtyari, N. G.; Raitano, G.; Benfenati, E.; et al. Comparison of in silico models for prediction of mutagenicity.J. Environ. Sci. Health, Part C 2013,31,45-66.
    [528]Veith, G. D.; DeFoe, D. L.; Bergstedt, B. V. Measuring and estimating the bioconcentration factor of chemicals in fish. J. Fish. Res. Board Can.1979,36,1040-1048.
    [529]Saeger, V. W.; Hicks, O.; Kaley, R. G.; et al. Environmental fate of selected phosphate esters. Environ. Sci. Technol.1979,13,840-844.
    [530]Sabljic, A.; Protic, M. Molecular connectivity:A novel method for prediction of bioconcentration factor of hazardous chemicals. Chem.-Biol. Interact.1982,42,301-310.
    [531]Seth, R.; Mackay, D.; Muncke, J. Estimating the organic carbon partition coefficient and its variability for hydrophobic chemicals. Environ. Sci. Technol.1999,33,2390-2394.
    [532]Weininger, D. SMILES, a chemical language and information system.1. Introduction to methodology and encoding rules.J. Chem. Inf. Comput. Sci.1988,28,31-36.
    [533]Weininger, D.; Weininger, A.; Weininger, J. L. SMILES.2. Algorithm for generation of unique SMILES notation. J. Chem. Inf. Comput. Sci.1989,29,97-101.
    [534]Helson, H. E. Structure diagram generation. Reviews in Computational Chemistry; John Wiley & Sons, Inc.:Hoboken, New Jersey,2007; pp 313-398.
    [535]Alsberg, B. K. Multiscale cluster analysis. Anal. Chem.1999,71,3092-3100.
    [536]Zadeh, L. A. Fuzzy sets. Inf. Control 1965,8,338-353.
    [537]Zadeh, L. A. Fuzzy logic and approximate reasoning. Synthese 1975,30,407-428.
    [538]Dunn, J. C. A graph theoretic analysis of pattern classification via Tamura's fuzzy relation. IEEE Trans. Syst., Man, Cybern.1974,4,310-313.
    [539]Ruspini, E. H. A new approach to clustering. Inf. Control 1969,15,22-32.
    [540]Bezdek, J. C. Modified objective function algorithms. Pattern Recognition with Fuzzy Objective Function Algorithms; Springer Science+Business Media:New York,1981; pp 155-201.
    [541]Bezdek, J. C. A convergence theorem for the fuzzy ISODATA clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell.1980,2,1-8.
    [542]Bezdek, J. C.; Hathaway, R. J.; Sabin, M. J.; et al. Convergence theory for fuzzy c-means: Counterexamples and repairs. IEEE Trans. Syst., Man, Cybern.1987,17,873-877.
    [543]Hathaway, R. J.; Bezdek, J. C. Recent convergence results for the fuzzy c-means clustering algorithms. J. Classif.1988,5,237-247.
    [544]Lele, S.; Richtsmeier, J. T. Euclidean distance matrix analysis:Confidence intervals for form and growth differences. Am. J. Phys. Anthropol.1995,98,73-86.
    [545]Zhang, Y.; Zhong, Q. X. Effects of thermal denaturation on binding between bixin and whey protein. J. Agric. Food Chem.2012,60,7526-7531.
    [546]Zhang, Y. P.; Peng, M. J.; Liu, L. L.; et al. Screening, identification, and potential interaction of active compounds from Eucommia ulmodies leaves binding with bovine serum albumin. J. Agric. Food Chem.2012,60,3119-3125.
    [547]Mandal, S.; Ghosh, S.; Banerjee, C.; et al. Modulation of photophysics and photodynamics of 1'-hydroxy-2'-acetonaphthone (HAN) in bile salt aggregates:A study of polarity and nanoconfinement effects. J. Phys. Chem. B 2012,116,8780-8792.
    [548]Zaidi, N.; Ahmad, E.; Rehan, M.; et al. Biophysical insight into furosemide binding to human serum albumin:A study to unveil its impaired albumin binding in uremia. J. Phys. Chem. B 2013,117,2595-2604.
    [549]Tang, C.-H.; Shen, L. Role of conformational flexibility in the emulsifying properties of bovine serum albumin. J. Agric. Food Chem.2013,61,3097-3110.
    [550]Wang, X. Q.; Liu, J:; Sun, L. M.; et al. Interaction of bovine serum albumin with ester-functionalized anionic surface-active ionic liquids in aqueous solution:A detailed physicochemical and conformational study. J. Phys. Chem. B 2012,116,12479-12488.
    [551]Zsila, F. Subdomain IB is the third major drug binding region of human serum albumin: Toward the three-sites model. Mol. Pharmaceutics 2013,10,1668-1682.
    [552]Hall, M. L.; Jorgensen, W. L.; Whitehead, L. Automated ligand- and structure-based protocol for in silico prediction of human serum albumin binding. J. Chem. Inf. Model.2013,53, 907-922.
    [553]Syme, N. R.; Dennis, C.; Bronowska, A.; et al. Comparison of entropic contributions to binding in a "hydrophilic" versus "hydrophobic" ligand-protein interaction. J. Am. Chem. Soc. 2010,132,8682-8689.
    [554]Crozier, A.; Jaganath, I. B.; Clifford, M. N. Dietary phenolics:chemistry, bioavailability and effects on health. Nat. Prod. Rep.2009,26,1001-1043.
    [555]Veitch, N. C.; Grayer, R. J. Flavonoids and their glycosides, including anthocyanins. Nat. Prod. Rep.2011,28,1626-1695.
    [556]Soto-Vaca, A.; Gutierrez, A.; Losso, J. N.; et al. Evolution of phenolic compounds from color and flavor problems to health benefits. J. Agric. Food Chem.2012,60,6658-6677.
    [557]Roowi, S.; Crozier, A. Flavonoids in tropical citrus species. J. Agric. Food Chem.2011,59, 12217-12225.
    [558]Alvarez, R.; Carvalho, C. P.; Sierra, J.; et al. Citrus juice extraction systems:Effect on chemical composition and antioxidant activity of clementine juice. J. Agric. Food Chem.2012, 60,774-781.
    [559]Chanet, A.; Milenkovic, D.; Manach, C.; et al. Citrus flavanones:What is their role in cardiovascular protection? J. Agric. Food Chem.2012,60,8809-8822.
    [560]Wu, X. L.; Schauss, A. G. Mitigation of inflammation with foods. J. Agric. Food Chem. 2012,60,6703-6717.
    [561]Shen, W.; Xu, Y.; Lu, Y.-H. Inhibitory effects of Citrus flavonoids on starch digestion and antihyperglycemic effects in HepG2 cells. J. Agric. Food Chem.2012,60,9609-9619.
    [562]Pujos-Guillot, E.; Hubert, J.; Martin, J.-F.; et al. Mass spectrometry-based metabolomics for the discovery of biomarkers of fruit and vegetable intake:Citrus fruit as a case study. J. Proteome Res.2013,12,1645-1659.
    [563]Zheng, G. D.; Yang, D. P.; Wang, D. M.; et al. Simultaneous determination of five bioactive flavonoids in Pericarpium Citri Reticulatae from China by high-performance liquid chromatography with dual wavelength detection. J. Agric. Food Chem.2009,57,6552-6557.
    [564]Vallejo, F.; Larrosa, M.; Escudero, E.; et al. Concentration and solubility of flavanones in orange beverages affect their bioavailability in humans. J. Agric. Food Chem.2010,58, 6516-6524.
    [565]Furtado, A. F. M.; Nunes, M. A. P.; Ribeiro, M. H. L. Hesperidinase encapsulation towards hesperitin production targeting improved bioavailability. J. Mol. Recognit.2012,25,595-603.
    [566]Fanali, G.; di Masi, A.; Trezza, V.; et al. Human serum albumin:From bench to bedside. Mol. Aspects Med.2012,33,209-290.
    [567]Turell, L.; Botti, H.; Carballal, S.; et al. Reactivity of sulfenic acid in human serum albumin. Biochemistry 2008,47,358-367.
    [568]Karlsson, B. C. G.; Rosengren, A. M.; Naslund, I.; et al. Synthetic human serum albumin Sudlow I binding site mimics. J. Med. Chem.2010,53,7932-7937.
    [569]Anand, U.; Jash, C.; Mukherjee, S. Spectroscopic probing of the microenvironment in a protein-surfactant assembly.J. Phys. Chem. B 2010,114,15839-15845.
    [570]Hawe, A.; Poole, R.; Jiskoot, W. Misconceptions over Forster resonance energy transfer between proteins and ANS/bis-ANS:Direct excitation dominates dye fluorescence. Anal. Biochem.2010,401,99-106.
    [571]Mensi, A.; Choiset, Y.; Rabesona, H.; et al. Interactions of β-lactoglobulin variants A and B with vitamin A. Competitive binding of retinoids and carotenoids. J. Agric. Food Chem.2013,61, 4114-4119.
    [572]Kumaraswamy, P.; Sethuraman, S.; Krishnan, U. M. Mechanistic insights of curcumin interactions with the core-recognition motif of β-amyloid peptide. J. Agric. Food Chem.2013,61, 3278-3285.
    [573]Mandal, S.; Ghosh, S.; Aggala, H. H. K.; et al. Modulation of the photophysical properties of 2,2'-bipyridine-3,3'-diol inside bile salt aggregates:A fluorescence-based study for the molecular recognition of bile salts. Langmuir 2013,29,133-143.
    [574]Bonancia, P.; Vaya, I.; Jimenez, M. C.; et al. Intraprotein formation of a long wavelength absorbing complex and inhibition of excited-state deprotonation in a chiral hydroxybiphenyl. J. Phys. Chem. B 2012,116,14839-14843.
    [575]Kuznetsova, I. M.; Sulatskaya, A. I.; Povarova, O. I.; et al. Reevaluation of ANS binding to human and bovine serum albumins:Key role of equilibrium microdialysis in ligand-receptor binding characterization. PLOS ONE 2012,7, e40845.
    [576]Bahar, I.; Lezon, T. R.; Yang, L.-W.; et al. Global dynamics of proteins:Bridging between structure and function. Annu. Rev. Biophys.2010,39,23-42.
    [577]Ramachandran, E.; Raja, D. S.; Rath, N. P.; et al. Role of substitution at terminal nitrogen of 2-oxo-1,2-dihydroquinoline-3-carbaldehyde thiosemicarbazones on the coordination behavior and structure and biological properties of their palladium(II) complexes. Inorg. Chem.2013,52, 1504-1514.
    [578]Tian, F.-F.; Jiang, F.-L.; Han, X.-L.; et al. Synthesis of a novel hydrazone derivative and biophysical studies of its interactions with bovine serum albumin by spectroscopic, electrochemical, and molecular docking methods. J. Phys. Chem. B 2010,114,14842-14853.
    [579]Woody, R. W. Circular dichroism. Methods Enzymol.1995,246,34-71.
    [580]Rogozea, A.; Matei, I.; Turcu, I. M.; et al. EPR and circular dichroism solution studies on the interactions of bovine serum albumin with ionic surfactants and β-cyclodextrin. J. Phys. Chem. B2012,116,14245-14253.
    [581]Butina, D.; Segall, M. D.; Frankcombe, K. Predicting ADME properties in silico:methods and models. Drug Discov. Today 2002,7, S83-S88.
    [582]Martin, S. F.; Clements, J. H. Correlating structure and energetics in protein-ligand interactions:Paradigms and paradoxes. Annu. Rev. Biochem.2013,82,267-293.
    [583]Baron, R.; McCammon, J. A. Molecular recognition and ligand association. Annu. Rev. Phys. Chem.2013,64,151-175.
    [584]Karplus, M.; Petsko, G. A. Molecular dynamics simulations in biology. Nature 1990,347, 631-639.
    [585]Karplus, M.; McCammon, J. A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol.2002,9,646-652.
    [586]Brooijmans, N.; Kuntz, I. D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct.2003,32,335-373.
    [587]Dror, R. O.; Dirks, R. M.; Grossman, J. P.; Xu, H. F.; Shaw, D. E. Biomolecular simulation: A computational microscope for molecular biology. Annu. Rev. Biophys.2012,41,429-452.
    [588]Rowland, M.; Peck, C.; Tucker, G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu. Rev. Pharmacol. Toxicol.2011,51,45-73.
    [589]Gipson, B.; Hsu, D.; Kavraki, L. E.; Latombe, J.-C. Computational models of protein kinematics and dynamics:Beyond simulation. Annu. Rev. Anal. Chem.2012,5,273-291.
    [590]Kasprzyk-Hordern, B. Pharmacologically active compounds in the environment and their chirality. Chem. Soc. Rev.2010,39,4466-4503.
    [591]Wrolstad, R. E.; Culver, C. A. Alternatives to those artificial FD&C food colorants. Annu. Rev. Food Sci. Technol.2012,3,59-77.
    [592]Boehr, D. D.; Nussinov, R.; Wright, P. E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol.2009,5,789-796.
    [593]Morand, C.; Dubray, C.; Milenkovic, D.; et al. Hesperidin contributes to the vascular protective effects of orange juice:a randomized crossover study in healthy volunteers. Am. J. Clin.Nutr.2011,93,73-80.
    [594]Hwang, S.-L.; Shih, P.-H.; Yen, G.-C. Neuroprotective effects of citrus flavonoids. J. Agric. Food Chem.2012,60,877-885.
    [595]Avior, Y.; Bomze, D.; Ramon, O.; et al. Flavonoids as dietary regulators of nuclear receptor activity. Food Funct.2013,4,831-844.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700