用户名: 密码: 验证码:
玉/豆和玉/薯模式下玉米养分吸收利用特性及氮肥调控机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究于2008~2011年在大田试验条件下,以代表性玉米杂交种川单418为材料,在四川两个玉米主产区—川中丘区射洪县和川西山区雅安市对比研究了玉/豆和玉/薯模式中土壤肥力变化规律及玉米养分吸收利用特性、玉米生长和产量差异,两种模式下不同施氮量和氮肥运筹方式对玉米产量、氮素利用特征的影响及其生理机制,主要研究结果如下:
     1、两种模式下土壤养分变化规律及玉米产量和养分吸收差异经过一年种植后,不同作物带耕层土壤养分含量差异达显著水平,大豆带残留的硝态氮、速效氮、速效钾均显著高于甘薯带,而铵态氮和速效磷甘薯带较大豆带高,两种套作体系中玉米带耕层土壤养分含量差异不显著;第二、三年分带轮作,玉米分别以大豆和甘薯为前茬,由于大豆带和甘薯带土壤养分差异,使玉米氮和钾素吸收积累玉/豆模式显著高于玉/薯模式,磷的吸收积累则相反,不同作物带经玉米轮作后耕层土壤养分含量差异减小,主要表现在玉米对硝态氮、速效氮、磷等养分的均衡吸收上。
     两种套作模式经过一年种植后,玉/豆模式下玉米产量高于玉/薯模式,但差异未达显著水平;第二、三年分带轮作后,玉/豆模式下玉米产量显著高于玉/薯模式,两年平均分别高出679.5kg/hm2和839.1kg/hm2,增产9.4%和12.6%,穗粒数显著增加是增产的主要原因。
     2、两种模式下玉米氮肥运筹效应差异两种种植模式不同的施氮量和氮肥运筹处理对玉米的产量影响均达显著水平,且交互效应显著。玉/豆模式下,施氮量雅安试验点以N180处理产量较高,显著高于其它处理,射洪试验点以N180处理最高,但与N270处理差异不显著,玉/薯模式下,以N270处理产量最高。氮肥运筹试验中得出:两种模式中氮肥均以每公顷施纯氮180~270公斤,玉/豆模式中以“30%底肥+20%拔节肥+50%攻苞肥”氮肥运筹方式玉米产量最高,为7710.67kg/hm2,而玉/薯模式以“底肥和穗肥各一半”的氮肥运筹方式玉米产量可达6648.42kg/hm2。
     玉/豆模式下玉米粗蛋白和赖氨酸显著高于玉/薯模式,玉米籽粒粗脂肪和粗淀粉含量有玉/薯模式高于玉/豆模式的变化趋势,但差异不显著。随施氮量增加两种模式下粗蛋白含量均显著增加,在N360处理达最高,赖氨酸含量0~270kg/hm2之间随施氮量增加,显著提高,360kg/hm2处理赖氨酸反而降低,粗淀粉含量随施氮量提高,均显著下降。施氮时期对两种模式下粗蛋白和赖氨酸的含量的影响均表现为:氮肥后移>氮肥前移>底追均等,且各处理间差异达显著水平,表明增施拔节肥有利于粗蛋白的积累,且多次施肥的提高效果更好。
     3、两种模式下氮肥对玉米形态指标的影响两种种植模式下施氮量、氮肥运筹方式对玉米形态指标的影响存在显著或极显著的互作作用。在玉米生长前期,中高氮水平均抑制了两种模式下玉米的生长,中期随玉米需氮量的增加,中氮水平显现优势,玉/豆模式中以“N180,30%底肥+20拔节肥+50%攻苞肥”处理株高、茎粗,叶面积指数、SPAD值和干物质量均较高,玉/薯模式中以“N270,50%底肥+50%攻苞肥”处理较高,N360处理反而抑制了玉米生长,氮肥前移的运筹方式,灌浆期缺氮,叶面积指数和SPAD下降较快,不利于产量形成,而在两模式适宜的施氮水平和氮肥运筹方式下,叶面积和SPAD值的下降速率减缓,防止叶片衰老。
     4、两种模式下氮肥对玉米光合特性及干物质积累分配的影响两个试验点连续二年的研究结果表明,种植模式、施氮量和氮肥运筹方式对玉米各时期穗位叶光合速率、气孔导度、PS Ⅱ最大光化学效率、有效光化学量子产量的影响差异达显著水平。玉/豆模式下玉米在吐丝期和灌浆期穗位叶的净光合速率、气孔导度均比玉/薯高,且到灌浆期的下降率低于玉/薯模式,在此模式下,全生育期施纯氮90~180kg/hm2,采用“30%底肥+20%拔节肥+50%攻苞肥”施肥方式,还能显著提高玉米穗位叶PS Ⅱ最大光化学效率和有效光化学量子产量,有利于灌浆期玉米光合能力的提高和光合产物的积累,同时提高了干物质最大增长速率和平均增长速率,延长了灌浆持续天数,确保适当增加穗长,提高每穗粒数,进而显著提高群体库容量,提高玉米的增产潜能。玉/薯模式下全生育期施纯氮180~270kg/hm2,采用“50%底肥+50%攻苞肥的施肥方式”相对同种模式下其它处理,也具有较明显的优势。氮肥前移处理,吐丝期光合特性的各指标值均较高,但到灌浆期下降速率均较快,氮素胁迫,PS Ⅱ最大光化学效率和有效光化学量子产量值较低,玉米生长后期叶片的光合生产能力减弱,不利于光合产物积累。
     5、两种模式下氮肥对玉米氮素代谢、吸收利用和土壤硝态氮积累的影响及相互关系种植模式、施氮量和氮肥运筹对玉米各生育时期氮代谢酶活性及氮素吸收利用、土层硝态氮的积累均有显著效应,玉/豆模式中玉米各生育阶段积累氮素均显著高于玉/薯模式,同时提高了氮素收获指数和氮素利用效率,玉/豆模式中玉米成熟期籽粒有47.29%~55.48%来自开花前贮存在营养器官中的氮素,有44.52%~52.71%来自花后同化,而玉/薯模式中玉米成熟期籽粒有51.88%~61.75%来自花前积累,38.25%~48.12%来自花后同化,玉米收获后玉/豆模式下硝态氮的积累量显著高于玉/薯模式,且主要集中在0-60cm土层,60-120cm的土层中玉/薯模式略高于玉/豆模式。合理的氮肥用量和氮肥施用时期能有效提高氮素吸收利用,促进氮素代谢,减轻硝态氮的淋溶损失,两种模式下180~270kg/hm2施氮处理相对于其他施氮水平有助于抽雄期至成熟期玉米吸氮量的增加,提高氮素农艺生产效率,而且玉/豆模式与氮肥后移,玉/薯模式中与底追均等的氮肥运筹方式结合,能达到提高氮代谢酶活性、提高氮肥利用效率的目的,两种模式下氮肥前移处理均显著降低土层中硝态氮的积累量,但由于玉米前期需肥量少,残留在土壤中的硝态氮大部分发生了氮淋溶损失和反硝化作用,随水淋溶到了60cm以下,造成了氮的损失。硝态氮的积累随施氮量的增加显著提高,且过高的氮肥用量和氮肥前移施肥方式,不利于两种模式下玉米生长后期穗位叶硝酸还原酶(NR)、谷氨酞胺合成酶(GS)和蔗糖磷酸合成酶(SPS)活性的提高,还会导致氮效率的下降。
From year2008to2011, typical maize hybrid chuandan418was used to study the regulation of soil fertility variation and characteristics of nutrient absorption, utilization, dynamic growth and yield differences of maize under maize/soybean and maize/sweet potato relay intercropping systems in two main maize producing areas in Sichuan, Shehong in the middle and Ya'an in the west, and the effects of nitrogen fertilizer application and nitrogen strategies on the yield, nitrogen absorption, utilization and their mechanism of maize under two systems were e studied under field experiment. The main results were as follows:
     1. Regulation of soil fertility variation and differences of maize yield and nutrient uptake in two relay intercropping systems
     After a year of planting, there was significant differences in soil fertility contents of cultivate layer in different crop strips. The residuals of nitrate nitrogen, available nitrogen and available potassium in the soybean strip were significantly higher than those in the sweet potato strip, however, the residuals of ammonium nitrogen and available phosphorus in the sweet potato strip were higher than those in the soybean strip, and soil fertility contents of cultivate layer in maize strip were of no significance in the two relay intercropping systems. After two or three-year's strip rotation, the differences of nutrient absorption were great as the preceding crops were soybean or sweet potato, and the accumulation of nitrogen and potassium were higher in maize/soybean than that in maize/sweet potato, while the accumulation of phosphorus was opposite. There was a decreasing in soil fertility content of cultivate layer after crop rotation with maize. The results showed that maize had a better equilibrium effect on nutrient absorption, which would mainly be nitrate nitrogen, available nitrogen and phosphorus.
     Maize yield in maize/soybean was higher than that in maize/sweet potato with no significant difference after one year planting. This indicated that interspecies reciprocity benefited to maize yield production, but the yield-increasing effect were not significant. After two or three-year's strip rotation, the maize yield of maize/soybean was considerably higher than that of maize/sweet potato. The two year's productions were more than those of the previous year with679.5kg/ha and839.1kg/ha on average and with the increases of9.4%and12.6%in the two experimental sites, which reflected a more significant productivity in Shehong than that in Ya'an, the increased productivity may mainly due to the significantly increasing of kernels per ear in Shehong.
     2. The differences of N Management effects in two relay intercropping systems
     Two-year's results in the two experimental sites showed that planting patterns, nitrogen application rates, and nitrogen strategies all had an significant effect on maize yield and there was a significant interactions among them. The results demonstrated that maize yield in maize/soybean was higher than that of maize/sweet potato significantly. In maize/soybean intercropping system; maize yield at treatment N180was significantly higher than other treatments in Ya'an, but that in Shehong was of no significance. In maize/sweet potato intercropping system, maize yield under treatment N270was the highest. Based on the appropriate nitrogen application level established at the previous year, the experiment focused on nitrogen strategies was conducted in Shehong from year2010to2011. The results showed that the two relay intercropping systems both achieved high yield when the nitrogen application amount was between180and270kg/ha, the maize yield in maize/soybean was highest, reaching7710.67kg/ha with the assigning proportion (basic N:jointing N:huge bellbottom N)3:2:5, but maize yield was highest in maize/sweet potato when the assigning proportion was5:0:5, and it reached6648.42kg/hm2.
     The content of crude protein and lysine were significantly higher in maize/soybean than those in maize/sweet potato, and those remained higher in Ya'an compared to Shehong; The content of crude fat and starch which were insignificantly higher in maize/sweet potato than those in maize/soybean remained higher in Shehong compared to Ya'an. With the increasing of nitrogen application level, the content of crude protein in both the relay intercropping systems increased significantly, and reached their peaks under treatment N360. The amount of lysine increased significantly with the increasing of nitrogen application when the amount of nitrogen was under270kg/ha, however, there was a decreasing trend under the treatment N360, while starch content decreased significantly with increasing of nitrogen fertilizer. The effects of different nitrogen assigning proportions on crude protein and lysine was significant, which indicated that increasing jointing nitrogen application increased crude protein and better effects were obtained by multiple fertilizing method.
     3. Effects of nitrogen fertilizer on the growing of maize in two relay intercropping systems
     Studies found that different planting patterns with different nitrogen levels and nitrogen strategies affected the growth of maize, the accumulation and distribution of dry matters, reflecting significant or extremely significant interaction effects. In the early growth stage, medium-to-high nitrogen levels restrained maize growth. In the middle growth, medium nitrogen application level showed advantages. In maize/soybean intercropping system, plant height, stem diameter, LAI index and SPAD values inceased fastly under the treatment of N180, with30%basic N:20%jointing N:50%huge bellbottom N, however, those indexes were higher in maize/sweet potato relay intercropping when applied N270,50%basic N:50%huge bellbottom N. N360restrained maize growth; Those was mainly because forward nitrogen application led to nitrogen deficiency in Mid-grain-filling stage, decline of LAI index and SPAD values rapidly, which went against the formation of yield. As a result, slower deceasing of LAI index and SPAD values under two systems at suitable nitrogen application level and suitable nitrogen strategie would help to avoid the senescence of leaves.
     4. Effects of nitrogen fertilizer on maize photosynthesis and accumulation distribution of dry matter in the two relay intercropping systems
     After successive years of research, results in two experimental sites were concluded that planting patterns, nitrogen application level and nitrogen strategies had a significant effect on photosynthetic rate, stomatal conductance, PS II maximum photochemical efficiency and EQY in every growth stage. The Pn and stomatal conductance of ear leaves in maize/soybean intercropping system were higher than that in maize/sweet potato intercropping system during silking stage and filling stage, but was decreased slowly in filling stage. Maize/soybean improved PS II maximum photochemical efficiency, EQY of ear leaves and the accumulation of photosynthetic products when nitrogen fertilizer was between90and180kg/ha and assigning proportion was30%basic N:20%jointing N:50%huge bellbottom N, meanwhile it helped increase dry matter output rate from leaves and stems to grains, avoiding the senescence of leaves, therefore, and the maximum speed of growth and average growth rate increased, which also helped extend the grain-filing days. All of these benefited the improvement of photosynthetic capacity and the accumulation of photo synthate in Mid-grain-filling stage, ensured that ear length increased appropriately, kernels per ear also improved, and then the whole group storage capacity increased, maize yield potential improved. but for maize/sweet potato there was significant advantage when applied nitrogen fertilizer between180and270kg/ha at assigning proportion was50%basic N:50%huge bellbottom N At silking stage various photosynthetic characteristics indexes were higher when applied nitrogen forward, but was decreased faster at filling stage, because of nitrogen stress, PS II maximum photochemical efficiency and EQY were lower which was against the accumulation of photosynthetic products.
     5. Effects of nitrogen fertilizer on maize nitrogen metabolism, absorption, utilization and soil nitrate nitrogen accumulation and their interrelation.
     Plant patterns, nitrogen fertilizer levels and nitrogen application strategies had a significant effect on enzymes activity involved in Nitrogen metabolism, absorption, utilization and soil nitrate nitrogen accumulation. The nitrogen accumulation in maize/soybean was higher than that in maize/sweet potato significantly. N harvest index and N use efficiency were also improved. In maize/soybean intercropping system, there was47.29%to55.48%of nitrogen coming from nutritive organs before blooming,44.52%to52.71%coming from assimilation after flowering. In maize/sweet potato intercropping system, there was51.88%to61.75%of nitrogen coming from nutritive organs before blooming,38.25%to48.12%coming from assimilation after flowering. The accumulation of nitrate nitrogen after maize harvest in maize/soybean which was mainly concentrated from0to60cm layer was significantly higher than that in maize/sweet potato; however, it was slightly higher in maize/sweet potato than that in maize/soybean from60to120cm layer. Proper nitrogen application level and application time helped improve nitrogen absorption and utilization, and promote nitrogen metabolism, and reduce nitrate nitrogen loss effectively. The nitrogen absorption of maize and nitrogen agricultural production efficiency were increased applied180to270kg/ha nitrogen fertilizer to both planting patterns compared to other nitrogen application levels. Maize/soybean relay intercropping system along with3:2:5and maize/sweet potato relay intercropping system along with5:0:5could increase enzymes activity involved in N metabolism and nitrogen use efficiency.
     Forward nitrogen application would decrease the accumulation of nitrate nitrogen in soil under two systems was mainly due to less fertilizer requirement for maize in the early growing stage, most nitrogen lost caused by leaching which along with the way water flew to below60cm and denitrification, causing a great loss of nitrogen. The accumulation of nitrate nitrogen increased significantly with the increasing of nitrogen application level, especially excessive high level with forward nitrogen applied was not good for improving the activities of nitrate reductase (NR), glutamine synthetase(GS) and sucrose phosphate synthetase(SPS) during the later period of maize growth, and would reduce nitrogen use efficiency
引文
[1]李增嘉,李凤超,赵秉强等.小麦玉米与间套作种植模式的产量效应及资源利用[M].中国农作制度研究进展,中国农业出版社,1997,167-171
    [2]赵秉强,张福锁.中国的粮食安全与超高产研究战略[J].山东农业大学学报(社会科学版)2000,3:18-26
    [3]逢焕成,陈阜.黄淮平原不同多熟模式生产力特征与资源利用效率研究[J].自然资源学报,1998,13(3):198-205
    [4]Wolley J. N., Lepiz J. R., and Voss J. Bean cropping systems in the tropics and subtropicsand their determinants. In:A. Van Schnoonhoven and O. Voysest (editors) CAB International CIAT, Wallingford, UK.1991,679-706
    [5]Davis J. H. C. and Wolley J. N. Genotypic requirement for intercropping. Field Crops Research. 1993,34:407-430
    [6]Rees D. J. Crop growth, development and yield in semi-arid conditions in Botswana. II.The effects of intercropping sorghum bicolor with vigna unguiculata. Exp. Agric.1986,22:169-177
    [6]Fageria N. K. Maximizing crop yields. New York:Marcel Dekker, Inc.81-104
    [8]刘巽浩主编.农作学.北京:中国农业大学出版社,2005,175
    [9]吴永常.中国耕作制度15年演变规律研究.[博士学位论文].北京,中国农业大学,2002
    [10]吕飞杰.中国农业科学技术展望[J].中国农业科学.1997.30(1):1-6
    [11]佟屏亚.我国耕作栽培技术成就和发展趋势[J].耕作与栽培,1994,65(4):1-5,20
    [12]Allen J. R. and Obura K. Yield of corn, cowpea and soybean under different intercropping systems. Agronomy.1983,64:409-412
    [13]Herbert S. J., Putnam S. H. and Poos-Flod N. M. Forage yield of intercropped corn and soybean in various planting patterns, Agro J.1984,76:507-510
    [14]Shackle K. A. and Hall A. E. Effect of intercropping on the water relations of sorghum and cowpea. Field Crops Res.,1884,8:381-387
    [15]Putnam D. H., Herbert S. J. and Vargas. Intercropped corn-soybean density studies:yield complementarity. Exp. Agro.1985,21:41-51
    [16]Fransis C. A. Multiple cropping system. New York:Macmillan Publishing Company. Inc.1986.
    [17]Fukai S. and Trenbath B. R. Processes determining intercrop productivity and yields of component crops. Field Crops Reseach.1993,34:247-271
    [18]杨文钰,雍太文,任万军等,发展套作大豆,振兴大豆产业.大豆科学,2008,27(1):1-7
    [19]王小春,杨文钰,雍太文等,西南丘陵旱地农作制现状及旱地新三熟“玉/豆”发展优势分析,安徽农业科学,2009,37(9):3962-3963,3982
    [20]李新平,黄进勇.黄淮海平原麦玉玉三熟高效种植模式复合群体生态效应研究.植物生态学报.2001,25(4):476-482
    [21]李凤超,李增嘉等.种植制度的理论与实践,中国北京,中国农业出版社,1995
    [22]陈阜,逢焕成.冬小麦/春玉米/夏玉米间套作复合群体的高产机理探讨.中国农业大学学报,2000,5(5):12-16
    [23]成升魁.中国北方麦田多熟种植系统闽限与潜力及其理论研究.[博士学位论文].北京,北京农业大学,1990
    [24]隋鹏,陈阜,高旺盛.海河低平原区小麦玉米套种高产技术研究[J].作物杂志,2000(2):10-11
    [25]樊廷录,王勇,宋尚有.陇东旱塬玉米根际供水效益及小麦套种玉米增产机理.西北农业学报.1997,6(1):18-21
    [26]李隆,杨思存,孙建好等.小麦/大豆间作中作物种间的竞争作用和促进作用.应用生态学报,1999,10(2):197-200
    [27]肖焱波,李隆,张福锁.小麦/蚕豆间作体系中的种间相互作用及氮转移研究.中国农业科学,2005,38(5):965-973
    [28]Elmore R.W and J.A.Jaekobs.Yield and nitrogen yield of sorghum intercropped wheat and clover. Tropical agriculture,1986,72(2):170-172
    [29]褚贵新,沈其荣,李奕林等.用15N叶片标记法研究旱作水稻/花生间作系统中氮素的双向转移.生态学报,2004,24(2):278-284
    [30]Oljaca S,Cvetkovic R,Kovacevic D.Vasic G and Momirovie N.Effeet of Plant arrangement Pattern and irrigation on efficiency of maize(Zeamays) and bean(Phaeolus vulgaris)intercropping system.Journal of Agrieultural Scienee,2000,135:261-270
    [31]李少明,赵平,范茂攀等.玉米大豆间作条件下氮素养分吸收利用研究.云南农业大学学报,2004,19(5):527-574
    [32]肖焱波,李隆,张福锁.豆科//禾本科间作系统中氮营养研究进展.中国农业科技导报.2003,5(6):44-49
    [33]雍太文.“麦/玉/豆”套作体系的氮素吸收利用特性及根际微生态效应研究.[博士学位论文].四川.四川农业大学,2009
    [34]Mekibben G E.Double cropping.In Proceeding National Conference on No-tillage Crop Production[M].Lexington:Kenrucky Univ,1970
    [35]GaliaherR N.All out feed produetion by multiple cropping. Multiple Cropping Proceeding feeds and feeding research.Bulletin Georgia Exp Sta,1975,129-136
    [36]叶优良.间作对氮素和水分利用的影响.[博士学位论文],北京,中国农业大学,2003
    [37]Jagannathan N.T., Morachan Y.B., and Ramiah S., Studies on the effect of maize and soybean association in different proportion on yield and grain.Madras Agricultural Journal,1994,66:719-721
    [38]Martin R.C., Astatkie T., Cooper J.M., The effect of Bradyrhizobium strains on monocropped and intercropped soybean (Glycine max L.Merr.) biomass and protein. Journal of Agronomy and Crop Science.1998,181(1):1-6
    [39]Carr P.M., Martin G.B., Caton J.S., et al., Forage and nitrogen yield of barley-pea and oat-pea intercrops.Agronomy Journal.1998,90(1):79-84
    [40]Bakhri S., Hardjosowignjo S., Rumawas F., Karama A.S., ntercropping between upland rice and stylo (Stylosanthes guyanensis Abul) to produce forage.Agrikam (Indonesia).1997,9(2):23-32
    [41]Kingsley K., Ayisi, Daniel H., Putnam, Carroll P. et al, Strip Intercropping and Nitrogen Effects on Seed, Oil, and Protein Yields of Canola and Soybean.Agronomy Journal.1997,89:23-29
    [42]Vandermeer J.H., The Ecology of Intercropping [M].New York USA:Cambridge University Press,1989.
    [43]李隆,杨思存,孙建好等.小麦/大豆间作中作物种间的竞争作用和促进作用.应用生态学报,1999,10(2):197-200
    [44]肖焱波,李隆,张福锁.小麦/蚕豆间作体系中的种间相互作用及氮转移研究.中国农业科学,2005,38(5):965-973
    [45]肖焱波.豆科/禾本科间作体系中养分竞争和氮素转移研究.[博十学位论文].北京,中国农业大学.2003
    [46]肖焱波,李隆,张福锁.两种间作体系中养分竞争与营养促进作用研究.中国生态农业学报,2004,1 2(4):86-89
    [47]肖焱波,段宗颜,金航等.小麦/蚕豆间作体系中的氮节约效应及产量优势.植物营养与肥料学报,2007,13(2):267-271
    [48]Jensen E. S. Rhizo deposition of N by pea and barley and its effects on soil N dynamics. Soil Biol. Biochem.,1996a,28:65-71
    [49]Jensen E. S.. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil,1996b,182:25-38.
    [50]Haugaard-NielsenH, AmbuspandJensen E S.Interspecific competition, N use and interference with weeds in pe-barley intercropping.Field Crop Research,2001,70:101-109
    [51]畲丽娜,郑毅,朱有勇.小麦蚕豆间作中作物对氮的吸收利用.云南农业大学学报,2003,18(3):256-258
    [52]畲丽娜.大豆-玉米轮间作系统中的根系相互作用和营养效应.[博士学位论文],广州.华南农业大学.2006
    [53]Eaglesham,Ayanaba A,Rao V R and Eskew D L.Short communication improving the nitrogen nutrition of maize by intereropping with cowpea, Soil Biology Biochem,1981,13:169-171.
    [54]Stern W.R.,. Nitrogen fixation and transfer in intercrop system.Field Crops Research.1993,34: 335-356.
    [55]朱树秀.玉米单作及与大豆混作中氮来源的研究[J].西北农业学报,1994.3(1):59-61
    [56]Vallis I., K. P. Haydock, P. J. Ross and E. F. Henzell. Isotopic studies on the uptake of nitrogen by pasture plants. III. The uptake of small additions of 15N-labelled fertilizer by Rhodes grass and Townsvill lucerne. Aust. J. Agric.Res.,1967,18:865-877
    [57]Elgersma A. H. Schleppers and M. Nassiri. Interactions between perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) under contrasting nitrogen availability productivity, seasonal patterns of species composition, N2 fixation, N transfer and N recovery. Plant Soil,2000,221:281-299
    [58]Van Kessel C., P. W. Singleton and H. J. Hoben. Enhanced N-transfer from a soybean to maize by vesicular arbuscular mycorrhizal fungi. Plant Physiol.,1985,79:562-582.
    [59]Ledgard S. F., J. R. Freney and J. R. Simpson. Assessing nitrogen transfer from legumes to associated grass. Soil Biol. Biochem.,1985,17:575-577
    [60]朱树秀.季良.阿米娜.玉米单作及与大豆混作中氮来源的研究[J]西北农业学报,1994b,3(1):59-61
    [61]Giller K. E., J. Ormesher and F. M. Awah. Transfer of Nitrogen from Phaseolus bean to intercropped maize measured using 15N-enriched and 15N-isotope dilution methods. Soil Biol. Biochem.1991,23:339-346
    [62]金绍龄,李隆,张丽慧等.小麦/玉米带田作物氮营养特点.西北农业大学学报,1996,24(5):35-41
    [63]李文学,孙建好,李隆等.不同施肥处理与间作形式对带田中玉米产量及氮营养状况的影响.中国农业科技导报,2001,3(3):36-39
    [64]李文学.小麦/玉米/蚕豆间作系统中氮、磷吸收利用特点及其环境效应.[博士学位论文],北京,中国农业大学,2001
    [65]褚贵新,沈其荣,李奕林等.用15N叶片标记法研究旱作水稻/花生间作系统中氮素的双向转移.生态学报,2004,24(2):278-284
    [66]褚贵新.旱作水稻/花生间作系统的氮素供应特征及产量优势.[博十学位论文],北京,中国农业大学,2003
    [67]曹鸿鸣,贺明荣,王明友等.麦棉套作条件下棉麦对氮素吸收规律的研究[J].核农学报,1996,10(2):104-108
    [68]Morris R A, Garrity D.P., Resoure capture and utilization in intercropping:non-nitrogen nutrients [J]. Field Crop Research.1993,34:319-334
    [69]Gardner W. K. and K. A. Boundy. The acquisition of phosphorus by Lupinus albus L. IV.The effects of interplanting wheat and white lupin on the growth and mineral composition of the two species. Plant Soil,1983,70:391-402
    [70]Horst W. J. and C. Waschkies. Phosphorus nutrition of spring wheat (Triticum aestivum L.) in mixed culture with white lupin (Lupinus albus L.). Z. P flanzenernaehr. Bodenkd.,1987,150:1-8
    [71]Ae N., J. Arihara, K. Okada, T. Yoshihara and C. Johansen. Phosphorus uptake by pigeon pea and its role in cropping systems of Indian subcontinent. Science,1990.248:477-480
    [72]Li L., F. S. Zhang, X. L. Li, P. Christie, J. H. Sun, S. C. Yang and C. X. Tang.Interspecific facilitation of nutrient uptake by intercropped maize and fababean. Nutr.Cycl. Agroecosys.,2003,65: 61-71
    [73]Tang C., C. D. A. Mclay and L. Barton. A comparison of proton excretion of twelve pasture legumes grown in nutrient solution. Aust. J. Exp. Agric.,1997,37:563-570
    [74]Boucher D. H. and J. Epsinosa. Cropping system and growth and nodulation responses of beans to nitrogen in Tabasco, Mexico. Trop. Agric. (Trinidad).1982,59:279-282
    [75]Stern W.R., Nitrogen fixation and transfer in intercrop system[J].Field Crops Research.1993,34:335-356.
    [76]Sangakkara R. Growth, yield and nodule activity of mungbean intercropped with maize and cassava. J. Sci. Food Agric.,1994,66:417-421
    [77]Tang C, C. D. A. Mclay and L. Barton. A comparison of proton excretion of twelve pasture legumes grown in nutrient solution. Aust. J. Exp. Agric.,1997,37:563-570
    [78]Mason, S.C., Leihner, D.E. and Vorst, J.J., Cassava-cowpea and cassava-peanut intercropping.I. Yield and land use efficiency.Agron.J.,1986,78:43-46
    [79]Hardter and Horst R. and W. J. Horst. Nitrogen and phosphorus use in maize sole cropping and maize/cowpea mix cropping systems on an alfisol in the northern Guinea savanna of Ghana. Biol. Fertil. Soil,1991,10:267-275
    [80]Chowdhury M. K. and Rosario E. L. Phosphorus utilization efficiency as affected by component population, rhizobial inoculation and applied nitrogen in maize/mungbean intercropping. Exp. Agric, 1992,28:255-263
    [81]Ashokan P.K., Wahid P.A. and Sreedharan C., Relative uptake of 32Pb cassava. Banana. Elephant foot yam and groundnut in intercropping system.Plant and Soil.1988,109:23-30
    [82]杨雪梅.间作作物的磷营养促进作用机理研究.[硕十论文],陕西,西北农林科技大学,2000
    [83]Barber S.A., Soil Nutrient Bioavailability-A mechanistic approach [J].New York.John Wiley & Sons 1984,.inc:89-237
    [84]Morris RA,Garrity DP.Resource Capture and utilization in intercropping:water.Field Crop Research,1993,34:303-317.
    [85]Morris RA,Garrity DP.Resoure capture and utilization in intercropping.non-nitrogen nutrients.Field Crop Research,1993,34:319-334.
    [86]张训忠,李伯航.高肥力条件下夏玉米大豆间混作互补与竞争效应研究.中国农业科学,1987,20:34-42
    [87]宿庆瑞.东北玉米主产区玉米/草木樨间种轮作农牧结合综合效益的研究[J].中国草地,1998,4:17-20
    [88]Ranells N and Wagger M G.Nitrogen-15 reeovery and release by rye and crimson clover cover crop.Soil Science.Society of American Journal,1997,61:943-948
    [89]Ikerra S T,Maghembe J A,Smithson P C and Buresh R J.Soil nitrogen dynamics and relationships with maize yields in a gliricidia-maize intercrop in Malawi.Plant and Soil,1999,211:155-164
    [90]孟亚利,王立国,周治国等.麦棉两熟复合根系群体对棉花根际非根际土壤酶活性和土壤养分的影响.中国农业科学,2005,38(5):904-910
    [91]孟亚利,王立国,周治国等.套作棉根际与非根际土壤酶活性和养分的变化[J].应用生态学报,2005,16(11):2076-2080
    [92]王瑛,孟亚利,陈兵林等.麦棉套作棉花根际非根际土壤微生物和土壤养分.生态学报,2006,26(10):3485-3490
    [93]郝艳茹.小麦、玉米间套复合群体的营养效应及超高产特性研究.[硕十学位论文].山东,山东农业大学,2002
    [94]高爱霞.玉米/花生间作对作物生长及根区土壤微生态效应的影响.[硕十学位论文].广东,华南农业大学,2005
    [95]崔云玲,郭天文,郭永杰.氮磷营养对高寒阴湿区春玉米产量及品质的影响[J],西北农业学报.2009,18(6):134-137
    [96]郭中义,孟祥锋,张明.施用氮磷钾肥对夏玉米产量和品质的影响[J],土壤肥料.2004(1):25-27
    [97]王春虎,陈十林,董娜.华北平原不同施氮量对玉米产量和品质的影响研究[J],玉米科学.2009,17(1):128-131
    [98]杨荣,黄高宝,陈其鲜.施氮量对陇东早地玉米产量与品质的影响研究[J],甘肃农业科技.2006(2):9-11
    [99]杨德光,牛海燕,张洪旭.氮胁迫和非胁迫对春玉米产量和品质的影响[J],玉米科学.2008,16(4):55-57,60
    [100]郑若良,宋志荣.施肥对玉米产量及品质的影响研究[J],杂粮作物.2003,23(4):239-241
    [101]李建奇,黄高宝,牛俊义.氮磷营养对覆膜春玉米产量和品质的影响[J],干旱地区农业研究.2005,23(5):62-66
    [102]董煚,王雁敏.西北半干旱地区氮磷配施对春玉米品质的影响[J],甘肃农业科技.2009(7):33-37
    [103]金继运,何萍,刘海龙.氮肥用量对高淀粉玉米和普通玉米吸氮特性及产量和品质的影响[J],植物营养与肥料学报,2004,10(6):568-573
    [104]耿玉翠,范树仁.玉米氮肥适宜追施期研究[J].山西农业科学,1999,27(1):28-31
    [105]孙月轩等.氮肥运筹比例对夏玉米群体质量及产量的影响[J].耕作与栽培,1994,(3):29-31
    [106]邱容生.氮肥运筹对“二早一水”玉米群体质量的影响[J].玉米科学,1996,4(2):53-57
    [107]陆卫平,蔡志飞,赵祥祥.不同时期施用氮肥对苏玉糯1号产量形成的作用[J].扬州大学学报(自然科学版),1999,2(3):46-50
    [108]王启现,王璞,王伟东.吐丝期施氮对夏玉米粒重和籽粒粗蛋白的影响[J].中国农业大学学报2002,7(1):59-64
    [109]李潮海,刘奎,周苏玫.不同施肥条件下夏玉米光合对生理生态因子的响应[J].作物学报.2002,28(2):265-269
    [110]曹承富,汗芝寿等.氮肥运筹对夏玉米产量与灌浆的影响[J].安徽农业科学,1993,21 (3):236-240.
    [111]刘克礼.春玉米籽粒干物质积累的数量分析.华北农学报[J],1994,9(4):7-22.
    [112]李青军,张炎,胡伟.氮素运筹对玉米干物质积累、氮素吸收分配及产量的影响[J].植物营养与肥料学报.2011,17(3):755-760
    [113]张瑞富,杨恒山,毕文波.超高产栽培下氮肥运筹对春玉米干物质积累及转运的影响[J].作物杂志.2011(2):41-45
    [114]张家铜,彭正萍,李婷等.不同供氮水平对玉米体内干物质和氮动态积累与分配的影响[J].河北农业大学学报,2009,02:1-5
    [115]杨国航,崔彦宏,刘树欣.供氮时期对玉米干物质积累、分配和转移的影响[J].玉米科学,2004,12(专刊):104-106
    [116]马国胜,薛吉全,张仁和.氮肥运筹对粮饲兼用玉米群体质量与产量的影响[J].草业科学.2006,23(10):63-67
    [117]张石宝.冬玉米对氮肥的吸收利用和需求[J].广西植物,2002,22(3):273-276
    [118]何萍.氮肥用量对春玉米叶片衰老的影响及其机理研究[J].中国农业科学,1998,31(3):66-71
    [119]朱青,陈正刚,李剑.氮肥对不同产量水平的玉米茎叶含氮量的影响[J].西南农业学报,2009,22(5):1367-1369
    [120]易镇邪,王璞,申丽霞,等.不同类型氮肥对夏玉米氮素累积、转运与氮肥利用的影响[J].作物学报,2006,32(5):772-778
    [121]Russelle M P.Nitrogen aeeumulation rate of iarrgated Maize[J].Agro.J.1983,75:593-598
    [122]Jung.P E,Respones of irrigabed corn to time,rate,and source of applied N on sandy sonly[J]. Agron.J,1972,64:668-670
    [123]Pumphrey FV.Niotrgen fertilizer for corn production on an irrigabed chesnut soil [J].Agron.J.1956,48:207-212
    [124]申丽霞,王璞,兰林旺.施氮对夏玉米碳氮代谢及穗粒形成的影响[J].植物营养与肥料学报2007,13(6):1074-1079
    [125]王利纳,陶洪斌,戴明宏.包膜尿素对夏玉米产量及碳氮代谢的影响[J].玉米科学,2009,17(2):124-129
    [126]赵宏伟,马凤鸣,李文华.氮肥施用量对春玉米硝酸还原酶活性及产量的影响[J].东北农业大学学报,2004,25(3):276-281
    [127]于秋竹,孔宇,杨亮等.不同氮素用量对三个饲用玉米品种蛋白质积累与分配的影响.作物杂志.2009,2:82-85
    [128]金继运,何萍.氮钾营养对春玉米后期碳氮代谢与粒重形成的影响[J].中国农业科学,1999,32(4):55-62
    [129]郭胜利,张文菊,党廷辉等.干旱半干旱地区农田土壤N03-N深层积累及其影响因素[J].地球科学进展,2003,18(4):37-43
    [130]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6
    [131]党廷辉,蔡贵信,郭胜利等.用15N标记肥料研究早地冬小麦氮肥利用率与去向[J].核农学报,2003,17(4):280-285
    [132]Jaynes DB,Dinnes DL,Meek DW,etal.Using the late spring nitrate test to reduce nitrate loss within a watershed[J].Journal of Environmental Quality,2004,33(2):669-677
    [133]Spalding RF,Exner ME.Occurrence of nitrate in groundwater:A review[J] Journal of Environmental Quality,1993,22(3):392-402
    [135]Benbi DK,Biswas CR,K.alkat JS.Nitrate distribution and aeeumulation in an Ustochrept soil Profile in a long term fertilizer experiment[J].FertilizersResear 1991,28(2):173-177
    [136]Hooker ML GRE,Herron GM,Gallagher P.Effects of long-term,annual application of N and P on corn grain yields and soil chemical properties[J].Agronomy Journal 1983,75:94-99
    [137]Jolley VD,Pierre WH.Profile accumulation of fertilizer-derived nitrate and total nitrogen recovery in two long-term nitrogen-rate experiments with corn[J].soil Science Soeiety of America Journal,1977,41(2):373-378
    [138]石玉,于振文.施氮量及底追比例对小麦产量、土壤硝态氮含量和氮平衡的影[J].生态学报,2006,26(11):3661-3669
    [139]王春阳,周建斌,郑险峰等.不同栽培模式对小麦-玉米轮作体系土壤硝态残留的影响[J].植物营养与肥料学报,2007,13(6):991-997
    [140]张国梁,章中.农田氮素淋失研究进展[J].土壤.1995,(6):291-297
    [141]Raun WR,Johnson GV.Soil-Plant buffering of inorganic nitrogen in continuous winter-wheat[J].Agronomy Journal,1995,87(5):827-834
    [142]郭胜利,党廷辉,郝明德.施肥对半干旱地区小麦产量、N03-N累积和水分平衡的影响[J].中国农业科学,2005,38(4):754-760
    [143]孙克刚,李锦辉,姚健等.不同施肥处理对作物产量及土体N03-N累积的长期定位试验[J].土壤肥料,1999,(6):18-20
    [144]Fan J,Hao MD,Shao MA.Nitrate accumulation in soil Profile of dry land farming in northwest China[J].Pedosphere,2003,13(4):367-374
    [145]樊军,郝明德.旱地农田土壤剖面硝态氮累积的原因初探[J].农业环境科学学报,2003,22(3):8-11
    [146]Bergstom L,Brink N.Effects of differentiated applications of fertilizer N on leaching losses and distribution of inorganic N in the soil[J].Plant and soil,1986,93:333-345
    [147]Addiscott TM,Powlson DS.Partioning losses of nitrogen fertilizer between leaching and denitrification[J].Jourualof Agricultural Science,1992,118:101-107
    [148]Powlson DS,Pruden G,Johnston AE,etal.The nitrogen cycle in the broadbalk wheat experiment:recovery and losses of 15N-labelled fertilizer applied in spring and inputs of nitrogen from the atmosphere[J].Journal of Agricultural Seience,1986,107:591-609
    [149]Halvorson AD,Reule CA.Nitrogen-fertilizer requirements in an annual dryland cropping system[J].Agronomy Journal,1994,86(2):315-318
    [150]Westerman RL,Boman RK,Raun WR,et al.Ammonium and nitrate nitrogen in soil Profiles of long-term winter wheat fertilization experiments[J].Agronomy Journal,1994,86(1):94-99
    [151]杨学云,张树兰,袁新民等.长期施肥对埋土硝态氮分布、累积和移动的影响[J].植物营养与肥料学报,2001,7(2):134-135
    [152]杨莉琳,胡春胜.施肥对华北高产区土壤No3-N淋失与作物No3-N含量及产量的影响[J].应用与环境生态学报,2003,9(5):501-505
    [153]李晓欣,胡春胜,程一松.不同施肥处理对作物产量及土壤中硝态氮累积的影响[J].干旱地区农业研究,2003,(3):35-42
    [154]范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响[J].植物营养与肥料学报,1998,4(1):16-21
    [155]Magdoff F.Minimizing nitrate leaching in agricultural Produetion-how good can weget[J].Communications in soil Seience and Plant Analysis,1992,23(17-20):2103-2109
    [156]向敏超,毛端明.15N研究新疆灌淤上-冬小麦系统中尿素氮的利用和去向[J].土壤肥料,1994,(4):18-21
    [157]王小彬,Bailey LD,Grant CA保持耕作土壤体系中肥料氮的行为及氮的有效管理的探讨[J].土壤学进展,1995,23(2):1-11
    [158]杨林,薛栋森,Heliry CL等.生物固体对土壤氮循环和硝态氮淋洗的影响[J].农业环境保护,1997,16(4):182-156
    [159]袁锋明,陈子明,姚造华等.北京地区潮土表层中N03-N的转化积累及其淋洗损失[J].土壤学报,1995,32(4):355-399
    [160]许学前,吴敬民.小麦氮肥的有效利用和对水体环境污染的影响[J].土壤通报,1999,30(6):268-270
    [161]杜建军,李生秀,李世清等.不同肥水条件对旱地上壤供氮能力的影响[J].西北农业大学学报,1995,(6):1-5
    [162]曹国军,刘宁,李刚等.超高产春玉米氮磷钾的吸收与分配[J].水十保持学报,2008,22(2):198-201.
    [163]郑伟,何萍,高强等.施氮对不同土壤肥力玉米氮素吸收和利用的影响[J],植物营养与肥料学报,2011,17(2):301-309
    [164]石玉海,许东恒,王立春.吉林省不同肥力黑土玉米平衡施肥研究[J].玉米科学2010,18(5):108-113.
    [165]张铭,蒋达,缪瑞林等.不同土壤肥力条件下施氮量对稻茬小麦氮素吸收利用及产量的影响[J],麦类作物学报2010,30(1):135-140.
    [166]吴正锋,王空军,董树亭等.高油玉米籽粒灌浆期间氮素的吸收和分配[J].中国农业科 学,2005,38(4):697-702
    [167]永春雨,刘晓冰.三种特用玉米的氮素积累与利用率特点[J].农业系统科学与综合研究,2002,18(2):100-103
    [168]徐祥玉,张敏敏,翟丙年等.不同夏玉米品种生育后期干物质及氮素积累分配的研究[学位论文].西北农林科技大学,2006,26(4):772-777
    [169]Willey R W and Osiru D S O.Studies on mixtures of maize and bean with particular reference to plant population.Journal of Agriculture Science,1972,79:517-529
    [170]李隆.间作作物种间促进与竞争作用研究.[博士论文],北京:中国农业大学,1999
    [171]Morris RA, Garrity DP. Resource Capture and utilization in intercropping:water. Field Crop Research,1993,34:303-317
    [172]Morris RA, Garrity DP. Resource Capture and utilization in intercropping::non-nitrogen nutrients. Field Crop Research,1993,34:319-334
    [173]姜子绍,宇万太.农田生态系统中钾循环研究进展[J],应用生态学报,2006.17(3):545-550
    [174]李秋梅,陈新平,张福锁等.冬小麦-夏玉米轮作体系中磷钾平衡的研究[J],植物营养与肥料学报,2002,8(2):152-156
    [175]李潮海,王群,梅沛沛等.不同质地土壤上玉米养分吸收和分配特征[J],植物营养与肥料学报,2007,13(4):561-568
    [176]高聚林,王志刚,孙继颖等.青贮玉米对氮磷钾的吸收规律[J],作物学报,2006,32(3):363-368
    [177]汤秋香,翟丽梅,雷宝坤等.洱海流域北部农田养分平衡及残留特性研究[J].农业环境科学学报.2010,29(1):2167-2170
    [178]刘伟,张吉旺,李鹏等.种植密度对高产夏玉米登海661产量及干物质积累与分配的影响[J].作物学报.2011,37(7):1301-1307
    [179]易镇邪,王璞,张红芳等.氮肥类型与施用量对华北平原夏玉米源库关系的影响[J].植物营养与肥料学报.2006,12(3):294-300
    [180]吕鹏,张吉旺,刘伟等.施氮量对超高产夏玉米产量及氮素吸收利用的影响[J].植物营养与肥料学报.2011,17(4):852-860
    [181]霍中洋,葛鑫,张洪程等.施氮方式对不同专用小麦氮素吸收及氮肥利用率的影响[J].作物学报,2004,30(5):449-454.
    [182]石玉,于振文,王东等.施氮量和底追比例对小麦氮素吸收转运及产量的影响[J].作物学报,2006,32(12):1860-1866.
    [183]Cerrato M E, Blackmer A M. Comparison of models for describing corn yield response to nitrogen fertilizer[J].Agron.J.1990,82:138-143.
    [184]Osaki M, Iyoda M, TadanoT. Ontogenetic changes in the contents of ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruv ate carboxylase, and chlorophykll in individual leaves ofmaize [J]. Soil Sci PlantNutr.,1995,41(2):285-293.
    [185]江立庚,曹卫星,甘秀琴等.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响[J].中国农业科学,2004,37(4):490-496.
    [186]OsakiM, Shinano T, Tadano T. Redistribution of carbon and nitrogen compounds from the shoot to the harvesting organs during maturation in field crops [J]. Soil Sc.i PlantNutr.,1991,37(1): 117-128.
    [187]OsakiM, Morikawa K, Shinano T, Tadano T. Productivity of high-yielding cropsO. Comparison ofN, P, K, Ca andMg accumulation and distribution among high-yielding crops [J]. Soil Sc.i PlantNutr.,1991,37(3):445-454.
    [188]王小春,杨文钰,任万军等.小麦/玉米/大豆和小麦/玉米/甘薯套作体系中玉米产量及养分吸收的差异[J].植物营养与肥料学报,2012,18(4):803-812.
    [189]JingQ, Boumanb B AM, HengsdijkHet al. Exploring options to combine high yieldswith high nitrogen use efficiencies in irr-igated rice in China[J]. Eur. J. Agron.,2007,26:166-177.
    [190]JuX T, LiuX J, Pan JRetal. Fate of 15N-labeled urea undera winter-summermaize rotation on the northChina plain[J]. Pedo-sphere,2007,17(1):52-61.
    [191]中丽霞,王璞.不同氮肥运筹方式对夏玉米产量和氮素利用的影响[J].山西农业科学2009,37(2):36-39
    [192]赵营,同延安,赵护兵.不同施氮量对夏玉米产量、氮肥利用率及氮平衡的影响[J].植物营养与肥料学报,2006,12(5):622-627
    [193]宋海星,李生秀.玉米生长量、养分吸收量及氮肥利用率的动态变化[J].中国农业科学,2003,36(1):71-76
    [194]傅应春,陈国平.夏玉米需肥规律的研究[J].作物学报,1982,8(1):1-8
    [195]王宜伦,李潮海,谭金芳等.氮肥后移对超高产夏玉米产量及氮素吸收和利用的影响[J],作物学报,2011,37(2):339-347
    [196]吴迪,黄绍文,金继运.氮肥运筹、配施有机肥和坐水种对春玉米产量与养分吸收转运的影响[J].植物营养与肥料学报,2009,15(2):317-326
    [197]郭李萍,王兴仁,张福锁等.不同年份施肥对作物增产效应及肥料利用率的影响[J].中国农业气象,1999,20(4):20-23.
    [198]吕殿青,同延安,孙本华等.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报,1998,4(1):8-150.
    [199]李世清,李生秀.半干旱农田生态系统的硝酸盐淋溶损失[J].应用生态学报,2000,11(2):240-242.
    [200]A. R. Mosier, Zhu Z L. Changes in patterns of fertilizer nitrogenuse in Asia and its consequences for N2O emissions from agricultural systems [J]. Nutr. Cyc. in Agroecosystems,2000, 57:107-117.
    [201]巨晓棠,刘学军,王朝晖等.冬小麦厦玉米轮作体系中的氮素损失途径分析[J].中国农业科学,2002,35(12):1493-1499.
    [202]Van der Ploeg R R, Ringe H, Machulla G,et al. Postwar nitro-gen yse efficiency in West Germany agriculture and groundwater quality [J]. J. Environ. Qual.,1997,26 (6):1203-1212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700