用户名: 密码: 验证码:
锂离子电池用复合型PVDF-HFP基聚合物电解质的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池聚合物电解质因其优异的安全性能自从研发以来就成为人们关注的热点之一。室温离子电导率低、机械性能差、界面稳定性差和所装配电池的锂离子迁移数低等缺点严重影响了聚合物电解质在电池体系中的应用。就上述问题,本文针对性地提出了如下解决措施,以制备性能优异的实用聚合物电解质。
     本文首先通过对倒相法、直接干燥法和蒸气浴法所制备的凝胶型PVDF-HFP电解质的性能考察,确定采用倒相法作为聚合物电解质的制备方法。其最佳工艺参数为:PVDF-HFP与DMF的固、液摩尔比为1:4,膜层制备温度为40℃,初成膜温度和时间分别为室温和90min,相转移过程时间为12h。在此基础上还考察了PVP、PEG-200和Urea三种不同造孔剂对所制备聚合物电解质的性能影响,最后确定采用Urea作为造孔剂,其最佳添加量为PVDF-HFP质量的10%。相应聚合物电解质的室温离子电导率为2.823mS·cm-1,但其机械拉伸强度只有18.84MPa。
     采用向聚合物基体PVDF-HFP中添加ZSM-5、MCM-41和SAPO-11三种不同分子筛来提高所制备聚合物电解质的机械性能和室温离子电导率。通过对其性能测试表明,ZSM-5掺杂制备复合聚合物电解质的机械拉伸强度上升到23.78MPa,且对应室温离子电导率为3.078mS·cm-1。为了更好地提高聚合物电解质的室温离子电导率,本文对分子筛ZSM-5的表面进行了硅烷化处理,将其添加到聚合物基体PVDF-HFP中掺杂制备复合聚合物电解质。测试结果表明,所制备复合聚合物电解质的性能得到了很好地改善,其中室温离子电导率和机械性能分别为3.851mS·cm-1和23.01MPa,但是该聚合物电解质与电极间的界面稳定性很差。
     为了改善所制备聚合物电解质与电极间的界面稳定性,本文通过向聚合物基体PVDF-HFP中添加经过硅烷表面处理的纳米La203颗粒来制备界面稳定的复合聚合物电解质。通过对其性能测试表明,该复合聚合物电解质不仅具有好的界面稳定性,在5天的储存时间内其界面阻抗值能快速稳定在560Ω,且具有3.546mS·cm-1的室温离子电导率和5.1V的电化学工作窗口,热分解温度也上升到350℃。但是其所组装的电池体系中锂离子迁移数只有0.3157,严重制约了所制备复合聚合物电解质装配电池的倍率性能。
     本文通过水解缩合、自由基聚合和离子交换法合成了核壳结构的单离子导体SiO2@Li+,并将其加入到聚合物基体PVDF-HFP中以改善所制备复合聚合物电解质组装电池体系的锂离子迁移数。其性能测试结果表明,该复合聚合物电解质电池体系具有高达0.4374的锂离子迁移数、3.885mS·cm-1的室温离子电导率、5.2V的电化学工作窗口、440℃的热分解温度和良好的界面稳定性。将其组装成Li/PE/LiCoO2的电池性能测试表明,其在0.1C下的放电比容量为151.1mAh·g-1,0.5C下的放电比容量为142.6mAh·g-1,在0.2C和0.5C条件下的放电比容量保持率分别能达到0.1C条件下的97.43%和93.28%;所组装成Li/PE石墨电池在0.1C下的充电比容量为351.8mAh·g-1,且经过20次循环后,充电比容量和库仑效率分别为351.8mAh·g-1和100%,说明该电解质与正极材料LiCoO2和负极材料石墨都有很好的匹配性。
     此外,本文对单离子导体SiO2@Li+掺杂制备的复合聚合物电解质所装配成Li/PE/LiCoO2和Li/PE/石墨电池体系在不同荷电态下的EIS谱图分析中发现,电池体系中的阻抗主要由电池本体阻抗Rb、电荷转移阻抗Rct和界面反应阻抗Rsf组成。且还发现在Li/PE/LiCoO2体系中,首次循环对电荷转移阻抗Rct的贡献最大;而在Li/PE/石墨电池体系中,首次循环对界面反应阻抗Rsf的贡献最大。图120幅,表20个,参考文献293条。
Due to the excellent safety performances, polymer electrolytes have become a hot topic in the lithium-ion batteries field since they had been investigated. However, some shortcomings, such as low ionic conductivity at room temperature (R.T.) and lithium ion transfer number, inferior mechanical and interfacial performances, have prevented them from the practical application in the lithium-ion batteries. To solve the above-mentioned problems, several specific methods are proposed in the paper to prepare the practical polymer electrolyte with excellent performances.
     After the performances of the gel PVDF-HFP polymer electrolytes prepared by the phase inversion, direct vacuum drying and steam bath methods being characterized respectively, the phase inversion method is considered as the optimal preparation process of the polymer electrolyte. The optimal process parameters are:nPVDF-HFP:nDMF-1:4, temperature of the membrane preparation40℃, temperature and time of the initial membrane preparation25℃and90min, respectively, the time of phase inversion process12h. The effect on the performances of the as-prepared polymer electrolytes using PVP, PEG-200and Urea as forming-agent was studied, and the results indicate that the best forming-agent is Urea and the optimal addition is10%of the mass of PVDF-HFP. The ionic conductivity at R.T. of the as-prepared polymer electrolyte with Urea is2.823mS·cm-1, but the mechanical strength is only18.84MPa.
     In the experiment, three kinds of molecular sieves, ZSM-5, MCM-41and SAPO-11, were added into the polymer matrix PVDF-HFP to improve the mechanical performances and ionic conductivity at R.T. of the as-prepared polymer electrolytes. The results of the performances characterization show that the mechanical strength of the polymer electrolyte doped with ZSM-5increases to23.78MPa, and the corresponding ionic conductivity at R.T. is3.078mS·cm-1. To improve the ionic conductivity at R.T. of the as-prepared polymer electrolytes, the surface of ZSM-5was modified by silane. The modified ZSM-5was then added into the polymer matrix PVDF-HFP to prepare the composite polymer electrolytes. The results of the characterization indicate that the performances of the composite polymer electrolytes are greatly improved, in which the ionic conductivity at R.T. and mechanical strength are3.851mS·cm-1and23.01MPa, respectively, but the performances of the interface between the electrolytes and the electrodes are not stable.
     To improve the interfacial stability between the as-prepared polymer electrolytes and the electrodes, the nano-La2O3was modified by vinyl silane and the modified nano-La2O3was then added into the polymer matrix PVDF-HFP to prepare composite polymer electrolytes with stable interface. The results of the characterization show that the composite polymer electrolytes have stable interface and the interfacial resistance can stay stabilized at560Ω after5days of storage, and the ionic conductivity at R.T. and electrochemical working window are3.546mS·cm-1and5.1V, respectively, the thermal decomposition temperature increases to350℃, but the lithium ion transfer number is only0.3157, which impairs the rate performances of the batteries assembled with the as-prepared composite polymer electrolytes.
     The single ionic conductor SiO2@Li+with core-shell structure was prepared by the hydrolytic condensation, free radical polymerization and ion exchange method. SiO2@Li+was then added into the polymer matrix PVDF-HFP to enhance the lithium ion transfer number of the batteries assembled with the as-prepared composite polymer electrolytes. The results of the characterization show that the lithium ion transfer number of the cell with the composite polymer electrolytes is up to0.4373, and the ionic conductivity at R.T. and electrochemical working window are3.885mS·cm-1and5.2V, respectively, the thermal decomposition temperature reaches up to440℃which illustrates excellent interfacial stability. The discharge specific capacity of the Li/PE/LiCoO2cell with the as-prepared composite polymer electrolytes is151.1mAh·g-1at0.1C, and142.6mAh·g-1at0.5C, the discharge specific capacity retention rate of the cell is97.43%and93.28%at0.2C and0.5C, respectively. The charge specific capacity of the Li/PE/Graphite cell with the as-prepared composite polymer electrolytes is351.8mAh·g-1at0.1C, and the charge specific capacity and coulombic efficiency of the cell are351.8mAh·g-1and100%after20cycles, respectively. The results suggest that the as-prepared composite polymer electrolytes are well matched with the anode LiCoO2and cathode graphite materials.
     In addition, the resistance of the batteries assembled with the composite polymer electrolytes doped with single ionic conductor SiO2@Li+is considered to be composed of bulk resistance Rb, charge transfer resistance Rct and interfacial reaction resistance Rsf by investigating the EIS of the cell under different discharge-charge states. The first cycle makes the largest contribution to the charge transfer resistance Rct in the Li/PE/LiCoO2system and to the interfacial reaction resistance Rsf in the Li/PE/Graphite system.
引文
[1]Chen J. Recent progress in advanced materials for lithium ion batteries [J]. Materials,2013,6(1):156-183.
    [2]Fergus J W. Recent developments in cathode materials for lithium ion batteries [J]. Journal of Power Sources,2010,195(4):939-954.
    [3]Scrosati B. Recent advances in lithium ion battery materials [J]. Electrochimica Acta,2000,45(15-16):2461-2466.
    [4]吴宇平,万春荣,姜长印,等.锂离子二次电池[M].北京:化学工业出版社,2002.
    [5]Scrosati B, Garche J. Lithium batteries:Status, prospects and future [J]. Journal of Power Sources,2010,195(9):2419-2430.
    [6]Murata K. An overview of the research and development of solid polymer electrolyte batteries [J]. Electrochimica Acta,1995,40(13-14):2177-2184.
    [7]Richardson D B. Electric vehicles and the electric grid:A review of modeling approaches, impacts, and renewable energy integration [J]. Renewable and Sustainable Energy Reviews,2013,19(3):247-254.
    [8]Lu D J, Chou Y F, Yuan H W. Paradigm shift in the institutional arrangement of protected areas management in Taiwan-a case study of Wu-Wei-Kang Waterfowl Wildlife Refuge in Ilan, Taiwan [J]. Environmental Science & Policy,2005,8(4): 418-430.
    [9]Gerssen S J, Faaij A P C. Performance of batteries for electric vehicles on short and longer term [J]. Journal of Power Sources,2012,212(2):111-129.
    [10]Lin C, Wu T, Ou X, et al. Life-cycle private costs of hybrid electric vehicles in the current Chinese market [J]. Energy Policy,2013,55(12):501-510.
    [11]Croce F, D'epofanio A, Hassoun J, et al. Advanced electrolyte and electrode materials for lithium polymer batteries [J]. Journal of Power Sources,2003, 119-121(6):399-402.
    [12]Fauteux D, Massucco A, Mclin M, et al. Lithium polymer electrolyte rechargeable battery [J]. Electrochimica Acta,1995,40(13-14):2185-2190.
    [13]Meyer W H. Polymer electrolytes for lithium-ion batteries [J]. Advanced Materials,1998,10(6):439-448.
    [14]郭炳坤,李新海,杨松青.化学电源:电池原理及制造技术[M].长沙:中南工业大学出版社,2000.
    [15]Nagaura T, Tozawa K. Lithium ion rechargeable battery [J]. Progress Batteries Solar Cells,1990,9(2):209-217.
    [16]张晓萍.核壳结构磷酸铁锂—磷酸钒锂复合正极材料的研究[D].长沙:中南大学,2012.
    [17]Endo M, Kim C, Nishimura K, et al. Recent development of carbon materials for Li ion batteries [J]. Carbon,2000,38(2):183-197.
    [18]Flandrois S, Simon B. Carbon materials for lithium-ion rechargeable batteries [J].Carbon,1999,37(2):165-180.
    [19]Li H, Wang Z, Chen L, et al. Research on advanced materials for Li-ion batteries [J]. Advanced Materials,2009,21(45):4593-4607.
    [20]Zaghib K, Charest P, Guerfi A, et al. Safe Li-ion polymer batteries for HEV applications [J]. Journal of Power Sources,2004,134(1):124-129.
    [21]Zaghib K, Armand M, Gauthier M. Electrochemistry of anodes in solid-state Li-ion polymer batteries [J]. Journal of The Electrochemical Society,1998, 145(9):3135-3140.
    [22]陈白珍,胡拥军,李义兵,等.锂离子电池聚合物正极材料的研究进展[J].电池,2005,35(5):406407.
    [23]Lee Y G, Ryu K S, Chang S H. Chemically synthesized high molecular weight poly(2,2'-dithiodianiline) (PDTDA) as a cathode material for lithium rechargeable batteries [J]. Journal of Power Sources,2003,119-121(10): 321-325.
    [24]Legall T, Reiman K H, Grossel M C, et al. Poly(2,5-dihydroxy-1, 4-benzoquinone-3,6-methylene):A new organic polymer as positive electrode material for rechargeable lithium batteries [J]. Journal of Power Sources,2003, 119-121(9):316-320.
    [25]Jeon B H, Yeon J H, Chung I J. Preparation and electrical properties of lithium-sulfur-composite polymer batteries [J]. Journal of Materials Processing Technology,2003,143-144(4):93-97.
    [26]Fenton D E, Parker J M, Wright P V. Complexes of alkali metal ions with poly(ethylene oxide) [J]. Polymer,1973,14(11):589-591.
    [27]Feuilland G, Perche P. Ion-conductive macromolecular gels and membranes for solid lithium cells [J]. Journal of Applied Electrochemistry,1975,5(1):63-69.
    [28]Armand M, Chabagno J, Duclot M. Poly-ethers as solid electrolytes [C]. International Conference on Fast Ion Transport in Solids, Electrodes, and Electrolytes. Fast ion transport in solids, electrodes and electrolytes. North-Holland:Lake Geneva, Wisconsin, USA,1979:21-25.
    [29]Weston J E, Steele B C H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes [J]. Solid State Ionics,1982,7(1):75-79.
    [30]Abraham K M, Pasquariello D M, Martin F J. Mixed ether electrolytes for secondary lithium batteries with improved low temperature performance [J]. Journal of The Electrochemical Society,1986,133(4):661-666.
    [31]Wang W T, Yang L H, Fan Y W. Effect of poly(vinylidene fluoride) on the ionic conductivity and morphology of PEO-salt polymer electrolytes [J]. Journal of Applied Polymer Science,1994,54(7):923-933.
    [32]Croce F, Appetecchi G B, Persi L, et al. Nanocomposite polymer electrolytes for lithium batteries [J]. Nature,1998,394(6):456-458.
    [33]Boudin F, Andrieu X, Jehoulet C, et al. Microporous PVDF gel for lithium-ion batteries [J]. Journal of Power Sources,1999,81-82(9):804-807.
    [34]Goto S, Hosoya M, Endo T. Solid electrolyte cell. EP:20010123774 [P],2001.
    [35]Manuel S A. Review on gel polymer electrolytes for lithium batteries [J]. European Polymer Journal,2006,42(1):21-42.
    [36]Song J Y, Wang Y Y, Wan C C. Review of gel-type polymer electrolytes for lithium-ion batteries [J]. Journal of Power Sources,1999,77(2):183-197.
    [37]Hu X L, Hou G M, Zhang M Q, et al. Anew nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica [J]. Journal of Materials Chemistry,2012,22(36):18961-18967.
    [38]Lim D H, Manuel J, Ahn J H, et al. Polymer electrolytes based on poly (vinylidene fluoride-co-hexafluoropropylene) nanofibrous membranes containing polymer plasticizers for lithium batteries [J]. Solid State Ionics,2012,225(7): 631-635.
    [39]Tang C, Hackenberg K, Fu Q, et al. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers [J]. Nano Letters,2012,12(3):1152-1156.
    [40]Balakrishnan P G, Ramesh R, Pemkumar T. Safety mechanisms in lithium-ion batteries [J]. Journal of Power Sources,2006,155(2):401-414.
    [41]Xiao Q, Li Z, Gao D, et al. A novel sandwiched membrane as polymer electrolyte for application in lithium-ion battery [J]. Journal of Membrane Science,2009,326(2):260-264.
    [42]Fergus J W. Ceramic and polymeric solid electrolytes for lithium-ion batteries [J]. Journal of Power Sources,2010,195(15):4554-4569.
    [43]Patel M, Bhattacharyya A J. A crosslinked "polymer-gel" rechargeable lithium-ion battery electrolyte from free radical polymerization using nonionic plastic crystalline electrolyte medium [J]. Energy & Environmental Science, 2011,4(2):429-432.
    [44]Ha H J, Kwon Y H, Kim J Y, et al. A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery [J]. Electrochimica Acta,2011,57(8):40-45.
    [45]Lee J I, Kim D W, Lee C, et al. Enhanced ionic conductivity of intrinsic solid polymer electrolytes using multi-armed oligo(ethylene oxide) plasticizers [J]. Journal of Power Sources,2010,195(18):6138-6142.
    [46]Kumar A, Deka M, Banerjee S. Enhanced ionic conductivity in oxygen ion irradiated poly(vinylidene fluoride-hexafluoropropylene) based nanocomposite gel polymer electrolytes [J]. Solid State Ionics,2010,181(13-14):609-615.
    [47]Manuel S A, Nahm K S. Review on composite polymer electrolytes for lithium batteries [J]. Polymer,2006,47(16):5952-5964.
    [48]Kinumoto T, Nagano K, Tsumura T, et al. Thermal and electrochemical durability of carbonaceous composites used as a bipolar plate of proton exchange membrane fuel cell [J]. Journal of Power Sources,2010,195(19):6473-6477.
    [49]Huang S Y, Ganesan P, Park S, et al. Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications [J]. Journal of the American Chemical Society,2009,131(39):13898-13899.
    [50]Chinnam P R, Wunder S L. Self-assembled Janus-like multi-ionic lithium salts form nano-structured solid polymer electrolytes with high ionic conductivity and Li+ ion transference number [J]. Journal of Materials Chemistry A,2013,1(5): 1731-1739.
    [51]Ghosh A, Wang C, Kofinas P. Block copolymer solid battery electrolyte with high Li-ion transference number [J]. Journal of The Electrochemical Society, 2010,157(7):A846-A849.
    [52]Ramesh S, Winie T, Arof A K. Mechanical studies on poly (vinyl chloride)-poly(methyl methacrylate)-based polymer electrolytes [J]. Journal of Materials Science,2010,45(5):1280-1283.
    [53]Patel M, Chandrappa K G, Bhattacharyya A J. Increasing ionic conductivity and mechanical strength of a plastic electrolyte by inclusion of a polymer [J]. Electrochimica Acta,2008,54(2):209-215.
    [54]Goodenough J B, Park K S. The Li-ion rechargeable battery:A Perspective [J]. Journal of the American Chemical Society,2013,135(4):1167-1176.
    [55]于明昕,周啸.用于锂离子电池的聚合物电解质[J].化学通报,2002,65(4):10-14.
    [56]王占良.锂离子电池用聚合物电解质应用基础研究[D].天津:天津大学,2008.
    [57]Murata K, Izuchi S, Yoshihisa Y. An overview of the research and development of solid polymer electrolyte batteries [J]. Electrochimica Acta,2000,45(8-9): 1501-1508.
    [58]Dias F B, Plomp L, Veldhuis J B J. Trends in polymer electrolytes for secondary lithium batteries [J]. Journal of Power Sources,2000,88(2):169-191.
    [59]Ikeda Y, Wada Y, Mmatoba Y, et al. Characterization of comb-shaped high molecular weight poly(oxyethylene) with tri(oxyethylene) side chains for a polymer solid electrolyte [J]. Electrochimica Acta,2000,45(8-9):1167-1174.
    [60]Rajendran S, Uma T. Lithium ion conduction in PVC-LiBF4 electrolytes gelled with PMMA [J]. Journal of Power Sources,2000,88(2):282-285.
    [61]Quartarone E, Mustarelli P, Magistris A. PEO-based composite polymer electrolytes [J]. Solid State Ionics,1998,110(1-2):1-14.
    [62]Kim J Y, Kim S H. Ionic conduction behavior of network polymer electrolytes based on phosphate and polyether copolymers [J]. Solid State Ionics,1999, 124(1-2):91-99.
    [63]Choi B K, Kim Y W, Shin H K. Ionic conduction in PEO-PAN blend polymer electrolytes [J]. Electrochimica Acta,2000,45(8-9):1371-1374.
    [64]Dai Y, Greenbautm S, Golodnitsky D, et al. Lithium-7NMR studies of concentrated Lil/PEO-based solid electrolytes [J]. Solid State Ionics,1998, 106(1-2):25-32.
    [65]Heitner K L. The search for the better polymer electrolyte [J]. Journal of Power Sources,2000,89(2):128-131.
    [66]Song M K, Kim Y T, Kim Y T, et al. Thermally stable gel polymer electrolytes [J]. Journal of The Electrochemical Society,2003,150(4):A439-A444.
    [67]Owens B B. Solid state electrolytes:Overeview of materials and applications during the last third of the Twentieth Century [J]. Journal of Power Sources, 2000,90(1):2-8.
    [68]Kato Y, Hasumi K, Yokoyama S, et al. Polymer electrolyte plasticized with PEG-borate ester having high ionic conductivity and thermal stability [J]. Solid State Ionics,2002,150(3-4):355-361.
    [69]Rajendran S, Sivakumar M, Subandevi R. Investigations on the effect of various plasticizers in PVA-PMMA solid polymer blend electrolytes [J]. Materials Letters,2004,58(5):641-649.
    [70]Christie A M, Liliey S J, Stau ton E, et al. Increasing the conductivity of crystalline polymer electrolytes [J]. Nature,2005,433(7021):50-53.
    [71]Nishi Y. Lithium ion secondary batteries; past 10 years and the future [J]. Journal of Power Sources,2001,100(1-2):101-106.
    [72]Magistris A, Quartarone E, Mustarelli P, et al. PVDF-based porous polymer electrolytes for lithium batteries [J]. Solid State Ionics,2002,152-153(6): 347-354.
    [73]Cui Z Y, Xu Y Y, Zhu L P, et al. Preparation of PVDF/PEO-PPO-PEO blend microporous membranes for lithium ion batteries via thermally induced phase separation process [J]. Journal of Membrane Science,2008,325(2):957-963.
    [74]Miao R, Liu B, Zhu Z, et al. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries [J]. Journal of Power Sources,2008,184(2): 420-426.
    [75]Rajendran S, Bbu R S, Sivakumar P. Investigations on PVC/PAN composite polymer electrolytes [J]. Journal of Membrane Science,2008,315(1-2):67-73.
    [76]Rao M M, Liu J S, Li W S, et al. Preparation and performance analysis of PE-supported P(AN-co-MMA) gel polymer electrolyte for lithium ion battery application [J]. Journal of Membrane Science,2008,322(2):314-319.
    [77]Rensen P, Jacobsen T. Phase diagram and conductivity of the polymer electrolyte: PEORLiCF3SO3 [J]. Polymer Bulletin,1983,9(1-3):47-51.
    [78]Rey I, Lassgues J C, Grondin J, et al. Infrared and Raman study of the PEO-LiTFSI polymer electrolyte [J]. Electrochimica Acta,1998,43(10-11): 1505-1510.
    [79]Xie H Q, Liu J, Xie D. Some properties of three types of copolymers with uniform polyoxyethylene grafts [J]. European Polymer Journal,1989,25(11): 1119-1123.
    [80]Peleshanko S, Jeong J, Shevchenko V V, et al. Synthesis and properties of asymmetric heteroarm PEOn-b-PSm star polymers with end functionalities [J]. Macromolecules,2004,37(20):7497-7506.
    [81]Sharma P, Kanchan D K, Gondaliya A N. Effect of ethylene carbonate concentration on structural and electrical properties of PEO-PMMA polymer blends [J]. Ionics,2012,212(9):1-9.
    [82]Jaipal M, Siva K J, Subba U V, et al. Structural and ionic conductivity of PEO blend PEG solid polymer electrolyte [J]. Solid State Ionics,2006,177(3-4): 253-256.
    [83]Leo C J, Subba G V, Chowdari B V R. Studies on plasticized PEO-lithium triflate-ceramic filler composite electrolyte system [J]. Solid State Ionics,2002, 148(1-2):159-171.
    [84]Cheung I W, Chin K B, Greene E R, et al. Electrochemical and solid state NMR characterization of composite PEO-based polymer electrolytes [J]. Electrochimica Acta,2003,48(14-16):2149-2156.
    [85]Tang Z, Wang J, Chen Q, et al. A novel PEO-based composite polymer electrolyte with absorptive glass mat for Li-ion batteries [J]. Electrochimica Acta, 2007,52(24):6638-6643.
    [86]Quartarone E, Tomasi C, Mustarelli P, et al. Long-term structural stability of PMMA-based gel polymer electrolytes [J]. Electrochimica Acta,1998,43(10-11): 1435-1439.
    [87]Yang M, Li W, Wang G G, et al. Preparation and characterization of a novel microporous PE membrane supporting composite gel polymer electrolyte [J]. Solid State Ionics,2005,176(37-38):2829-2834.
    [88]Cho J H, Park J H, Kim J H, et al. Facile fabrication of nanoporous composite separator membranes for lithium-ion batteries:Poly(methyl methacrylate) colloidal particles-embedded nonwoven poly(ethylene terephthalate) [J]. Journal of Materials Chemistry,2011,21(22):8192-8198.
    [89]Munch R A, Jannasch P. Solid electrolyte membranes from semi-interpenetrating polymer networks of PEG-grafted polymethacrylates and poly(methyl methacrylate) [J]. Solid State Ionics,2006,177(5-6):573-579.
    [90]Rajendran S, Mahendran O, Mahalingam T. Thermal and ionic conductivity studies of plasticized PMMA/PVDF blend polymer electrolytes [J]. European Polymer Journal,2002,38(1):49-55.
    [91]Cho J H, Lee J, Xia Y, et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic [J]. Nature Material,2008,7(11): 900-906.
    [92]Du C H, Zhu B K, Xu Y Y. The effects of quenching on the phase structure of vinylidene fluoride segments in PVDF-HFP copolymer and PVDF-HFP/PMMA blends [J]. Journal of Membrane Science,2006,41(2):417-421.
    [93]Pu W, He X, Wang L, et al. Preparation of P(AN-MMA) microporous membrane for Li-ion batteries by phase inversion [J]. Journal of Membrane Science,2006, 280(1-2):6-9.
    [94]Aaral F A, Dalmolin C, Canobre S C, et al. Electrochemical and physical properties of poly(acrylonitrile)/poly(vinyl acetate)-based gel electrolytes for lithium ion batteries [J]. Journal of Power Sources,2007,164(1):379-385.
    [95]Apptecchi G B, Romagnoli P, Scrosati B. Composite gel membranes:A new class of improved polymer electrolytes for lithium batteries [J]. Electrochemistry Communications,2001,3(6):281-284.
    [96]Michot T, Nishimoto A, Watanabe M. Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer [J]. Electrochimica Acta,2000,45(8-9):1347-1360.
    [97]Tarscon J M, Gozdz A S, Schmutz C, et al. Performance of Bellcore's plastic rechargeable Li-ion batteries [J]. Solid State Ionics,1996,86-88, Part 1(3): 49-54.
    [98].Stephan A M, Nahm K S, Anbu M, et al. Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) based composite electrolytes for lithium batteries [J]. European Polymer Journal,2006,42(8):1728-1734.
    [99]Stolarsk M, Niedzichi L, Borkowska R, et al. Structure, transport properties and interfacial stability of PVdF/HFP electrolytes containing modified inorganic filler [J]. Electrochimica Acta,2007,53(4):1512-1517.
    [100]Stoeva Z, Martin-litas I, Staunton E, et al. Ionic conductivity in the crystalline polymer electrolytes PEO6:LixF6, X=P, As, Sb [J]. Journal of the American Chemical Society,2003,125(15):4619-4626.
    [101]Rajendran S, Bama V S, Prabhu M R. Effect of lithium salt concentration in PVAC/PMMA-based gel polymer electrolytes [J]. Ionics,2010,16(1):27-32.
    [102]Ibrahim S, Yassin M, Ahmad R, et al. Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes [J]. Ionics,2011,17(5): 399-405.
    [103]Fullerton S K, Maransas J K. Effect of LiClO4 on the structure and mobility of PEO-based solid polymer electrolytes [J]. Macromolecules,2009,42(6): 2142-2156.
    [104]Rodrigues L C, Silva M M, Smith M J, et al. Preliminary characterisation of LiAsF6 hybrid polymer electrolytes for electrochromic devices [J]. Electrochimica Acta,2011,57(6):52-57.
    [105]Ye H, Huang J, Xu J J, et al. Li ion conducting polymer gel electrolytes based on iuonic liquid/PVDF-HFP blends [J]. Journal of The Electrochemical Society, 2007,154(11):A1048-A1057.
    [106]Zhang S S, Xu K, Jow T R. LiBOB-based gel electrolyte Li-ion battery for high temperature operation [J]. Journal of Power Sources,2006,154(1):276-280.
    [107]Rajendran S, Ramesh M. Effect of different plasticizer on structural and electrical properties of PEMA-based polymer electrolytes [J]. Journal of Applied Electrochemistry,2010,40(2):327-332.
    [108]Saika D, Chen Y W, Chen Y T, et al.7Li NMR spectroscopy and ion conduction mechanism of composite gel polymer electrolyte:A comparative study with variation of salt and plasticizer with filler [J]. Electrochimica Acta,2009,54(4): 1218-1227.
    [109]Sharma J P, Yamada K, Sekhon S S. Conductivity study on PEO based polymer electrolytes containing hexafluorophosphate anion:Effect of plasticizer [J]. Macromolecular Symposia,2012,315(1):188-197.
    [110]Khatmullina K G, Yarmolenko O V, Bogdanova L M. Network polymer electrolytes based on poly(ester diacrylate), ethylene carbonate, and LiClO4 [J]. Polymer Science Series A,2010,52(12):1327-1333.
    [111]RajendranS, Bama V S. A study on the effect of various plasticizers in poly(vinyl acetate)-poly(methyl methacrylate) based gel electrolytes [J]. Journal of Non-Crystalline Solids,2010,356(50-51):2764-2768.
    [112]Ulaganathan M, Rajendran S. Li ion conduction on plasticizer-added PVAC-based hybrid polymer electrolytes [J]. Ionics,2010,16(7):667-672.
    [113]Subadevi R, Sivakumar M, Rajendran S, et al. Studies on the effect of anions of various lithium salts in PEMA gel polymer electrolytes [J]. Journal of Applied Polymer Science,2011,119(1):1-6.
    [114]Ibrahim S, Yasin S, Ahmad R, et al. Effects of various EC plasticizer concentrations on salted PEO based solid polymer electrolytes [J]. International Journal of Plastics Technology,2012,16(2):125-135.
    [115]Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries:A look into the future [J]. Energy & Environmental Science,2011,4(9):3287-3295.
    [116]Kalnaus S, Sabau A S, Tenhaeff W E, et al. Design of composite polymer electrolytes for Li ion batteries based on mechanical stability criteria [J]. Journal of Power Sources,2012,201(7):280-287.
    [117]Capuano F, Croce F, Scrosati B. Composite polymer electrolytes [J]. Journal of The Electrochemical Society,1991,138(7):1918-1922.
    [118]Croce F, Scrosati B, Mariotto G Electrochemical and spectroscopic study of the transport properties of composite polymer electrolytes [J]. Chemistry of Materials,1992,4(6):1134-1136.
    [119]Khan S A, Baker G L, Colson S. Composite polymer electrolytes using fumed silica fillers:Rheology and ionic conductivity [J]. Chemistry of Materials,1994, 6(12):2359-2363.
    [120]Kumar B, Scanlon L G. Polymer-ceramic composite electrolytes [J]. Journal of Power Sources,1994,52(2):261-268.
    [121]Ji K S, Moon H S, Kim J W, et al. Role of functional nano-sized inorganic fillers in poly(ethylene oxide)-based polymer electrolytes [J]. Journal of Power Sources,2003,117(1-2):124-130.
    [122]Kim J W, Ji K S, Lee J P, et al. Electrochemical characteristics of two types of PEO-based composite electrolyte with functional SiO2 [J]. Journal of Power Sources,2003,119-121(8):415-421.
    [123]Lee W J, Jung H R, Lee M S, et al. Preparation and ionic conductivity of sulfonated-SEBS/SiO2/plasticizer composite polymer electrolyte for polymer battery [J]. Solid State Ionics,2003,164(1-2):65-72.
    [124]Park K T, Jung U H, Choi D W, et al. ZrO2-SiO2/Nafion(?) composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity [J]. Journal of Power Sources,2008,177(2):247-253.
    [125]Wen Z, Gu Z, Itoh T, et al. An investigation of poly(ethylene oxide)/saponite-based composite electrolytes [J]. Journal of Power Sources, 2003,119-121(7):427-431.
    [126]Xi J, Miao S, Tang X. Selective transporting of lithium ion by shape selective molecular sieves ZSM-5 in PEO-based composite polymer electrolyte [J]. Macromolecules,2004,37(23):8592-8598.
    [127]Xi J, Tang X. Enhanced lithium ion transference number and ionic conductivity of composite polymer electrolyte doped with organic-inorganic hybrid P123@SBA-15 [J]. Chemical Physics Letters,2004,400(1-3):68-73.
    [128]Xi J, Qiu X, Ma X, et al. Composite polymer electrolyte doped with mesoporous silica SBA-15 for lithium polymer battery [J]. Solid State Ionics, 2005,176(13-14):1249-1260.
    [129]Xi J, Qiu X, Cui M, et al. Enhanced electrochemical properties of PEO-based composite polymer electrolyte with shape-selective molecular sieves [J]. Journal of Power Sources,2006,156(2):581-588.
    [130]Xi J, Qiu X, Zhu W, et al. Enhanced electrochemical properties of poly(ethylene oxide)-based composite polymer electrolyte with ordered mesoporous materials for lithium polymer battery [J]. Microporous and Mesoporous Materials,2006, 88(1-3):1-7.
    [131]Xi J, Ma X, Cui M, et al. Electrochemistry study on PEO-LiClO4-ZSM-5 composite polymer electrolyte [J]. Chinese Science Bulletin,2004,49(8): 785-789.
    [132]He X, Shi Q, Zhou X, et al. In situ composite of nano SiO2-P(VDF-HFP) porous polymer electrolytes for Li-ion batteries [J]. Electrochimica Acta,2005, 51(6):1069-1075.
    [133]Cao J, Wang L, He X, et al. In situ nano-crystalline TiO2-poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries [J]. Journal of Materials Chemistry A (2013), doi: org/10.1039/C3TA00086A.
    [134]Tambelli C C, Bloise A C, Ros Rio A V, et al. Characterisation of PEO-Al2O3 composite polymer electrolytes [J]. Electrochimica Acta,2002,47(11): 1677-1682.
    [135]Liu Y, Lee J Y, Hong L. In situ preparation of poly(ethylene oxide)-SiO2 composite polymer electrolytes [J]. Journal of Power Sources,2004,129(2): 303-311.
    [136]Li Z, Su G, Wang X, et al. Micro-porous P(VDF-HFP)-based polymer electrolyte filled with Al2O3 nanoparticles [J]. Solid State Ionics,2005, 176(23-24):1903-1908.
    [137]Lin C W, Hung C L, Venkateswarlu M, et al. Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries [J]. Journal of Power Sources,2005,146(1-2):397-401.
    [138]Kumar R, Subramania A, Sundaram N T K, et al. Effect of MgO nanoparticles on ionic conductivity and electrochemical properties of nanocomposite polymer electrolyte [J]. Journal of Membrane Science,2007,300(1-2): 104-110.
    [139]Borghini M C, Mastragostino M, Passerini S, et al. Electrochemical properties of polyethylene oxide-Li[(CF3SO2)2N]-gamma-LiAlO2 composite polymer electrolytes [J]. Journal of The Electrochemical Society,1995,142(7): 2118-2121.
    [140]Sun H Y, Sohn H J, Yamamoto O, et al. Enhanced lithium-ion transport in PEO-based composite polymer electrolytes with ferroelectric BaTiO3 [J]. Journal of The Electrochemical Society,1999,146(5):1672-1676.
    [141]Wen Z, Itoh T, Ikeda M, et al. Characterization of composite electrolytes based on a hyperbranched polymer [J]. Journal of Power Sources,2000,90(1):20-26.
    [142]Vaia R A, Vasudevan S, Krawiec W, et al. New polymer electrolyte nanocomposites:Melt intercalation of poly(ethylene oxide) in mica-type silicates [J]. Advanced Materials,1995,7(2):154-156.
    [143]Raghavan S R, Riley M W, Fedkiw P S, et al. Composite polymer electrolytes based on poly(ethylene glycol) and hydrophobic fumed silica:Dynamic rheology and microstructure [J]. Chemistry of Materials,1998,10(1):244-251.
    [144]Croce F, Persi L, Scrosati B, et al. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes [J]. Electrochimica Acta, 2001,46(16):2457-2461.
    [145]Wang X J, Kang J J, Wu Y P, et al. Novel composite polymer electrolytes based on poly(ether-urethane) network polymer and modified montmorillonite [J]. Electrochemistry Communications,2003,5(12):1025-1029.
    [146]Jiang Y X, Chen Z F, Zhuang Q C, et al. A novel composite microporous polymer electrolyte prepared with molecule sieves for Li-ion batteries [J]. Journal of Power Sources,2006,160(2):1320-1328.
    [147]Aihara Y, Arai S, Hayamizu K. Ionic conductivity, DSC and self diffusion coefficients of lithium, anion, polymer, and solvent of polymer gel electrolytes: the structure of the gels and the diffusion mechanism of the ions [J]. Electrochimica Acta,2000,45(8-9):1321-1326.
    [148]Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Natual Material,2005,4(5): 366-377.
    [149]Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices [J]. Advanced Materials,2008,20(15): 2878-2887.
    [150]Marzantowicz M, Dygas J R, Krok F, et al. Crystallization and melting of PEO: LiTFSI polymer electrolytes investigated simultaneously by impedance spectroscopy and polarizing microscopy [J]. Electrochimica Acta,2005,50(19): 3969-3977.
    [151]Reddy M J, Chu P P, Kumar J S, et al. Inhibited crystallization and its effect on conductivity in a nano-sized Fe oxide composite PEO solid electrolyte [J]. Journal of Power Sources,2006,161(1):535-540.
    [152]Egashira M, Todo H, Yoshimoto N, et al. Lithium ion conduction in ionic liquid-based gel polymer electrolyte [J]. Journal of Power Sources,2008, 178(2):729-735.
    [153]Park M, Zhang X, Chung M, et al. A review of conduction phenomena in Li-ion batteries [J]. Journal of Power Sources,2010,195(24):7904-7929.
    [154]Croce F, Curini R, Martinelli A, et al. Physical and chemical properties of nanocomposite polymer electrolytes [J]. The Journal of Physical Chemistry B, 1999,103(48):10632-10638.
    [155]Tang Y, Kusoglu A, Karlsson A M, et al. Mechanical properties of a reinforced composite polymer electrolyte membrane and its simulated performance in PEM fuel cells [J]. Journal of Power Sources,2008,175(2):817-825.
    [156]Appetecchi G B, Scaccia S, Passerini S. Investigation on the stability of the lithium-polymer electrolyte interface [J]. Journal of The Electrochemical Society,2000,147(12):4448-4452.
    [157]Arora P, White R E, Doyle M. Capacity fade mechanisms and side reactions in lithium-ion batteries [J]. Journal of The Electrochemical Society,1998,145(10): 3647-3667.
    [158]Aurbach D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J]. Journal of Power Sources,2000, 89(2):206-218.
    [159]Shim J, Kostecki R, Richardson T, et al. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature [J]. Journal of Power Sources,2002,112(1):222-230.
    [160]Wang M, Zhao F, Dong S. A single ionic conductor based on Nafion and its electrochemical properties used as lithium polymer electrolyte [J]. The Journal of Physical Chemistry B,2003,108(4):1365-1370.
    [161]Deng Z, Xu Q, Zheng Y, et al. Rechargeable lithium batteries with a polymeric single-ion conductor [J]. Journal of Power Sources,1994,50(3):369-374.
    [162]Sun X G, Hou J, Kerr J B. Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate [J]. Electrochimica Acta,2005, 50(5):1139-1147.
    [163]Zhu Y S, Gao X W, Wang X J, et al. A single-ion polymer electrolyte based on boronate for lithium ion batteries [J]. Electrochemistry Communications,2012, 22(6):29-32.
    [164]Zhu Y S, Wang X J, Hou Y Y, et al. A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries [J]. Electrochimica Acta,2013, 87(7):113-118.
    [165]Angell C A, Liu C, Sanchez E. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity [J]. Nature,1993,362(6416): 137-139.
    [166]Lin K J, Li K, Maranas J K. Differences between polymer/salt and single ion conductor solid polymer electrolytes [J]. RSC Advances,2013,3(5): 1564-1571.
    [167]Burjanadze M, Karatas Y, Kaskhedikar N, et al. Salt-in-polymer electrolytes for lithium ion batteries based on organo-functionalized polyphosphazenes and polysiloxanes [J]. Zeitschrift fur Physikalische Chemie,2010,224(10-12): 1439-1443.
    [168]Hiller M M, Gentschev A C, Amereller M, et al. Salt-in-polymer electrolytes based on polysiloxanes for lithium-ion cells:Ionic transport and electrochemical stability [J]. ECS Transactions,2011,33(28):3-15.
    [169]Kunze M, Karatas Y, Wiemh Fer H D, et al. Correlations of ion motion and chain motion in salt-in-polysiloxane-g-oligoether electrolytes [J]. Macromolecules,2012,45(20):8328-8335.
    [170]Xiao W, Li X, Guo H, et al. Preparation of core-shell structural single ionic conductor SiO2@Li+ and its application in PVDF-HFP-based composite polymer electrolyte [J]. Electrochimica Acta,2012,85(11):612-621.
    [171]Tarascon J M, Schmutz C, Gozdz A S, et al. The Li-ion technology:Its evolution from liquid to plastic [J]. MRS Online Proceedings Library,1994, 369(4):66-73.
    [172]Jacob M M E, Hackett E, Giannelis E P. From nanocomposite to nanogel polymer electrolytes [J]. Journal of Materials Chemistry,2003,13(1):1-5.
    [173]Chung N K, Kwon Y D, Kim D. Thermal, mechanical, swelling, and electrochemical properties of poly(vinylidene fluoride)-co-hexafluoropropylene /poly(ethylene glycol) hybrid-type polymer electrolytes [J]. Journal of Power Sources,2003,124(1):148-154.
    [174]Xiao W, Li X, Wang Z, et al. Study on performances of ZSM-5 doped P(VDF-HFP) based composite polymer electrolyte prepared by steam bath technique [J]. Iranian Polymer Journal,2012,21(8):481-488.
    [175]Park Y W, Lee D S. The fabrication and properties of solid polymer electrolytes based on PEO/PVP blends [J]. Journal of Non-Crystalline Solids,2005,351(2): 144-148.
    [176]Li Z H, Cheng C, Zhan X Y, et al. A foaming process to prepare porous polymer membrane for lithium ion batteries [J]. Electrochimica Acta,2009,54(18): 4403-4407.
    [177]Venkata S R C, Ravi M, Raja V, et al. Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications [J]. Iranian Polymer Journal,2012,21(8):531-536.
    [178]Xiao W, Li X, Wang Z, et al. Performance of PVDF-HFP-based gel polymer electrolytes with different pore forming agents [J]. Iranian Polymer Journal, 2012,21(11):755-761.
    [179]陈朗,饶睦敏,李伟善,等.尿素作为造孔剂对聚乙烯支撑的PAMS聚合物电解质性能的改进[J].物理化学学报,2011,27(7):1689-1694.
    [180]杨波,李新海,郭华军,等PVP/PVDF-HFP微孔聚合物电解质的制备及性能[J].中南大学学报(自然科学版),2012,43(5):1628-1632.
    [181]李朝晖.聚偏氟乙烯-六氟丙烯基微孔复合聚合物电解质的电化学性能研究[D].湘潭:湘潭大学,2004.
    [182]谢辉PVDF基复合型聚合物电解质的研究及其应用[D].天津:天津大学,2009.
    [183]Manuel S A, Teeters D. Characterization of PVDF-HFP polymer membranes prepared by phase inversion techniques I. Morphology and charge-discharge studies [J]. Electrochimica Acta,2003,48(14-16):2143-8.
    [184]胡拥军.锂离子电池用聚合物电解质的制备及性能研究[D].长沙:中南大学,2007.
    [185]禹筱元.聚合物锂离子电池电解质的制备及应用研究[D].广州:中山大学,2008.
    [186]Cao J H, Zhu B K, Xu Y Y Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes [J]. Journal of Membrane Science,2006,281(1-2):446-453.
    [187]Zhang P, Yang L C, Li L L, et al. Enhanced electrochemical and mechanical properties of P(VDF-HFP)-based composite polymer electrolytes with SiO2 nanowires [J]. Journal of Membrane Science,2011,379(1-2):80-85.
    [188]Ding Y, Zhang P, Long Z, et al. The ionic conductivity and mechanical property of electrospun P(VDF-HFP)/PMMA membranes for lithium ion batteries [J]. Journal of Membrane Science,2009,329(1-2):56-59.
    [189]Xi J, Qiu X, Li J, et al. PVDF-PEO blends based microporous polymer electrolyte:Effect of PEO on pore configurations and ionic conductivity [J]. Journal of Power Sources,2006,157(1):501-506.
    [190]Subramania A, Sundaram N T K, Kumar G V. Structural and electrochemical properties of micro-porous polymer blend electrolytes based on PVDF-co-HFP-PAN for Li-ion battery applications [J]. Journal of Power Sources,2006,153(1):177-182.
    [191]Min H S, Ko J M, Kim D W. Preparation and characterization of porous polyacrylonitrile membranes for lithium-ion polymer batteries [J]. Journal of Power Sources,2003,119-121(6):469-472.
    [192]Johansson P, Edvardsson M, Adebahr J, et al. Mixed solvent and polymer coordination in PAN and PMMA gel polymer electrolytes studied by Ab initio calculations and Raman spectroscopy [J]. The Journal of Physical Chemistry B, 2003,107(46):12622-126227.
    [193]Jo S I, Sohn H J, Kang D W, et al. Electrochemical studies of gel polymer electrolytes based on methyl methacrylate-styrene copolymers [J]. Journal of Power Sources,2003,119-121(7):478-481.
    [194]Hao J, Lei G, Li Z, et al. A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery [J]. Journal of Membrane Science,2013,428(10):11-16.
    [195]Zaccaria M, Gualandi C, Fabiani D, et al. Effect of oxide nanoparticles on thermal and mechanical properties of electrospun separators for lithium-ion batteries [J]. Journal of Nanomaterials,2012,48(1):1145-1153.
    [196]Wu N, Jing B, Cao Q, et al. A novel electrospun TPU/PVDF porous fibrous polymer electrolyte for lithium ion batteries [J]. Journal of Applied Polymer Science,2012,125(4):2556-2563.
    [197]Cui W W, Tang D Y. Electrospun poly(lithium 2-acrylamido-2-methylpropanesulfonic acid) fiber-based polymer electrolytes for lithium-ion batteries [J]. Journal of Applied Polymer Science,2012,126(2):510-518.
    [198]Costa C M, Rodrigues L C, Sencadas V, et al. Effect of degree of porosity on the properties of poly(vinylidene fluoride-trifluorethylene) for Li-ion battery separators [J]. Journal of Membrane Science,2012,407-408(6):193-201.
    [199]姚永毅.静电纺丝法制备聚合物纳米纤维及其应用[D].成都:四川大学,2004.
    [200]赵治贞.电纺制备聚偏氟乙烯超细纤维膜及性能研究[D].天津:天津大学,2004.
    [201]瞿威.静电纺丝法制备锂离子电池用PVDF/PU纳米纤维隔膜[D].武汉:武汉理工大学,2011.
    [202]Wei X, Xinhai L, Zhixing W, et al. Physicochemical properties of a novel composite polymer electrolyte doped with vinyltrimethoxylsilane-modified nano-La2O3 [J]. Journal of Rare Earths,2012,30(10):1034-1038.
    [203]Croce F, Focarete M L, Hassoun J, et al. A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning [J]. Energy & Environmental Science,2011,4(3):921-927.
    [204]Idris N H, Rahman M M, Wang J Z, et al. Microporous gel polymer electrolytes for lithium rechargeable battery application [J]. Journal of Power Sources,2012, 201(9):294-300.
    [205]Jung H R, Lee W J. Electrochemical characteristics of electrospun poly(methyl methacrylate)/polyvinyl chloride as gel polymer electrolytes for lithium ion battery [J]. Electrochimica Acta,2011,58(5):674-680.
    [206]Prasanth R, Shubha N, Hng H H, et al. Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries [J]. European Polymer Journal,2013,49(2): 307-318.
    [207]Bruce P G, Vincent C A. Steady state current flow in solid binary electrolyte cells [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1987,225(1-2):1-17.
    [208]Di Noto V, Lavina S, Giffin G A, et al. Polymer electrolytes:Present, past and future [J]. Electrochimica Acta,2011,57(2):4-13.
    [209]Capiglia C, Mustarelli P, Quartarone E, et al. Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes [J]. Solid State Ionics,1999,118(1-2): 73-79.
    [210]Appetecchi G B, Croce F, Marassi R, et al. Lithium insertion into carbonaceous materials and transition metal oxides from high performance polymer electrolytes [J]. Electrochimica Acta,1999,45(1-2):23-30.
    [211]Agnihotry S A, Pradeep P, Sekhon S S. PMMA based gel electrolyte for EC smart windows [J]. Electrochimica Acta,1999,44(18):3121-3126.
    [212]Dai H, Zawodzinski T A. The dependence of lithium transference numbers on temperature, salt concentration and anion type in poly (vinylidene fluoride)-hexafluoropropylene copolymer-based gel electrolytes [J]. Journal of Electroanalytical Chemistry,1998,459(1):111-119.
    [213]Magistris A, Mustarelli P, Quartarone E, et al. Poly(vinylidenefluoride)-based porous polymer electrolytes [J]. Electrochimica Acta,2001,46(10-11): 1635-1639.
    [214]Shi Q, Yu M, Zhou X, et al. Structure and performance of porous polymer electrolytes based on P(VDF-HFP) for lithium ion batteries [J]. Journal of Power Sources,2002,103(2):286-292.
    [215]Li G C, Zhang P, Zhang H P, et al. A porous polymer electrolyte based on P(VDF-HFP) prepared by a simple phase separation process [J]. Electrochemistry Communications,2008,10(12):1883-1885.
    [216]Zhang H P, Zhang P, Li G C, et al. A porous poly (vinylidene fluoride) gel electrolyte for lithium ion batteries prepared by using salicylic acid as a foaming agent [J]. Journal of Power Sources,2009,189(1):594-598.
    [217]Ran Y, Yin Z, Ding Z, et al. A polymer electrolyte based on poly(vinylidene fluoride-hexafluoropylene)/hydroxypropyl methyl cellulose blending for lithium-ion battery [J]. Ionics,2012,34(9):1-6.
    [218]Saito Y, Kataoka H, Sakai T, et al. Conduction properties of lithium gel electrolytes investigated by impedance spectroscopy and pulsed-field gradient NMR with electric field [J]. Electrochimica Acta,2001,46(10-11):1747-1751.
    [219]Kim K M, Park N G, Ryu K S, et al. Physical and electrochemical characterizations of poly(vinylidene fluoride-hexafluoropropylene)/SiO2-based polymer electrolytes prepared by the phase-inversion technique [J]. Journal of Applied Polymer Science,2006,102(1):140-148.
    [220]Zhang Y, Feng H, Wu X, et al. Progress of electrochemical capacitor electrode materials:A review [J]. International Journal of Hydrogen Energy,2009,34(11): 4889-4899.
    [221]席靖宇.锂离子二次电池用无机复合聚合物电解质的研究[D].上海:上海交通大学,2004.
    [222]Huang H, Wunder S L. Preparation of microporous PVDF based polymer electrolytes [J]. Journal of Power Sources,2001,97-98(9):649-653.
    [223]Song J Y, Cheng C L, Wang Y Y, et al. Microstructure of poly(vinylidene fluoride)-based polymer electrolyte and its effect on transport properties [J]. Journal of The Electrochemical Society,2002,149(9):A1230-A1236.
    [224]Abbrent S, Plestil J, Hlavata D, et al. Crystallinity and morphology of PVDF-HFP-based gel electrolytes [J]. Polymer,2001,42(4):1407-1416.
    [225]Manuel S A, Saito Y. Ionic conductivity and diffusion coefficient studies of PVDF-HFP polymer electrolytes prepared using phase inversion technique [J]. Solid State Ionics,2002,148(3-4):475-481.
    [226]Manuel Stephan A, Nahm K S, Prem Kumar T, et al. Nanofiller incorporated poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) composite electrolytes for lithium batteries [J]. Journal of Power Sources,2006,159(2): 1316-1321.
    [227]Ren Z, Liu Y, Sun K, et al. A microporous gel electrolyte based on poly(vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium-ion battery [J]. Electrochimica Acta,2009,54(6):1888-1892.
    [228]Jeong H S, Hong S C, Lee S Y. Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries [J]. Journal of Membrane Science,2010,364(1-2):177-182.
    [229]Yang C C, Chen Y C, Lian Z Y, et al. Fabrication and characterization of P(VDF-HFP)/SBA-15 composite membranes for Li-ion batteries [J]. J Solid State Electrochem,2012,16(5):1815-1821.
    [230]Zhao X, Zhang W, Chen S, et al. Hydrophilicity and crystallization behavior of PVDF/PMMA/TiO2(SiO2) composites prepared by in situ polymerization [J]. Journal of Polymer Research,2012,19(5):1-9.
    [231]Ding Z, Kloprogge J T, Frost R L, et al. Porous clays and pillared clays-based catalysts. Part 2:A review of the catalytic and molecular sieve applications [J]. Journal of Porous Materials,2001,8(4):273-293.
    [232]肖围.铝管表面复合钝化及防腐性能研究[D].长沙,中南大学,2010.
    [233]李美.纳米粒子掺杂硅烷薄膜的电化学辅助沉积及其防护性能[D].杭州,浙江大学,2010.
    [234]Perzyna K, Borkowska R, Syzdek J, et al. The effect of additive of Lewis acid type on lithium-gel electrolyte characteristics [J]. Electrochimica Acta,2011, 57(6):58-65.
    [235]Ismail H, Shuhelmy S, Edyham M R. The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites [J]. European Polymer Journal,2002,38(1):39-47.
    [236]Lin J, Siddiqui J A, Ottenbrite R M. Surface modification of inorganic oxide particles with silane coupling agent and organic dyes [J]. Polymers for Advanced Technologies,2001,12(5):285-292.
    [237]Park S J, Jin J S. Effect of silane coupling agent on interphase and performance of glass fibers/unsaturated polyester composites [J]. Journal of Colloid and Interface Science,2001,242(1):174-179.
    [238]Zhu D, Van Ooij W J. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in sodium chloride solution. Part 2: mechanism for corrosion protection [J]. Corrosion Science,2003,45(10): 2177-2197.
    [239]高宁.磷酸盐/聚合物基分子印迹材料的制备与特性[D].天津,天津大学,2007.
    [240]Appetecchi G B, Croce F, Persi L, et al. Transport and interfacial properties of composite polymer electrolytes [J]. Electrochimica Acta,2000,45(8-9): 1481-1490.
    [241]Croce F, Scrosati B. Interfacial phenomena in polymer-electrolyte cells: Lithium passivation and cycleability [J]. Journal of Power Sources,1993, 43(1-3):9-19.
    [242]俞快.金属/稀土氧化物纳米复合粒子的制备与性能[D].天津,天津大学,2009.
    [243]Guedes-S C C, Souza C F M, Bressiani J C. Effect of rare-earth oxides on properties of silicon nitride obtained by normal sintering and sinter-HIP [J]. Journal of Rare Earths,2012,30(11):1177-1183.
    [244]Mi T W, Jin S C. Viscosity and thermal expansion of rare earth containing soda-limesilicate glass [J]. Journal of Alloys and Compounds,2010,504(1): 273-276.
    [245]Sacanell J, Leyva A G, Bellino M G, et al. Nanotubes of rare earth cobalt oxides for cathodes of intermediate-temperature solid oxide fuel cells [J]. Journal of Power Sources,2010,195(7):1786-1792.
    [246]Sato S, Takahashi R, Kobune M, et al. Basic properties of rare earth oxides [J]. Applied Catalysis A:General,2009,356(1):57-63.
    [247]Xiao W, Man R, Miao C, et al. Study on corrosion resistance of the BTESPT silane cooperating with rare earth cerium on the surface of aluminum-tube [J]. Journal of Rare Earths,2010,28(1):117-122.
    [248]Liang G, Xu J, Xu W, et al. Effect of filler-polymer interactions on the crystalline morphology of PEO-based solid polymer electrolytes by Y2O3 nano-fillers [J]. Polymer Composites,2011,32(4):511-518.
    [249]Morita M, Ishikawa M, Matsuda Y. Ionic conductivities of polymeric solid electrolyte films containing rare earth ions [J]. Journal of Alloys and Compounds,1997,250(1-2):524-527.
    [250]Vijayakumar G, Karthick S N, Sathiya Priya A R, et al. Effect of nanoscale CeO2 on PVDF-HFP-based nanocomposite porous polymer electrolytes for Li-ion batteries [J]. Journal of Solid State Electrochemistry,2008,12(9): 1135-1141.
    [251]Chiang C K, Wu C H, Liu C C, et al. Effects of La2O3 capping layers prepared by different ALD lanthanum precursors on flatband voltage tuning and EOT scaling in TiN/HiO2/SiO2/Si MOS structures [J]. Journal of The Electrochemical Society,2011,158(4):H447-H451.
    [252]Jin J, Wen Z, Liang X, et al. Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery [J]. Solid State Ionics,2012,225(5): 604-607.
    [253]Missan H P S, Lalia B S, Karan K, et al. Polymer-ionic liquid nano-composites electrolytes:Electrical, thermal and morphological properties [J]. Materials Science and Engineering:B,2010,175(2):143-149.
    [254]Ramesh S, Lu S C, Morris E. Towards magnesium ion conducting poly(vinylidenefluoride-hexafluoropropylene)-based solid polymer electrolytes with great prospects:Ionic conductivity and dielectric behaviours [J]. Journal of the Taiwan Institute of Chemical Engineers,2012,43(5):806-812.
    [255]Choi B K, Kim Y W. Conductivity relaxation in the PEO-salt polymer electrolytes [J]. Electrochimica Acta,2004,49(14):2307-2313.
    [256]Pehlivan I B, Geor N P, Marsal R, et al. Ion conduction of branched polyethyleneimine-lithium bis(trifluoromethylsulfonyl) imide electrolytes [J]. Electrochimica Acta,2011,57(4):201-206.
    [257]Dotelli G, Omati L, Gallo Stampino P, et al. Investigation of gas diffusion layer compression by electrochemical impedance spectroscopy on running polymer electrolyte membrane fuel cells [J]. Journal of Power Sources,2011,196(21): 8955-8966.
    [258]Kim J R, Yi J S, Song T W. Investigation of degradation mechanisms of a high-temperature polymer-electrolyte-membrane fuel cell stack by electrochemical impedance spectroscopy [J]. Journal of Power Sources,2012, 220(3):54-64.
    [259]Kumagai M, Myung S T, Ichikawa T, et al. Evaluation of polymer electrolyte membrane fuel cells by electrochemical impedance spectroscopy under different operation conditions and corrosion [J]. Journal of Power Sources, 2010,195(17):5501-5507.
    [260]Tenhaeff W E, Perry K A, Dudney N J. Impedance characterization of Li ion transport at the interface between laminated ceramic and polymeric electrolytes [J]. Journal of The Electrochemical Society,2012,159(12):A2118-A2123.
    [261]Angulakshmi N, Prem Kumar T, Thomas S, et al. Ionic conductivity and interfacial properties of nanochitin-incorporated polyethylene oxide-LiN (C2F5SO2)2 polymer electrolytes [J]. Electrochimica Acta,2010,55(4): 1401-1406.
    [262]Moss P L, Au G, Plichta E J, et al. Investigation of solid electrolyte interfacial layer development during continuous cycling using ac impedance spectra and micro-structural analysis [J]. Journal of Power Sources,2009,189(1):66-71.
    [263]Deka M, Nath A K, Kumar A. Effect of dedoped (insulating) polyaniline nanofibers on the ionic transport and interfacial stability of poly(vinylidene fluoride-hexafluoropropylene) based composite polymer electrolyte membranes [J]. Journal of Membrane Science,2009,327(1-2):188-194.
    [264]Raghavan P, Zhao X, Manuel J, et al. Electrochemical performance of electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid [J]. Electrochimica Acta,2010,55(4):1347-1354.
    [265]Mizuno Y, Okubo M, Asakura D, et al. Impedance spectroscopic study on interfacial ion transfers in cyanide-bridged coordination polymer electrode with organic electrolyte [J]. Electrochimica Acta,2012,63(2):139-145.
    [266]Chung S H, Wang Y, Persi L, et al. Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides [J]. Journal of Power Sources,2001,97-98(5):644-648.
    [267]Kurian M, Galvin M E, Trapa P E, et al. Single-ion conducting polymer-silicate nanocomposite electrolytes for lithium battery applications [J]. Electrochimica Acta,2005,50(10):2125-2134.
    [268]Onishi K, Matsumoto M, Shigehara K. Lithium batteries composed of aluminate polymer complexes as single-ion conductive solid electrolytes [J]. Journal of Power Sources,2001,92(1-2):120-123.
    [269]Watanabe M, Ogata N. Ionic conductivity of polymer electrolytes and future applications [J]. British Polymer Journal,1988,20(3):181-192.
    [270]Meng L Y, Park S J. Effect of nano-silica spheres template on CO2 capture of exchange resin-based nanoporous carbons [J]. Journal of Nanoscience and Nanotechnology,2013,13(1):401-404.
    [271]Fern J M, Duran A, Navarro B I, et al. Influence of nanosilica and a polycarboxylate ether superplasticizer on the performance of lime mortars [J]. Cement and Concrete Research,2013,43(7):12-24.
    [272]Mahmoud M E, Albishri H M. Nano-silica sorbents immobilized hydrophobic ionic liquids for enhanced adsorptive extraction of cadmium from acidic aqueous solutions [J]. Desalination and Water Treatment,2012,49(1-3): 348-358.
    [273]Mousavi M A, Hassanajili S, Rahimpour M R. Synthesis of fluorinated nano-silica and its application in wettability alteration near-wellbore region in gas condensate reservoirs [J]. Applied Surface Science (2013), doi: 10.1016/j.apsusc.2013.02.014.
    [274]Wang H, Voort P, Qu H, et al. A simple room-temperature synthesis of mesoporous silica rods with tunable size and porosity [J]. Journal of Nanoparticle Research,2013,15(3):1-8.
    [275]Lee Y S, Lee J H, Choi J A, et al. Cycling characteristics of lithium powder polymer batteries sssembled with composite gel polymer electrolytes and lithium powder anode [J]. Advanced Functional Materials,2013,23(8): 1019-1027.
    [276]Lee Y S, Ju S H, Kim J H, et al. Composite gel polymer electrolytes containing core-shell structured SiO2(Li+) particles for lithium-ion polymer batteries [J]. Electrochemistry Communications,2012,17(8):18-21.
    [277]St Ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range [J]. Journal of Colloid and Interface Science,1968,26(1): 62-69.
    [278]Weber A Z, Newman J. Transport in polymer-electrolyte membranes:I. Physical Model [J]. Journal of The Electrochemical Society,2003,150(7): A1008-A1015.
    [279]Zhang S S, Xu K, Jow T R. EIS study on the formation of solid electrolyte interface in Li-ion battery [J]. Electrochimica Acta,2006,51(8-9):1636-1640.
    [280]Piao T, Park S M, Doh C H, et al. Intercalation of lithium ions into graphite electrodes studied by AC impedance measurements [J]. Journal of The Electrochemical Society,1999,146(8):2794-2798.
    [281]Shibuya M, Nishina T, Matsue T, et al. In situ conductivity measurements of LiCoO2 film during lithium insertion/extraction by using interdigitated microarray electrodes [J]. Journal of The Electrochemical Society,1996, 143(10):3157-3160.
    [282]Thomas M G S R, Bruce P G, Goodenough J B. AC impedance analysis of polycrystalline insertion electrodes:application to Li1-xCoO2 [J]. Journal of The Electrochemical Society,1985,132(7):1521-1528.
    [283]Dokko K, Mohamedi M, Fujita Y, et al. Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods [J]. Journal of The Electrochemical Society,2001,148(5):A422-A426.
    [284]Levi M D, Salitra G, Markovsky B, et al. Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2:Simultaneous application of electroanalytical techniques SSCV, PITT, and EIS [J]. Journal of The Electrochemical Society,1999,146(4):1279-1289.
    [285]Molenda J, Stoklosa A, BaK T. Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties [J]. Solid State Ionics,1989,36(1-2):53-58.
    [286]Yang C R, Song J Y, Wang Y Y, et al. Impedance spectroscopic study for the initiation of passive film on carbon electrodes in lithium ion batteries [J]. Journal of Applied Electrochemistry,2000,30(1):29-34.
    [287]Rodrigues S, Munichandraiah N, Shukla A K. A review of state-of-charge indication of batteries by means of A.C. impedance measurements [J]. Journal of Power Sources,2000,87(1-2):12-20.
    [288]赵吉诗.锂离子电池电极材料的电化学阻抗特性研究[D].北京,清华大学,2008.
    [289]Rodrigues S, Munichandraiah N, Shukla A K. AC impedance and state-of-charge analysis of a sealed lithium-ion rechargeable battery [J]. Journal of Solid State Electrochemistry,1999,3(7-8):397-405.
    [290]Zhao H, Ren J, He X, et al. Modification of natural graphite for lithium ion batteries [J]. Solid State Sciences,2008,10(5):612-617.
    [291]Holzapfel M, Martinent A, Alloin F, et al. First lithiation and charge/discharge cycles of graphite materials, investigated by electrochemical impedance spectroscopy [J]. Journal of Electroanalytical Chemistry,2003,546(4):41-50.
    [292]Funabiki A, Inaba M, Ogumi Z, et al. Impedance study on the electrochemical lithium intercalation into natural graphite powder [J]. Journal of The Electrochemical Society,1998,145(1):172-178.
    [293]Zhao H, Ren J, He X, et al. Purification and carbon-film-coating of natural graphite as anode materials for Li-ion batteries [J]. Electrochimica Acta,2007, 52(19):6006-6011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700