用户名: 密码: 验证码:
宁夏中部干旱区砂石覆盖对土壤水热特性及西瓜生长发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砂田是分布在中国西北干旱半干旱地区具有综合效能的早作覆盖技术,具有明显改良和调节农田小环境的功效,通过砂石覆盖可起到调温、蓄水、保墒的效果。近年来宁夏砂田产业快速发展,已经成为当地的支柱产业。宁夏砂田种植的主要作物是西瓜,主产区位于宁夏中部干旱带环香山地区:香山地区是一个干旱少雨的区域,水分是本区域农业生产的主要限制性因子,由于水热同季,降雨集中于暖季,能为作物的正常生长发育提供了保障,有利于作物生长,能够使有限的降水得以充分利用。本试验于2010-2011年在宁夏中部干旱带砂田西瓜主产区以未铺设砂石的农田(CK)为对照,对砂石覆盖下的农田(GM)特性、土壤微生物区系及酶活性及其对西瓜生长发育的影响进行了研究。
     主要研究结果及结论如下:
     1.土壤入渗速率与降水强度之间存在极显著线性相关关系。土壤含水量在全生育期的各层次上,砂石覆盖的农田土壤含水量均高于对照(GM比CK平均高27.05%)。主要在于砂石覆盖的农田较未覆盖农田能更好的接纳雨水,作物生育期内砂石覆盖可明显减少土壤蒸发(GM比CK低57.69%),有明显的保墒、抗旱效果,覆盖改变了作物耗水模式,即减少前期蒸发,增加后期蒸腾;砂田根系层土壤含水量在各阶段分别为田间持水量的52.08%、78.93%、76.96%、72.63%和79.42%,CK分别为49.23%、58.06%、69.93%、66.26%和57.47%,GM处理土壤水分的范围与西瓜生长需求(60%-80%)非常吻合,而CK则低于西瓜的最低需求。
     2.砂石层的热传导率为λ=0.8435J·m-1·S-1.K-1,热导率的大小受到孔隙度与湿度的影响。砂田中因有砂石的镇压作用,增加了表层土壤容重(CK:1.38g/cm3,GM:1.51g/cm3),减小土壤孔隙(CK:47.6%,GM:39.3%),当表层土壤水分时候增加时,容积热容和热导率也随之增加;由于砂田特有的减蒸效应,砂田中的土壤含水量也高于裸地,具有较高的热容(CK:0.9492×106J·m-3·K-1,GM:1.1689×106J·m-3·K-1)和热导率(CK:0.8921J·m-1·S-1·K-1,GM:1.3008J·m-1·S-1·K-1),因此砂石覆盖具有显著的调温效果,在低温时有明显的“增温效应”,而高温时又有“降温效应”,这种效应既可防止高温或者低温对植物根系造成的伤害,还可以有效缓解土壤温度剧变(0-10cm土层日较差平均CK:14.46℃,GM:5.42℃)给作物根系带来的不利影响,有利于作物生长发育。
     3.砂石覆盖能明显增加土壤微生物数量,尤其是0-20cm土层。由于砂田覆盖处理的细菌、放线菌数量倍增导致其微生物类型间的数量差距过大,导致个体比例下降,均匀度降低。土壤温度和水分的改善对三种土壤酶活性都有积极的影响,但由于砂田处理温度大都低于对照,因此可以判定是水分条件的的显著改善影响到酶活性。
     4.砂田西瓜出苗快而齐,茎、叶片充分发育,有利于果实膨大,获得高产,植株叶片叶绿素含量高,光合速率高,开花坐果期光合速率主要受气孔因素影响,最大光化学效率、PS Ⅱ潜在活性、光合性能指数高,而热耗散量子比率低,说明砂田的特殊构造有利于西瓜的生长发育。
     另外,针对砂田中存在的一些问题进行了探讨,通过合理的轮作、间作或者机械耕作可以适当缓解随着种植年限的延长及西瓜连作带来的障碍造成的产量和品质的降低。
The gravel-sand mulched field as a dry farming covering technology has the comprehensive benefits. It can improve the microclimate significantly by adjusting the temperature, retaining water and preserving soil moisture in dry and semiarid region of northwest China. The gravel-sand mulched field watermelon industry has become the pillar industry in Ningxia. As a major crop, the main watermelon producing regions of the gravel-sand mulched field locates in the XiangShan mountain arid zone of central Ningxia. Water is the major restriction factor for the agricultural production in this region. Characteristics of soil hydro-thermal property and its effect on watermelon growth on gravel-sand mulching were studied for the year2010and2011in the main watermelon production region in arid zone of central Ningxia. In addition, soil microflora and enzyme activity were also analyzed.
     Main results and conclusions for this study are listed as follows:
     1. Significant correlations were observed between soil infiltration rate and precipitation intensity. Almost all soil moisture contents were higher than the control (GM was27.05%higher than CK). Gravel-sand absorbed rainwater better than CK and kept lower cropland water consumption and significantly reduced soil evaporation by57.69%. Crop water consumption pattern reduced early evaporation and increased late transpiration, which was changed by mulching. The soil water content in GM was52.08%,78.93%,76.96%,72.63%and79.42%of field moisture capacity respectively. That of CK was49.23%、58.06%、69.93%、66.26%and57.47%respectively. The soil water content of GM fell in the range of the watermelon growth requirement, i.e.60-80%, while CK was lower than the growth requirement.
     2. The thermal conductivity of gravel-sand was λ=0.8435J·m-1·S-1·K-1. The gravel sand was demonstrated to be a good thermal insulation material and its thermal conductivity was affected by porosity and humidity. Because of the suppression from gravel sand, the soil unit weight was increased (CK:1.38g/cm3, GM:1.51g/cm3) and soil porosity decreased (CK:47.6%, GM:39.3%). When the water content in surface soil increased, the volumetric heat capacity and heat conductivity increased. For the decreasing evaporation, the water content in sand soil was higher than bare land, and the heat capacity (CK:0.9492×106J·m-3·K-1,GM:1.1689×106J·m-3·K-1) and heat conductivity (CK:0.8921J·m-1·S-1·K-1, GM:1.3008J·m-1·S-1·K-1) were high. As such, Gravel-sand had significant effect of thermoregulation, improved the temperature in low temperature conditions and dropped the temperature in high temperature conditions. The above effect could not only prevent injuries caused by the high temperature of plant roots, but also alleviated soil temperature change and promoted crop growth and development. The daily temperature range in0-10cm soil layer in the growth period in2010was for14.46℃CK and5.42℃for GM.
     3. Amounts of soil microorganisms significantly increased on GM, especially within0-20cm soil layer. Evenness index decreased since the number of gaps was too large on several main microbes. Soil enzyme activity could improve significantly influenced by soil moisture and temperature, especially soil moisture.
     4. Watermelon on the gravel-sand mulched field of the speed of emergence was fast and the rate of emergence was high. Vines grew faster than CK, with promoted crop growth and development, enhanced disease resistance and increased yield. SPAD, Pn, Fv/Fm, Fv/Fo, PI on GM were higher than CK. Fo/Fm was lower than CK. Special characteristics on the gravel-sand mulched field was conducive to positively affected growth, yield and quality of watermelon.
     In addition, the existing problems in the gravel-sand mulched field were also discussed. Continuous cropping obstacles with prolonged planting affected the quantity and quality of watermelon, which could be removed through reasonable crop rotation and intercropping.
引文
[1]Aon M A, Cabello M N, Sarena D E, et al.. I. Spatio-temporal patterns of soil microbial and enzymatic activities in an agricultural soil[J]. Applied Soil Ecology,2001,18(3):239-254.
    [2]Benoit G R, Kirkham D. The effect of soil surface conditions on evaporation of soil water[J]. Soil Sci. Soc. Am,1963,27:495-498.
    [3]Brutsaert W, Parlange M B. Hydrologic cycle explains the evaporation paradox[J].,1998, 396(6706):30.
    [4]Campbell G S. Soil Physics with BASIC,14[M].,1985.
    [5]Cerda A. Effects of rock fragment cover on soil in filtration, interrill run off an derosion[J]. European Journal of Soil Science,2001, (52):59-68.
    [6]Chepil W S, Woodruff N P. The Physics of Wind Erosion and its Control[J].,1963, Volume 15:211-302.
    [7]Diaz F, Jimenez C C, Tejedor M. Influence of the thickness and grain size of tephra mulch on soil water evaporation[J]. Agricultural Water Management,2005,74(1):47-55.
    [8]Doolittle W E. Innovation and diffusion of sand-and gravel-mulch agriculture in the American southwest:A product of the eruption of Sunset Crater[J]. Quaternaire,1998,9(1):61-69.
    [9]Douglas E M, Vogel R M, Kroll C N. Trends in floods and low flows in the United States:impact of spatial correlation[J]. Journal of Hydrology,2000,240(1):90-105.
    [10]Epstein E, Grant W J, Struchtemeyer R A. Effects of stones on runoff, erosion, and soil moisture[J]. Soil Science Society of America Journal,1966,30(5):638-640.
    [11]Farquhar G D, Von C C, Berry J A. A biochemicalmodel of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta,1980,149:78-99.
    [12]Gan T Y. Hydroclimatic trends and possible climatic warming in the Canadian Prairies[J]. Water Resources Research,1998,34(11):3009-3015.
    [13]Groenevelt P H, van Straaten P, Rasiah V, et al.. Modifications in evaporation parameters by rock mulches[J]. Soil Technology,1989,2(3):279-285.
    [14]Jiang Y, Zhou C, Cheng W. Streamflow trends and hydrological response to climatic change in Tarim headwater basin[J]. Journal of Geographical Sciences,2007,17(1):51-61.
    [15]Kemper W D, Nicks A D, Corey A T. Accumulation of water in soils under gravel and sand mulches.[J]. Soil Science Society of America journal.,1994,58(1):56-63.
    [16]Li X Y. Gravel-sand mulch for soil and water conservation in the semiarid loess region of northwest China[J]. Catena,2003,52(2):105-127.
    [17]Li X Y. Effects of gravel and sand mulches on dew deposition in the semiarid region of China[J]. Journal of Hydrology,2002,260(1-4):151-160.
    [18]Li X Y, Gong J D, Wei X H. In-situ rainwater harvesting and gravel mulch combination for corn production in the dry semi-arid region of China[J]. Journal of Arid Environments,2000, 46(4):371-382.
    [19]Lightfoot D R, Eddy F W. The agricultural utility of lithic-mulch gardens:Past and present[J]. GeoJournal,1994,34(4):425-437.
    [20]Lightfoot D. The cultural ecology of Puebloan Pebble-Mulch gardens[J]. Human Ecology,1993, 21(2):115-143.
    [21]Mellouli H J, van Wesemael B, Poesen J, et al. Evaporation losses from bare soils as influenced by cultivation techniques in semi-arid regions[J]. Agricultural Water Management,2000, 42(3):355-369.
    [22]Modaihsh A S, Horton R, Kirkham D. Soil Water Evaporation Suppression By Sand Mulches[J]. Soil Science,1985,139(4):357-361.
    [23]Munoz-Leoz B, Ruiz-Romera E, Antiguedad I, et al. Tebuconazole application decreases soil microbial biomass and activity[J]. Soil Biology and Biochemistry,2011,43(10):2176-2183.
    [24]Nachtergaele J, Poesen J, van Wesemael B. Gravel mulching in vineyards of Southern Switzerland[J]. Soil and Tillage Research,1998a,46(1-2):51-59.
    [25]Nachtergaele J, Poesen J, van Wesemael B. Gravel mulching in vineyards of Southern Switzerland[J]. Soil and Tillage Research,1998b,46(1-2):51-59.
    [26]Perez P, Todoroff P, Touma J, et al. Determining the hydraulic properties of a Sahelian crusted soil.1. In field experiment and measurements [J]. Agronomie,1999,19(5):331-340.
    [27]Piolou E. C.和卢泽愚.数学生态学引论[M].北京市:科学出版社,1978:305.
    [28]Poesen J W, Torri D, Bunte K. Effects of rock fragments on soil erosion by water at different spatial scales:a review[J]. Catena,1994,23(1-2):141-166.
    [29]Poesen J, Ingelmo-Sanchez F, Mucher H. The hydrological response of soil surfaces to rainfall as affected by cover and position of rock fragments in the top layer[J]. Earth Surface Processes and Landforms,1990,15:653-671.
    [30]Prez F L. The influence of surface volcaniclastic layers from Haleakala (Maui, Hawaii) on soil water conservation[J]. Catena,2000,38(4):301-332.
    [31]Roderick M L, Farquhar G D. The cause of decreased pan evaporation over the past 50 years[J]. Science,2002,298(5597):1410-1411.
    [32]Stewart B A, Lal R. Soil water and agronomic productivity[M]. Boca Raton, FL:CRC Press,2012:578.
    [33]Valentin C, Casenave A. Infiltration into sealed soils as influenced by gravel cover[J]. Soil Science Society of America Journal,1992,56(6):1667.
    [34]van Wesemael B, Poesen J, Kosmas C S, et al. Evaporation from cultivated soils containing rock fragments[J]. Journal of Hydrology,1996,182(1-4):65-82.
    [35]Wilcox B P, Wood M K. Factors influencing interrill erosion from semiarid slopes in New Mexico[J]. Journal of Range Management,1988,42:66-70.
    [36]Winding A, Hund-Rinke K, Rutgers M. The use of microorganisms in ecological soil classification and assessment concepts[J]. Ecotoxicology and Environmental Safety,2005,62(2):230-248.
    [37]Xie Z, Wang Y, Cheng G, et al.. Particle-size effects on soil temperature, evaporation, water use efficiency and watermelon yield in fields mulched with gravel and sand in semi-arid Loess Plateau of north west China[J]. Agricultural Water Management,2010,97(6):917-923.
    [38]Yamanaka T, Inoue M, Kaihotsu I. Effects of gravel mulch on water vapor transfer above and below the soil surface[J]. Agricultural Water Management,2004,67(2):145-155.
    [39]Zhang Q T, Ahmed O B, Inoue M, et al. Effects of mulching on evapotranspiration, yield and water use efficiency of Swiss chard (Beta vulgaris L. var. flavescens) irrigated with diluted seawater[J]. Journal of Food, Agriculture and Environment,2009,7(3-4):650-654.
    [40]Zhu W, Xie S T, Raun A D, et al.. Effects of gravel mulch technology on soil erosion resistance and plant growth of river flinty slope[J]. Chinese Journal of Applied Ecology,2008, 19(3):634-640.
    [41]曹来钧,马明.苹果砂田栽培技术研究[J].甘肃农业科技,1996,(1):12-14.
    [42]陈宏灏,张蓉,张怡,等.压砂地土壤微生物群落功能多样性分析[J].土壤通报,2011,(01):51-55.
    [43]陈年来,刘东顺,王晓巍,等.甘肃砂田的研究与发展[J].中国瓜菜,2008,(2):29-31.
    [44]陈士辉,谢忠奎,王亚军,等.砂田西瓜不同粒径砂砾石覆盖的水分效应研究[J].中国沙漠,2005,25(3):433-436.
    [45]陈曦等.亚洲中部干旱区蒸散发研究[M].北京市:气象出版社,2012:232.
    [46]陈玉民等.中国主要作物需水量与灌溉[M].北京市:水利电力出版社,1995:376.
    [47]程满金,郑大玮,张建新.半干旱地区集雨旱作节水农业技术集成总体模式研究[J].节水灌溉,2007,(03):1-5.
    [48]程维新等.农田蒸发与作物耗水量研究[M].北京市:气象出版社,1994:145.
    [49]崔向新,蒙仲举,高永,等.不同材料覆盖的土壤蒸发效果分析[J].水土保持通报,2009,(4):81-83.
    [50]董永祥等.宁夏气候与农业[M].银川市:宁夏人民出版社,1986:192.
    [51]杜少平.不同覆膜方式对旱砂田土壤水热效应及西瓜生长发育影响的研究[D]:甘肃农业大学,2010.
    [52]杜守宇等.宁夏旱作农业[M].银川市:宁夏人民出版社,2004:349.
    [53]冯锡鸿,吴大康.漫话砂田栽培西瓜甜瓜[J].第二届中国宁夏中卫硒砂瓜节硒砂瓜产业发展研讨文集,2007,
    [54]甘肃省农科院情报研究所,甘肃省农业厅粮食生产处.甘肃的砂田[M]:甘肃省农科院情报研究所,1984:75.
    [55]高俊凤.植物生理学实验指导[M].北京市:高等教育出版社,2006:287.
    [56]高秀君,张仁陟,杨招弟.不同耕作方式对旱地土壤酶活性动态的影响[J].土壤通报,2008,(5):1012-1016.
    [57]戈敢.中国压砂田的发展与意义[J].农业科学研究,2009,30(4):52-54.
    [58]关红杰,冯浩,吴普特.土壤砂砾覆盖对入渗和蒸发影响研究进展[J].中国农学通报,2008, 24(12):289-293.
    [59]郭慕萍,王志伟,秦爱民,等.54年来中国西北地区降水量的变化[J].干旱区研究,2009,(01):120-125.
    [60]郭天财,宋晓,马冬云,等.施氮水平对冬小麦旗叶光合特性的调控效应[J].作物学报,2007,33(12):1977-1981.
    [61]海原县志编纂委员会.海原县志[M].银川市:宁夏人民出版社,1999:1116.
    [62]胡恒觉.我国砂田免耕法[C].耕作制度论文集.北京:农业出版社,1981.206-217,345-347.
    [63]胡景田.宁夏中部干旱区压砂利用对土壤质量的影响研究[D][D]:宁夏银川:宁夏大学,2010.
    [64]胡景田,马琨,王占军,等.荒地不同压砂年限对土壤微生物区系、酶活性与土壤理化性状的影响[J].水土保持通报,2010,(3):53-58.
    [65]华孟,王坚.土壤物理学 附实验指导[M].北京市:北京农业大学出版社,1993:327.
    [66]环境科学大辞典编委会.环境科学大辞典:修订版[M].北京市:中国环境科学出版社,2008:1067.
    [67]靳立亚,符娇兰,陈发虎.近44年来中国西北降水量变化的区域差异以及对全球变暖的响应[J].地理科学,2005,(05):57-62.
    [68]鞠正春,于振文.追施氮肥时期对冬小麦旗叶叶绿素荧光特性的影响[J].应用生态学报,2006,17(3):395-398.
    [69]康国玺.黄土高原半干旱区雨水高效利用模式[J].中国农村水利水电,2004,(12):72-73.
    [70]孔凡磊.基于能量平衡方法的麦玉两熟制不同耕作方式水分利用研究[D],2012.
    [71]雷文文.弃耕砂田植被恢复条件试验研究[D]:甘肃农业大学,2010.
    [72]李百云,魏天军.宁夏旱砂地枣瓜间作栽培技术研究[J].安徽农业科学,2010,(12):6158-6160.
    [73]李风岐,张波.陇中砂田之探讨[J].中国农史,1982,(01):33-39.
    [74]李锋瑞.半干旱区集水农业发展战略探析[J].开发研究,1996,(06):4-12.
    [75]李生秀等.中国旱地农业[M].北京市:中国农业出版社,2004:804.
    [76]李式军.设施园艺学[M].北京市:中国农业出版社,2002:334.
    [77]李小泉,顾秋瑾,牛若芸.用天气资料实时监测和评估北方的旱情变化[J].气象杂志,1998,(1):13-20.
    [78]刘春晖.旱地农业降水高效利用技术应用研究[J].山西水利科技,2007,(1):17-19.
    [79]刘恩科,赵秉强,李秀英,等.长期施肥对土壤微生物量及土壤酶活性的影响[J].植物生态学报,2008,(1):176-182.
    [80]刘华琴.靖远县旱地砂田辣椒栽培技术[J].甘肃农业科技,2004,(4):34-35.
    [81]刘建新.不同农田土壤酶活性与土壤养分相关关系研究[J].土壤通报,2004,(4):523-525.
    [82]刘敏,沈彦俊,曾燕,等.近50年中国蒸发皿蒸发量变化趋势及原因[J].地理学报,2009,(3):259-269.
    [83]刘谦和,李志强.砂田土壤的水蒸发特征和温度变化[J].甘肃农业科技,1993,(8):26-28.
    [84]刘声锋.无公害压砂瓜栽培技术与研究[M].银川市:宁夏人民出版社,2009:317.
    [85]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京市:科学出版社,2006:418.
    [86]雒焕炘.白银地区砂田的防旱作用及其耕作[J].干旱地区农业研究,1991,(1):37-45.
    [87]马克平.生物群落多样性的测度方法Ⅰ α多样性的测度方法(上)[J].生物多样性,1994,(03):162-168.
    [88]马克平,刘玉明.生物群落多样性的测度方法Ⅰ α多样性的测度方法(下)[J].生物多样性,1994,(04):231-239.
    [89]马志荣.旱砂田西瓜早熟栽培技术[J].中国西瓜甜瓜,2004,(2):25-26.
    [90]马忠明,杜少平,薛亮.覆砂年限对砂田砂层质量、土壤水热状况及西瓜生长的影响[J].中国沙漠,2013,(05):1433-1439.
    [91]宁夏回族自治区经济地图集编委会编制.宁夏回族自治区经济地图集[M].西安市:西安地图出版社,1998:559.
    [92]齐学礼,胡琳,董海滨,等.强光高温同时作用下不同小麦品种的光合特性[J].作物学报,2008,34(12):2196-2201.
    [93]强力.砂田生态效益及主栽作物西瓜的水肥耦合效应研究[D][D]:宁夏银川:宁夏大学,2008.
    [94]邱莉萍,刘军,王益权,等.土壤酶活性与土壤肥力的关系研究[J].植物营养与肥料学报,2004,(3):277-280.
    [95]邱阳,王亚军,谢忠奎,等.砾石覆盖年限对连作农田土壤微生物和酶活性的影响[J].水土保持通报,2011b,(05):65-68.
    [96]邱阳,王亚军,谢忠奎,等.砾石覆盖对农田土壤有机碳、微生物和土壤酶活性的影响[J].西北农业学报,2011a,20(10):176-180.
    [97]曲曼丽.农业气候实习指导 农业气候分析方法30例[M].北京市:北京农业大学出版社,1991:125.
    [98]全国西瓜甜瓜科研生产协作组中国园艺学会西瓜甜瓜专业委员会中国园艺学会西瓜甜瓜协会.宁夏中卫环香山地区——我国规模最大的纯天然绿色食品砂田西瓜甜瓜生产基地考察记实[J].中国西瓜甜瓜,2004,(5):44-45.
    [99]任道义,刘芳.旱砂废地建枣园凸现勃勃生机[J].中国林业,2005,(03):39.
    [100]任国玉,郭军.中国水面蒸发量的变化[J].自然资源学报,2006,(1):31-45.
    [101]山仑,康绍忠,吴普特.中国节水农业[M].北京市:中国农业出版社,2004:648.
    [102]邵明安,王全九,黄明斌.土壤物理学[M].北京市:高等教育出版社,2006:320.
    [103]邵晓贵,杨瑞.喀斯特地区不同覆盖下土壤水分变化模拟研究[J].水土保持通报,2011,31(5):250-253.
    [104]佘永卫,王凡,王荣康,等.压砂地砂土分离机,201220070358.8[P].2012.11.07.
    [105]施成熙.陆地水文学[M].北京市:科学出版社,1959.
    [106]施能.气象科研与预报中的多元分析方法[M].北京市:气象出版社,2002:244.
    [107]隋红建,曾德超.地面覆盖应用与研究的现状及发展方向[J].农业工程学报,1990,(04):26-34.
    [108]孙菽芬.陆面过程的物理、生化机理和参数化模型[M].北京市:气象出版社,2005:307.
    [109]孙悦超,麻硕士,陈智,等.砾石覆盖对抑制旱作农田土壤风蚀效果的风洞模拟[J].农业工程学报,2010,26(11):151-155.
    [110]唐启义,冯明光.DPS数据处理系统[M].北京市:科学出版社,2006:1100.
    [111]滕中华,智丽,宗学凤,等.高温胁迫对水稻灌浆结实期叶绿素荧光、抗活性氧活力和稻米品质的影响[J].作物学报,2008,34(9):1662-1666.
    [112]田军仓,孙兆军,刘声锋,等.西北干旱地区压砂瓜产业面临的问题与对策.2007年中国农业工程学会学术年会,中国黑龙江大庆,2007.
    [113]田媛,李晓玲,李凤民,等.砂田集雨补灌对西瓜产量和土壤水分的影响[J].中国沙漠,2003,23(4):459-463.
    [114]王河银.水肥密度对砂田辣椒生长发育及产量的影响[D]:内蒙古农业大学,2011.
    [115]王鹏祥,杨金虎,张强,等.近半个世纪来中国西北地面气候变化基本特征[J].地球科学进展,2007,(6):649-656.
    [116]王润元.中国西北地区农作物对气候变化的响应[M].北京市:气象出版社,2009:279.
    [117]王天送,苏贺昌.兰州地区砂田土壤的水分特征[J].干旱地区农业研究,1991,(1):66-69.
    [118]王亚军,谢忠奎,刘大化,等.砾石直径和补灌量对砂田西瓜根系分布的影响[J].中国沙漠,2006,26(5):820-825.
    [119]王亚军,谢忠奎,张志山,等.甘肃砂田西瓜覆膜补灌效应研究[J].中国沙漠,2003,23(3):300-305.
    [120]王占军,蒋齐,何建龙,等.宁夏环香山地区压砂地土壤肥力特征分析[J].水土保持学报,2010,(02):201-204.
    [121]王忠.植物生理学[M].北京市:中国农业出版社,2009:576.
    [122]魏凤英.现代气候统计诊断与预测技术第2版[M].北京市:气象出版社,2007:296.
    [123]温晓霞,殷瑞敬,高茂盛,等.不同覆盖模式下旱作苹果园土壤酶活性和微生物数量时空动态研究[J].西北农业学报,2011,(11):82-88.
    [124]吴宏亮,康建宏,陈阜,等.不同轮作模式对砂田土壤微生物区系及理化性状的影响[J].中国生态农业学报,2013,(06):674-680.
    [125]吴建义,郑新瑞.砂田地膜塑料大棚覆盖白兰瓜优质丰产栽培技术[J].中国西瓜甜瓜,1995,(4):18-19.
    [126]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京市:气象出版社,2006:150.
    [127]夏普明.中国气象灾害大典宁夏卷[M].北京市:气象出版社,2007:273.
    [128]谢忠奎,王亚军,陈士辉,等.黄土高原西北部砂田西瓜集雨补灌效应研究[J].生态学报,2003,23(10):2033-2039.
    [129]辛秀先.论甘肃砂田的形成及其起源[J].甘肃农业科技,1993,(5):5-7.
    [130]许强,康建宏.压砂地可持续利用的理论与实践[M],2012:334.
    [131]许强,强力.吴宏亮,等.砂田水热及减尘效应研究[J].宁夏大学学报(自然科学版),2009,30(2):180-182.
    [132]许强,吴冠英,刘高德,等.土石分离机:2009,200820128880.0[P].2009.08.26[2009].
    [133]许强,吴宏亮,康建宏,等.旱区砂田肥力演变特征研究[J].干旱地区农业研究,2009,27(1):37-41.
    [134]薛亮,马忠明,杜少平.连作对砂田土壤质量及西瓜产量与品质的影响[J].甘肃农业科技,2011,(6):5-8.
    [135]杨来胜.砂田及其不同覆盖方式的水热效应对白兰瓜生长发育影响的研究[D]:西北农林科技大学,2004.
    [136]杨来胜,席正英,李玲,等.砂田在兰州的应用与发展[J].中国瓜菜,2007,(3):32-33.
    [137]杨万邦.旱砂田瓜菜间作高效栽培技术[J].中国瓜菜,2008,(4):47-49.
    [138]杨晓光,于沪宁.中国气候资源与农业[M].北京市:气象出版社,2006:339.
    [139]杨秀芹,钟平安.蒸发皿蒸发量变化及其研究进展[J].地球物理学进展,2008,(5):1494-1498.
    [140]依艳丽.土壤物理研究法[M].北京市:北京大学出版社,2009:289.
    [141]原翠萍,张心平,雷廷武,等.砂石覆盖粒径对土壤蒸发的影响[J].农业工程学报,2008,24(7):25-28.
    [142]袁海燕,张晓煜,徐华军,等.气候变化背景下中国农业气候资源变化V.宁夏农业气候资源变化特征[J].应用生态学报,2011,(05).
    [143]袁志发,周静芋.试验设计与分析[M].北京市:高等教育出版社,2000:476.
    [144]张黎萍,荆奇,戴廷波,等.温度和光照强度对不同品质类型小麦旗叶光合特性和衰老的影响[J].应用生态学报,2008,19(2):311-316.
    [145]张永福,罗崇明,等.旱砂田西瓜覆膜栽培技术[J].甘肃农业科技,2002,(3):24.
    [146]张玉兰,苏占胜,毛万忠,等.宁夏硒砂瓜产量动态预测[J].中国农业气象,2009,(1):88-91.
    [147]张玉兰,郑有飞.西瓜砂田不同覆盖方式的增温保墒效应初探[J].中国农业气象,2006,27(4):323-325.
    [148]张战胜,付晓,康建宏,等.压砂地不同间作模式下土壤水分变化研究[J].北方园艺,2011,(07):4-7.
    [149]张智,郑广芬,林莉,等.宁夏大风日数气候变化及其对沙尘天气的影响[J].干旱区资源与环境,2006,(4):30-34.
    [150]赵聚宝等.中国北方旱地农田水分平衡[M].北京市:中国农业出版社,2000:464.
    [151]赵晓琴.几个适合旱砂田种植的西瓜品种[J].西北园艺:蔬菜,2008,(2):39-40.
    [152]赵亚慧,吴宏亮,康建宏,等.砂田不同轮作模式土壤理化及微生物学性状的研究[J].北方园艺,2012,(18):190-193.
    [153]赵燕,李成军,康建宏,等.砂田的发展及其在宁夏的应用研究[J].农业科学研究,2009,30(2):35-38.
    [154]郑华平.保护性耕作措施的综合效应研究及其生态与经济效益评价[D]:甘肃农业大学,2004.
    [155]钟阳和等.农业小气候学[M].北京市:气象出版社,2009:649.
    [156]周海燕,王瑛珏,樊恒文,等.宁夏中部干旱带砂田抗风蚀性能研究[J].土壤学报,2013,(01):41-49.
    [157]周礼恺.土壤酶学[M].北京市:科学出版社,1987:292.
    [158]朱猛蒙,蔡凤环,张蓉,等.基于GIS的瓜蚜种群空间结构和分布模拟[J].应用生态学报,2010,(10):2691-2696.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700