用户名: 密码: 验证码:
大型风机异步变桨技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
统一变桨距风力机设计的假定前提是整个风轮扫掠面内风速分布是均匀的。在实际风场中,由于风剪切、塔影效应和湍流的影响,桨叶在不同位置的风速各不相同,在风轮扫掠面内的不同位置所受的升力不同,即风轮在旋转过程中存在额外阻力,产生的风轮转矩持续变化,影响风力机的输出功率以及电能质量,还造成桨叶和风轮上的载荷不平衡,引起桨叶的拍打振动和扭矩波动。桨叶上的扭矩波动将导致风轮主轴、传动链、轮毂和塔架上的负载波动,给风机的机械强度、振动、疲劳寿命和电能质量等方面带来一系列问题。本论文着重针对风剪切、塔影效应和湍流影响下的统一桨距角给定、风速的建模、大型风机的气动建模、风轮转矩模拟、异步变桨控制策略及异步变桨系统的设计等方面进行研究。
     首先,针对风力发电机组输出功率受风速随机性影响的问题,提出了一种基于模糊切换的前馈模糊与Fuzzy-PID相结合的统一桨距角给定的变桨控制策略,并在直驱永磁风力发电机组的统一变桨控制系统中进行了仿真验证。结果表明采用该控制策略的统一变桨控制器比常规PID变桨控制器和Fuzzy-PID变桨控制器具有更好抗扰动能力,动、静态性能有很大的提高,具有较强的实用性。同时,基于模糊切换的前馈模糊与Fuzzy-PID相结合的统一桨距角给定,为异步变桨控制系统的优越性比较提供了参照。
     常规风轮模型中的统一桨距角与风机气动载荷的影响相互耦合,不能分离出风剪切、塔影效应和湍流对单个桨叶上的气动载荷、风轮转矩、风力发电机组输出功率及其并网点电压的波动影响。本文针对忽略叶尖损失和轮毂损失、桨叶数无穷大的假设以及桨叶根部和叶尖部的叶素所受力矩差别巨大,提出一种新型的大型风机的气动建模方法,基于该方法计算风机在风剪切、塔影效应和湍流等气动不平衡因素下所受气动载荷,推导出风轮气动载荷的影响规律,为基于异步变桨的风力机数学模型提供基础以及给异步变桨控制策略提供理论指导,解决了统一桨距角与风机气动载荷的耦合问题。建立了虚拟风场和风轮转矩模拟的实验平台,验证了风轮模型的准确性和优越性,为进一步研究异步变桨技术奠定了基础。
     针对风轮转矩波动,本文通过对单个桨叶和风轮的载荷进行分析,首次提出一种新型的基于摆振力矩的异步变桨控制策略,直接减少桨叶上的力矩波动以及风轮转矩波动等。在建立风力发电机组的数学模型的基础上,对多段动态权系数分配和单神经元自适应PID两种异步变桨控制策略进行比较,仿真证明了基于单神经元自适应PID的异步变桨控制策略对于摆振力矩的波动和风轮转矩波动的减少具有更好的控制效果。另外,为了同时减少风轮转矩波动和风轮上不平衡载荷,本文在基于挥舞力矩的异步变桨控制上,提出了一种基于摆振力矩和挥舞力矩反馈的异步变桨控制策略,即在统一桨距角给定的基础上,通过权系数优化摆振的桨距角偏差和挥舞的桨距角偏差,将其之和作为每个桨叶的桨距角给定,并在直驱永磁风力发电机组的异步变桨控制系统对该异步变桨控制策略进行仿真验证,结果表明基于摆振力矩和挥舞力矩的异步变桨控制系统不仅对风轮转矩波动的控制效果较好,而且对风轮上的不平衡载荷也具有很好的抑制作用。
     针对风轮转矩和传动轴扭矩的难以检测的问题,提出了一种基于电功率的传动链扭矩逆向估算方法。首先通过实际测量风轮转速、发电机转速以及定子电流电压求得发电机电磁转矩,然后根据建立的传动链扭矩计算的逆模型,逆向推算出风轮转矩和传动轴的扭矩,最后通过仿真验证风轮转矩和传动轴扭矩的观测技术的正确性。
     最后对异步变桨系统进行了设计与实现。详细设计了异步变桨系统的结构,具体计算了桨叶的变桨载荷,设计了电伺服驱动控制器,建立了电伺服变桨距的硬件和软件系统,其中位置控制器采用模糊自适应PID控制器。仿真结果验证了模糊自适应PID位置控制器的正确性和可行性,其能够满足高性能伺服系统的精确定位和快速动态响应等性能要求。实验结果表明电伺服独立变桨系统能够对桨叶进行单独变桨控制,为异步变桨系统的应用奠定了技术基础。
The presupposition of the wind turbine design with collective pitchcontrol (CPC) is that wind distribution of the whole swept surface is uniform.However, the wind speeds at the blade different position are differentbecause of wind shear, tower shadow, turbulence and so on, and the lifts aredifferent from the position of the whole swept surface. These different liftsmake the wind turbine torque fluctuation which affects the output power ofthe wind turbine and the power quality, and cause imbalance loads on thewind turbine and the blade imbalance. The imbalance loads lead to the bladeedgewise vibration and blade torque fluctuation. Furthermore, the bladetorque s fluctuations also cause the torque fluctuation of the wind rotor shaft,the drive train, the hub and the tower. Moreover, the unbalanced loads willbring many problems to the wind turbine mechanical strength, the vibration,the fatigue life and the power grid quality. The collective pitch angle givenaffected by wind shear, tower shadow, turbulence, wind speed modeling,wind turbine aerodynamic modeling, wind turbine torque emulation,individual pitch control (IPC) strategy, individual pitch system design andother aspects are studied in this paper.
     First of all, the CPC strategy of the collective pitch angle given whichfeed-forward Fuzzy and Fuzzy-PID are combined on the basis of Fuzzyswitching is proposed according to the problem of the stability of the outputpower of the wind turbine generator system (WTGS) affected by the randomwind speed, and the CPC system of the DDPMSG is simulated. The resultsshow the collective pitch controller using the proposed control strategy hasbetter capacity of resisting disturbance, good static and dynamicperformances improved and strong applicability than the conventional PID controller or Fuzzy-PID controller. Meanwhile, the collective pitch anglegiven based on the combination of feed-forward Fuzzy and Fuzzy-PIDprovides a reference for the superiority comparison of the IPC system.
     Because the collective pitch angle of the conventional wind turbinemodel and the aerodynamic loads are coupled mutually, the fluctuationinfluences of the aerodynamic loads on the single blade, the wind turbinetorque, the output power of WTGS and the voltage of the Point of CommonCoupling (PCC) can not be separated out of the influence of wind shear,tower shadow and turbulence. A new large-scale wind turbine aerodynamicmodeling considered the lossless of the hub and the blade tip, the assumptionof infinite number of the blades, and the huge torque difference between theblade tip and the blade root is proposed. Therefore the wind turbineaerodynamic loads affected by wind shear, tower shadow, turbulence andother aerodynamic imbalance factors are calculated, and the influence rulesof the load fluctuations are deduced at length. These rules provide the basisto the wind turbine mathematical model based on IPC, provide thetheoretical guidance to the IPC strategies, and solve the collective pitchangles coupled problems. Moreover, the experiment platform of the virtualwind farm and the wind turbine torque is established. It not only verifies theaccuracy and the correctness of the wind turbine torque model but also laysthe foundation for the further IPC study.
     In order to smooth the wind turbine torque fluctuation, a new IPCstrategy based on edgewise moment is proposed. That is the present controlstrategy can directly smooth the edgewise moment and the wind turbinetorque fluctuation. The multi-stage dynamic weight coefficient distributionIPC strategy and the single neuron adaptive PID IPC strategy are comparedon the basis of the WTGS mathematical model. Then the control effects ofthe edgewise moment fluctuation and the wind turbine torque fluctuationused by the single neuron adaptive PID IPC strategy are better than thecontrol effects by the multi-stage dynamic weight coefficient distributionIPC strategy according to the results. In addition, in order to reduce the wind turbine torque and the unbalanced aerodynamic loads on the wind turbinesimultaneously, a new IPC strategy based on the feedback of the edgewisemoment and the flapwise moment is proposed. And the research on this IPCstrategy is on the basis on the IPC base on the flapwise moment. That is thesum of the edgewise pith angle deviation optimized and the flapwise pithangle deviation optimized by the weight coefficient is the pitch angle givenof each blade. And the verification of this IPC strategy is simulated in theIPC system of the Direct-driven Permanent Magnet Synchronous Generator(DDPMSG). The performance of this individual pitch controller is illustratedits capability of not only reducing the wind turbine fluctuation, but alsosmoothing the unbalanced loads on the wind turbine.
     For the problem of the wind turbine torque and the drive shaft torqueare difficult to detect directly, a method of torque indirect observation basedon the electric power is proposed. First, the generator electromagnetic torqueis calculated by the measurement of the wind turbine speed, the generatorspeed, the stator current and the stator voltage. Then the inverse model of thedrive chain is built, and the wind turbine torque and the drive shaft torqueare calculated by this model. Finally the correctness of the observation of thewind turbine torque and the drive shaft torque is verified by the DDPMSGsimulation.
     The IPC system is designed and implemented in this paper. Thedetailed design of the IPC system structure, the blade pitch load is calculatedspecifically, the electric servo controller which the Fuzzy adaptive PIDcontrol strategy is used in the position controller is designed, and thehardware and the software of electric servo pitch are established.Simulation results verify the correctness and the feasibility of the Fuzzyadaptive PID position controller. And the performance of the controller isillustrated its capability of meeting the accurate positioning, the fast dynamicresponses and others performance requirements of high-performance servosystems. In addition, the experimental results show the electric servo pitch system can pith control independently, and establish the technical base forthe application of the IPC system.
引文
[1].张新房.大型风力发电机组的智能控制研究[D].北京:华北电力大学,2005.
    [2].郭家虎.变速恒频双馈风力发电系统控制技术的研究[D].上海:上海大学,2008.
    [3].罗伟伟.双馈风力发电机的直接功率控制技术研究[D].淮南:安徽理工大学,2009.
    [4].苏绍禹.风力发电机设计与运行维护[M].北京:中国电力出版社,2003.
    [5]. Manwell J F, McGowan J G, Rogers A L. Wind energy explained: Theory, Design andApplication[M]. John Wiley&Sons Ltd,2002.
    [6].高峰.风力发电机组建模与变桨距控制研究[D].北京:华北电力大学(北京),2009.
    [7].李俊峰,蔡丰波,唐文倩.风光无限:中国风电发展报告2011[M].北京:中国环境科学出版社,2011.
    [8].李俊峰.中国风电发展报告2012[M].北京:中国环境科学出版社,2012.
    [9].李俊峰,欧洲风能协会,国际绿色和平组织.风力12:关于2020年风电达到世界电力总量12%的蓝图[M].北京:中国环境科学出版社,2004.
    [10].陈卿.大型风力机组独立液压变桨距系统研究[D].中南:中南大学,2010.
    [11].何祚庥,王亦楠.风力发电是我国能源和电力可持续发展战略的最现实选择[J].上海电力,2005,(1):8-18.
    [12].中国可再生能源学会风能专业委员会.2011年中国风电装机容量统计[R].北京:中国风能协会,2012.
    [13].吴江海.大型风力机叶片及翼型优化设计[D].南京:南京航空航天大学,2012.
    [14].贾增周.大型风力发电机组的智能滑模变结构控制研究[D].保定:华北电力大学(河北),2008.
    [15].吴永忠,苏志勇.关于风力机异步变桨的初步研究[J].应用能源技术,2007,(03):39-41.
    [16].吴永忠,苏志勇,张丽娜.风力机异步变桨的初步研究[J].节能,2007,(05):23-25+2.
    [17]. Hansen M O L. Aerodynamics of wind turbines[M]. London: Earthscan and James&James(Science Publishers) Ltd,2008.
    [18]. Hau E. Wind turbines: fundamentals, technologies, application, economics[M]. Berlin: SpringerVerlag,2006.
    [19]. Fadaeinedjad R, Moschopoulos G, Moallem M. The impact of tower shadow, yaw error, andwind shears on power quality in a wind-diesel system[J]. IEEE Transactions on EnergyConversion,2009,24(1):102-111.
    [20]. Dolan D S L, Lehn P W. Simulation model of wind turbine3p torque oscillations due to windshear and tower shadow[J]. IEEE Transactions on Energy Conversion,2006,21(3):717-724.
    [21]. Shen X, Zhu X C, Du Z H. Wind turbine aerodynamics and loads control in wind shear flow[J].Energy,2011,36(3):1424-1434.
    [22]. Wang H, Wang W, Bin L. Application of individual pitch controller for flicker reduction onvariable speed wind turbines[C]. Asia-Pacific Power and Energy Engineering Conference,2010:1-4.
    [23].许凌峰.变桨距风力发电机组智能控制研究[D].北京:华北电力大学,2009.
    [24].温和煦.兆瓦级风力发电机组模糊控制[D].沈阳:沈阳工业大学,2008.
    [25].卞松江.变速恒频风力发电关键技术研究[D].杭州:浙江大学,2003.
    [26].叶启明.大型风力发电机组系统的结构与特点[J].华中电力,2002,15(02):67-68.
    [27].井明波.兆瓦级风力发电机模糊控制器设计[D].兰州:兰州理工大学,2008.
    [28].付德宝.变速恒频风力发电系统传动链转矩波动控制[D].天津:天津大学,2009.
    [29].纪国瑞.风电场风速软测量与预测及短期风速数值模拟方法研究[D].保定:华北电力大学,2009.
    [30].吴卫珍.基于分数阶微积分风力发电机变浆距控制方法研究[D].南京:南京林业大学,2010.
    [31].衣传宝.双馈型风力发电机组变桨距控制系统研究[D].沈阳:沈阳工业大学,2009.
    [32].宋础,刘汉中.海上风力发电场开发现状及发展趋势[J].太阳能,2006,(02):26-28.
    [33].陈雷,邢作霞,潘建,钟明舫.大型风力发电机组技术发展趋势[J].可再生能源,2003,(01):27-30.
    [34].赵永强,李俊峰,许洪华.风力发电技术发展状况与趋势分析[J].中国科技产业,2006,(02):69-71.
    [35].李军军,吴政球,谭勋琼,陈波.风力发电及其技术发展综述[J].电力建设,2011,(08):64-72.
    [36].周洁.变速变桨距风力发电机组的线性变参数增益调度控制[D].沈阳:沈阳工业大学,2009.
    [37].恒泰资讯.2010-2015年风电变桨系统报告[R].北京:北京华经恒泰经济信息中心,2010.
    [38].王哲.大型风电机组变桨距控制策略研究[D].沈阳:沈阳工业大学,2010.
    [39]. Fadaeinedjad R, Moschopoulos G, Moallem M. Voltage sag impact on wind turbine towervibration[C]. Power Engineering Society General Meeting,2007:1-8.
    [40]. Fadaeinedjad R, Moschopoulos G, Moallem M. Investigation of voltage sag impact on windturbine tower vibrations[J]. Wind Energy,2008,11(4):351-375.
    [41]. Thiringer T, Petru T, Liljegren C. Power quality impact of a sea located hybrid wind park[J].IEEE Transactions on Energy Conversion,2001,16(2):123-127.
    [42].孙涛,王伟胜,戴慧珠,杨以涵.风力发电引起的电压波动和闪变[J].电网技术,2003,27(12):62-66+70.
    [43].赵海翔.风电引起的电压波动和闪变研究[D].中国电力科学研究院,2005.
    [44]. Muyeen S M, Tamura J.风电场并网稳定性技术[M].北京:机械工业出版社2011.
    [45]. Muyeen S, Ali M, Takahashi R, Murata T, Tamura J. Wind generator output power smoothingand terminal voltage regulation by using STATCOM/ESS[C]. PowerTechnology2007Conference,2007:1232-1237.
    [46]. Han C, Huang A Q, Baran M E, Bhattacharya S, Litzenberger W, etc. STATCOM impact studyon the integration of a large wind farm into a weak loop power system[J]. IEEE Transactions onEnergy Conversion,2008,23(1):226-233.
    [47]. Kinjo T, Senjyu T, Urasaki N, Fujita H. Terminal-voltage and output-power regulation ofwind-turbine generator by series and parallel compensation using SMES[C].2006:276-282.
    [48]. Liu C, Hu C, Li X, Chen Y, Chen M, etc. Applying SMES to smooth short-term powerfluctuations in wind farms[C]. The34th Industrial electronics Annual Conference,2008:3352-3357.
    [49]. Nomura S, Ohata Y, Hagita T, Tsutsui H, Tsuji-Iio S, etc. Wind farms linked by SMESsystems[J]. IEEE Transactions on Applied Superconductivity,2005,15(2):1951-1954.
    [50]. Dechanupaprittha S, Hongesombut K, Watanabe M, Mitani Y, Ngamroo I. Stabilization oftie-line power flow by robust SMES controller for interconnected power system with windfarms[J]. IEEE Transactions on Applied Superconductivity,2007,17(2):2365-2368.
    [51].张步涵,曾杰,毛承雄,王云玲.串并联型超级电容器储能系统在风力发电中的应用[J].电力自动化设备,2008,28(04):1-4.
    [52].李霄,胡长生,刘昌金,徐德鸿.基于超级电容储能的风电场功率调节系统建模与控制[J].电力系统自动化,2009,33(09):86-90.
    [53]. Abedini A, Nasiri A. Applications of super capacitors for PMSG wind turbine powersmoothing[C]. The34th Annual Conference of the IEEE Industrial Electronics Society,2008:3347-3351.
    [54]. Muyeen S, Takahashi R, Murata T, Tamura J. Integration of an energy capacitor system with avariable-speed wind generator[J]. IEEE Transactions on Energy Conversion,2009,24(3):740-749.
    [55]. Kinjo T, Senjyu T, Urasaki N, Fujita H. Output levelling of renewable energy by electricdouble-layer capacitor applied for energy storage system[J]. IEEE Transactions on EnergyConversion,2006,21(1):221-227.
    [56]. Ushiwata K, Shishido S, Takahashi R, Murata T, Tamura J. Smoothing control of wind generatoroutput fluctuation by using electric double layer capacitor[C]. International Conference ofElectrical Machines and Systems,2007:308-313.
    [57].毕大强,葛宝明,王文亮,柴建云.基于钒电池储能系统的风电场并网功率控制[J].电力系统自动化,2010,34(13):72-78.
    [58].刘颖明.永磁式直驱风电机组控制技术研究[D].沈阳:沈阳工业大学,2011.
    [59]. Bossanyi E. The design of closed loop controllers for wind turbines[J]. Wind Energy,2000,3(3):149-163.
    [60]. Khezami N, Guillaud X, Braiek N B. Multimodel LQ controller design for variable-speed andvariable pitch wind turbines at high wind speeds[J]. International Journal of Modelling,Identification and Control,2012,15(2):117-124.
    [61].邢作霞,刘颖明,郑琼林,姚兴佳.基于阻尼滤波的大型风电机组柔性振动控制技术[J].太阳能学报,2008,29(11):1425-1431.
    [62].邢作霞.大型变速变距风力发电机组的柔性协调控制技术研究[D].北京交通大学,2008.
    [63].王发达.基于神经网络PID液压驱动变距控制的研究[D].沈阳:沈阳工业大学,2007.
    [64].刘湘琪,邱敏秀,林勇刚.液压技术在风力发电系统中的应用[J].机床与液压,2004,(08):114-116.
    [65].林勇刚,李伟,陈晓波,顾海港,叶杭冶.大型风力发电机组独立桨叶控制系统[J].太阳能学报,2005,26(06):780-786.
    [66].马琛俊.大型风力发电机组直驱式容积控制变桨距系统研究[D].哈尔滨工业大学,2010.
    [67].周祥云.高精度位置伺服控制风力机变桨距研究[D].无锡:江南大学,2008.
    [68].窦真兰,程孟增,蔡旭,凌志斌.大型风机变桨距控制系统的研究[J].电机与控制应用,2011,38(3):38-44.
    [69]. De Almeida R G, Castronuovo E D, Lopes J A P. Optimum generation control in wind parkswhen carrying out system operator requests[J]. Ieee Transactions on Power Systems,2006,21(2):718-725.
    [70]. Poller M A. Doubly-fed induction machine models for stability assessment of wind farms[C].Power Tech Conference Proceedings,2003:1-6.
    [71].范晓旭.变速恒频风力发电机组建模,仿真及其协调优化控制[D].北京:华北电力大学,2010.
    [72]. Gao F, Xu D, Lv Y. Pitch-control for large-scale wind turbines based on feed forwardfuzzy-PI[C]. The7th World Congress on Intelligent Control and Automation,2008:2277-2282.
    [73]. Yao X, Guan L, Guo Q, Ma X. RBF neural network based self-tuning PID pitch control strategyfor wind power generation system[C]. International Conference on Computer, Mechatronics,Control and Electronic Engineering,2010:482-485.
    [74]. Hansen A D, Michalke G. Modelling and control of variable-speed multi-pole permanent magnetsynchronous generator wind turbine[J]. Wind Energy,2008,11(5):537-554.
    [75]. Xingjia Y, Yingming L, Zuoxia X, Chunming Z. Active vibration control strategy based onExpert PID pitch control of variable speed wind turbine[C]. International Conference onElectrical Machines and Systems,2008:635-639.
    [76]. Lee S H, Joo Y J, Back J, Seo J H. Sliding mode controller for torque and pitch control of windpower system based on PMSG[C]. International Conference on Control, Automation andSystems,2010:1079-1084.
    [77].郭庆鼎,赵麟,郭洪澈.1MW变速变距风力发电机的滑模变结构鲁棒控制[J].沈阳工业大学学报,2005,27(02):171-174+186.
    [78]. De Battista H, Mantz R J, Christiansen C F. Dynamical sliding mode power control of winddriven induction generators[J]. IEEE Transactions on Energy Conversion,2000,15(4):451-457.
    [79].杨金明,吴捷.风力发电系统中控制技术的最新发展[J][J].中国电力,2003,36(8):65-67.
    [80]. Pena R, Sbarbaro D. Integral variable structure controllers for small wind energy systems[C]. the25th Annual Conference of the IEEE Industrial Electronics Society1999:1067-1072.
    [81].孔屹刚,王志新.大型风电机组模糊滑模鲁棒控制器设计与仿真[J].中国电机工程学报,2008,28(14):136-141.
    [82]. Jiao B, Wang L. RBF neural network sliding mode control for variable-speed adjustable-pitchsystem of wind turbine[C]. International Conference on Electrical and Control Engineering,2010:3998-4002.
    [83]. Bao N, Ye Z. Active pitch control in larger scale fixed speed horizontal axis wind turbinesystems. part II: non-linear controller design[J]. Wind Engineering,2002,26(1):27-38.
    [84]. Johnson K E, Fingersh L J. Adaptive pitch control of variable-speed wind turbines[J]. Journal ofSolar Energy Engineering,2008,130(31012):1-6.
    [85].秦生升.风力发电系统的变桨距控制策略研究[D].南京:南京理工大学,2009.
    [86]. Guo H, Guo Q. H∞control of adjustable pitch wind turbine adjustable pitch system[C].International Power Electronics and Motion Control Conference,2006:1-4.
    [87]. Sakamoto R, Senjyu T, Kaneko T, Urasaki N, Takagi T, etc. Output Power Leveling of WindTurbine Generator by Pitch Angle Control Using H∞Control[J]. IEEJ Transactions on Powerand Energy,2007,127(1):86-93.
    [88].夏长亮,宋战锋.变速恒频风力发电系统变桨距自抗扰控制[J].中国电机工程学报,2007,27(14):91-95.
    [89].阎子勤.信息融合的神经网络应用研究[J].计算机仿真,2005,22(9):133-135.
    [90]. Prats M, Carrasco J, Galvan E, Sanchez J, Franquelo L, etc. Improving transition between poweroptimization and power limitation of variable speed, variable pitch wind turbines using fuzzycontrol techniques[C]. The26th Annual Confjerence of the IEEE,2000:1497-1502.
    [91]. Prats M, Carrasco J, Galvan E, Sanchez J, Franquelo L. A new fuzzy logic controller to improvethe captured wind energy in a real800kW variable speed-variable pitch wind turbine[C]. The33rd Annual Power Electronics Specialists Conference,2002:101-105.
    [92]. Zhang J, Cheng M, Chen Z, Fu X. Pitch angle control for variable speed wind turbines[C]. ThirdInternational Conference on Electric Utility Deregulation and Restructuring and PowerTechnologies,2008:2691-2696.
    [93].姚兴佳,张雅楠,郭庆鼎,井艳军.大型风电机组三维模糊控制器设计与仿真[J].中国电机工程学报,2009,29(26):112-117.
    [94].张新房,徐大平.风力发电机组的变论域自适应模糊控制[J].控制工程,2003,10(4):342-345.
    [95]. Senjyu T, Sakamoto R, Kaneko T, Yona A, Funabashi T. Output power leveling of wind farmusing pitch-angle control with fuzzy neural network[J]. Electric Power Components and Systems,2008,36(10):1048-1066.
    [96]. Yao X, Liu Y, Guo C. Adaptive fuzzy sliding-mode control in variable speed adjustable pitchwind turbine[C]. IEEE International Conference on Automation and Logistics,2007:313-318.
    [97].何玉林,刘军,杜静,李俊.大型风力发电机组变桨距控制技术研究[J].计算机仿真,2010,27(7):244-247+252.
    [98]. Ro K, Choi H. Application of neural network controller for maximum power extraction of agrid-connected wind turbine system[J]. Electrical Engineering,2005,88(1):45-53.
    [99]. Liu Y, Liu S, Guo H, Wang H. The Estimation of Wind Turbine Pitch Angle Based on ANN[C].The Second International Conference on Intelligent Networks and Intelligent Systems,2009:581-584.
    [100].许凌峰,徐大平,高峰,吕跃刚.基于神经网络的风力发电机组变桨距复合控制[J].华北电力大学学报(自然科学版),2009,36(1):28-34.
    [101]. Yao X, Liu S, Shan G, Xing Z, Guo C, etc. LQG Controller for a Variable Speed Pitch RegulatedWind Turbine[C]. International Conference on Intelligent Human-Machine Systems andCybernetics,2009:210-213.
    [102]. Senjyu T, Sakamoto R, Urasaki N, Higa H, Uezato K, etc. Output power control of wind turbinegenerator by pitch angle control using minimum variance control[J]. IEEJ Transactions on Powerand Energy,2004,124(12):1455-1462.
    [103]. Senjyu T, Sakamoto R, Urasaki N, Funabashi T, Fujita H, etc. Output power leveling of windturbine generator for all operating regions by pitch angle control[J]. IEEE Transactions onEnergy Conversion,2006,21(2):467-475.
    [104].耿华,周伟松,杨耕.变桨距风电系统功率控制的逆系统鲁棒方法[J].清华大学学报(自然科学版),2010,50(5):718-723.
    [105]. Burton T, Jenkins N, Sharpe D, Bossanyi E. Wind energy: handbook[M]. New-York: John Wileyand Sons,2001.
    [106]. Eggers A J, Digumarthi R, Chaney K. Wind shear and turbulence effects on rotor fatigue andloads control[J]. Transactions of the ASME,2003,125(4):402-409.
    [107]. Hand M M, Balas M J. Blade load mitigation control design for a wind turbine operating in thepath of vortices[J]. Wind Energy,2007,10(4):339-355.
    [108]. Peeringa J. Comparison of extreme load extrapolations using measured and calculated loads of aMW wind turbine[C]. European Wind Energy Conference,2009:16-19.
    [109]. Holierhoek J, Braam H, Rademakers L. Determination of load cases and critical designvariables[R]. Technical Report ECN-E--10-007,2010.
    [110]. Leithead W, Neilson V, Dominguez S. Alleviation of unbalanced rotor loads by single bladecontrollers[C]. European Wind Energy Conference,2009:1-9.
    [111]. Wei L, Hongwei L, Yonggang L. Study on control strategy of individual blade pitch-controlledwind turbine[C]. The6th World Congress on Intelligent Control and Automation,2006:6489-6492.
    [112].林勇刚.大型风力机变桨距控制技术研究[D].浙江大学,2005.
    [113]. Yao X J, Cao Y, Xing Z X, Wang C. Fuzzy individual pitch control based on distribution ofazimuth angle weight coefficient[C]. The2009International Conference on Energy andEnvironment Technology,2009:676-678.
    [114].马晓岩.兆瓦级风电机组独立变桨距控制系统研究[D].沈阳工业大学,2011.
    [115].姚兴佳,马佳,郭庆鼎,王文静.基于倾斜角权系数校正的风电机组变桨控制[J].电源学报,2012,(01):54-59.
    [116].李锋.基于模糊PI控制的独立变桨控制技术的研究[D].新疆大学,2010.
    [117]. Yang M, Xing G. Research on individual pitch control based on inflow angle[C]. InternationalConference on Control, Automation and Systems Engineering,2011:1-4.
    [118].邢钢,郭威.风力发电机组变桨距控制方法研究[J].农业工程学报,2008,24(5):181-186.
    [119]. Yao X J, Li H. Individual Pitch Regulation for Wind Turbine[J]. Advanced Materials Research,2012,383-390:4341-4345.
    [120]. Zhang Y, Chen Z, Cheng M, Zhang J. Mitigation of Fatigue Loads Using Individual PitchControl of Wind Turbines Based on FAST[C]. The46th International Universities' PowerEngineering Conference,2011:1-6.
    [121]. Jelavic M, Petrovic V, Peric N. Individual pitch control of wind turbine based on loadsestimation[C]. The34th Annual Conference of the IEEE Industrial Electronics Society2008:228-234.
    [122]. Jelavic M, Petrovic V, Peric N. Estimation based Individual Pitch Control of Wind Turbine[J].Automatika,2010,51(2):181-192.
    [123]. Bossanyi E. Further load reductions with individual pitch control[J]. Wind Energy,2005,8(4):481-485.
    [124]. Bossanyi E. Individual blade pitch control for load reduction[J]. Wind Energy,2003,6(2):119-128.
    [125]. Hassan H M, Eishafei A L, Farag W A, Saad M S. A robust LMI-based pitch controller for largewind turbines[J]. Renewable Energy,2012,44:63-71.
    [126]. Hassan H M, Farag W A, Shawkey M, El Shafei A L. Designing pitch controller for large windturbines via LMI techniques[C]. The1st International Conference on Smart Grid and CleanEnergy Technologies,2011:808-818.
    [127]. Wilson D G, Berg D E, Resor B R, Barone M F, Berg J C. Combined individual pitch control andactive aerodynamic load controller investigation for the5MW upwind turbine[C]. AWEAWindpower Conference&Exhibition,2009:1-12.
    [128]. Yao X, Wang X, Xing Z, Liu Y, Liu J. Individual pitch control for variable speed turbine bladeload mitigation[C]. International Conference on Sustainable Energy Technologies,2008:769-772.
    [129].鲁效平,李伟,林勇刚.基于无模型自适应控制器的风力发电机载荷控制[J].农业机械学报,2011,42(2):109-114+129.
    [130].郑宇.基于神经元PID的风力发电机组独立变桨控制[J].水电能源科学,2012,30(02):151-154+163.
    [131]. Larsen T J, Madsen H A, Thomsen K. Active load reduction using individual pitch, based onlocal blade flow measurements[J]. Wind Energy,2005,8(1):67-80.
    [132]. Markou H, Andersen P B, Larsen G C. Potential load reductions on megawatt turbines exposed towakes using individual-pitch wake compensator and trailing-edge flaps[J]. Wind Energy,2011,14(7):841-857.
    [133]. Geyler M, Caselitz P. Individual blade pitch control design for load reduction on large windturbines[C]. European Wind Energy Conference,2007:82-86.
    [134]. Geyler M, Caselitz P. Robust multivariable pitch control design for load reduction on large windturbines[J]. Journal of Solar Energy Engineering,2008,130(031014):1-12.
    [135].应有,许国东,潘东浩,叶杭冶.大型风电机组独立变桨控制技术研究[J].太阳能学报,2011,32(6):891-896.
    [136]. Li W, Sun H, Xing Z, Chen L. The study of individual pitch control on reducing the loadfluctuation of tower shadow[C]. International Conference on Energy, Environment andSustainable Development,2011:2260-2267.
    [137]. Kim J, Cho J, Choi H, Nam Y. Control system of a MW-class wind turbine[C]. InternationalConference on Control, Automation and Systems,2010:1062-1065.
    [138].陈雷,孙宏利,邢作霞.减小塔影效应载荷波动的独立变桨距控制研究[J].电气技术,2012,(01):6-10.
    [139]. Engels W, Kanev S, van Engelen T. Distributed blade control[C]. The Science of Making Torquefrom Wind,2010.
    [140]. Van Engelen T. Design model and load reduction assessment for multi-rotational modeindividual pitch control (higher harmonics control)[C]. European Wind Energy Conference,2006:1-9.
    [141]. Van Engelen T, Van der Hooft E. Individual pitch control inventory[R]. ECN,2005.
    [142].应有,许国东.基于载荷优化的风电机组变桨控制技术研究[J].机械工程学报,2011,47(16):106-111+119.
    [143]. Selvam K. Individual pitch control for large scale wind turbines[R]. Technical ReportECN-E–07-053,2007.
    [144]. Selvam K, Kanev S, van Wingerden J, Van Engelen T, Verhaegen M. Feedback-feedforwardindividual pitch control for wind turbine load reduction[J]. International Journal of Robust andNonlinear Control,2009,19(1):72-91.
    [145]. Sandquist F, Moe G, Anaya-Lara O. Individual Pitch Control of Horizontal Axis WindTurbines[J]. Journal of Offshore Mechanics and Arctic Engineering,2012,134:031901-1-7.
    [146].邢作霞,陈雷,孙宏利,王哲.独立变桨距控制策略研究[J].中国电机工程学报,2011,31(26):131-138.
    [147]. Thomsen S C, Niemann H, Poulsen N K. Stochastic wind turbine control in multibladecoordinates[C].2010American Control Conference,2010:2772-2777.
    [148]. Laks J, Pao L, Wright A. Combined feed-forward/feedback control of wind turbines to reduceblade flap bending moments[C]. American Institute of Aeronautics and Astronautics2009:1-16.
    [149]. Kanev S, van Engelen T. Exploring the limits in individual pitch control[C]. European WindEnergy Conference,2009:1-10.
    [150]. Andersen P B, Henriksen L, Gaunaa M, Bak C, Buhl T. Deformable trailing edge flaps formodern megawatt wind turbine controllers using strain gauge sensors[J]. Wind Energy,2010,13(2-3):193-206.
    [151]. Barlas T K, van Kuik G A M. Review of state of the art in smart rotor control research for windturbines[J]. Progress in Aerospace Sciences,2010,46(1):1-27.
    [152]. Van Wingerden J, Hulskamp A, Barlas T, Marrant B, Van Kuik G, etc. On the proof of conceptof a 'smart' wind turbine rotor blade for load alleviation[J]. Wind Energy,2008,11(3):265-280.
    [153].张迪.兆瓦级风力发电机独立变桨控制技术[D].新疆:新疆大学,2011.
    [154]. Bossanyi E, Wright A. Field testing of individual pitch control on the NREL CART-2windturbine[C]. European Wind Energy Conference&Exhibition2009:1-9.
    [155]. Bossanyi E, Wright A, Fleming P. Further progress with field testing of individual pitchcontrol[C]. European Wind Energy Conference&Exhibition,2010:1-10.
    [156]. Bossanyi E, Wright A, Fleming P. Controller field tests on the NREL CART2turbine[R].NREL/TP-5000-49085,2010.
    [157]. Lackner M A, van Kuik G A M. The performance of wind turbine smart rotor control approachesduring extreme loads[J]. Journal of Solar Energy Engineering,2010,132(11008):1-8.
    [158]. Lackner M A, Van Kuik G. A comparison of smart rotor control approaches using trailing edgeflaps and individual pitch control[J]. Wind Energy,2010,13(2-3):117-134.
    [159].张秋琼.风电机组异步变桨技术的研究[D].上海:上海交通大学,2012.
    [160].叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2002.
    [161].林文静.变速恒频双馈风力发电系统主控制器算法研究[D].上海:上海交通大学,2008.
    [162].甄海华.兆瓦级风电机组独立变桨距机构动态特性分析[D].湘潭:湖南科技大学,2010.
    [163].欧阳高飞.风力机动态过程的分析系统及其软件开发[D].汕头大学,2003.
    [164]. Hansen A D, S rensen P, Blaabjerg F, Becho J. Dynamic modelling of wind farm gridinteraction[J]. Wind Engineering,2002,26(4):191-210.
    [165].S rensen P, Ris F. Simulation of interaction between wind farm and power system[M]. Roskilde:Risoe National Laboratory,2001.
    [166].窦真兰,王晗,凌志斌,蔡旭.电动变桨距控制系统设计与实现[J].电力电子技术,2011,45(7):1-4.
    [167].王文鑫.基于ARM处理器的风力发电控制系统的设计[D].赣洲:江西理工大学,2007.
    [168].杨勇,阮毅,张朝艺,沈欢庆,汤燕燕.基于背靠背三电平电压变换器的直驱式风力发电系统[J].电网技术,2009,33(18):148-155.
    [169]. Portillo R C, Prats M M, Leon J I, Sanchez J A, Carrasco J M, etc. Modeling strategy forback-to-back three-level converters applied to high-power wind turbines[J]. IEEE Transactionson Industrial Electronics,2006,53(5):1483-1491.
    [170].赵仁德,王永军,张加胜.直驱式永磁同步风力发电系统最大功率追踪控制[J].中国电机工程学报,2009,29(27):106-111.
    [171].高指林.风力机变桨距控制系统及其执行机构的研究[D].武汉:武汉理工大学,2007.
    [172].曾东.基于神经网络的风力发电机组变速变距控制器研究[D].沈阳:沈阳工业大学,2008.
    [173].张雅楠.变桨距与智能控制在风电机组中的应用[D].沈阳工业大学,2010.
    [174].程静.智能控制在风力发电机控制系统中应用的研究[D].乌鲁木齐:新疆大学,2004.
    [175].肖丹.双馈风力发电系统空载并网模糊PI控制[D].天津:天津大学,2008.
    [176].王耀南,孙炜.智能控制理论及应用[M].北京:机械工业出版社,2008.
    [177].王江.风力发电变桨距控制技术研究[D].合肥工业大学,2009.
    [178].赵永祥.基于模糊PID控制技术的空调系统温度自适应控制[J].上海市烟草系统2010年度优秀学术论文集(工程类),2011.
    [179].李祖欣,张榆锋,施心陵.一种基于模糊规则切换的双模控制器[J].贵州科学,2002,20(04):31-34.
    [180].牛志刚,张建民.应用于直线电机的平滑切换模糊PID控制方法[J].中国电机工程学报,2006,26(08):132-136.
    [181].杨为民,邬齐斌.过程控制系统及工程[M].西安:西安电子科技大学出版社,2008.
    [182].高峰,徐大平,吕跃刚.大型风力发电机组的前馈模糊-PI变桨距控制[J].动力工程,2008,28(4):537-542.
    [183].郭阳宽,王正林.过程控制工程及仿真:基于MATLAB/Simulink[M].北京:电子工业出版社,2009.
    [184].叶杭冶,潘东浩.风电机组变速与变桨距控制过程中的动力学问题研究[J].太阳能学报,2008,28(12):1321-1328.
    [185].郭鹏.模糊前馈与模糊PID结合的风力发电机组变桨距控制[J].中国电机工程学报,2010,30(8):123-128.
    [186].郭鹏.模糊前馈与模糊PID结合的风力发电机组变桨距控制[J].中国电机工程学报,2010,(8):123-128.
    [187].魏慧荣.风电场微观选址的数值模拟[D].北京:华北电力大学(北京),2007.
    [188].曲晓斌.变速恒频风电机组接入系统的电压质量分析与控制[D].北京:华北电力大学(北京),2010.
    [189]. Ladakakos P, Ioannides M, Koulouvari M. Assessment of wind turbines impact on the powerquality of autonomous weak grids[C]. The8th international conference on harmonics and qualityof power,1998:900-905.
    [190]. Papadopoulos M, Papathanassiou S, Tentzerakis S, Boulaxis N. Investigation of the flickeremission by grid connected wind turbines[C]. The8th International Conference On Harmonicsand Quality of Power Proceedings,1998:1152-1157.
    [191]. Larsson A. Flicker emission of wind turbines during continuous operation[J]. Energy Conversion,IEEE Transactions on,2002,17(1):114-118.
    [192].陈晓明.风场与风力机尾流模型研究[D].兰州:兰州理工大学,2010.
    [193].窦真兰,王晗,张秋琼,凌志斌,蔡旭.虚拟风场和风力机模拟系统的实验研究[J].中国电机工程学报,2011,31(20):127-135.
    [194].岳一松,蔡旭.风场与风力机模拟系统的设计与实现[J].电机与控制应用,2008,35(4):17-21.
    [195].李东东,陈陈.风力发电系统动态仿真的风速模型[J].中国电机工程学报,2005,25(21):41-44.
    [196].胡明慧,王永山,邵惠鹤.基于改进的莱文森算法对电机转速特性的研究[J].中国电机工程学报,2007,27(30):77-81.
    [197].张希黔,葛勇,严春风,晏致涛.脉动风场模拟技术的研究与进展[J].地震工程与工程振动,2009,28(6):206-212.
    [198].刘其辉,贺益康,赵仁德.基于直流电动机的风力机特性模拟[J].中国电机工程学报,2006,26(7):134-139.
    [199].马洪飞,张薇,李伟伟,徐殿国.基于直流电机的风力机模拟技术研究[J].太阳能学报,2007,28(11):1278-1283.
    [200]. Abdin E S, Xu W. Control design and dynamic performance analysis of a wind turbine-inductiongenerator unit[J]. IEEE Transactions on Energy Conversion,2000,15(1):91-96.
    [201].窦真兰,王晗,凌志斌,蔡旭.基于叶素理论的风力机模拟系统研究[J].电工电能新技术,2011,30(3):1-5.
    [202].高峰,徐大平,吕跃刚.基于叶素理论的风力发电机组风轮建模[J].现代电力,2008,24(6):52-57.
    [203].刘微微.基于构件的风力发电机组辅助软件的设计与实现[D].沈阳:沈阳工业大学,2009.
    [204].李成良.风机叶片结构分析与优化设计[D].武汉:武汉理工大学,2008.
    [205]. Jonkman J M, Buhl Jr M L. FAST user's guide[R]. Technical Report NREL/EL-500-38238,2005.
    [206]. Bossanyi E. GH bladed theory manual (Version3.81)[M]. London: Garrad Hassan and Partners,2008.
    [207].李德源,叶枝全,陈严,包能胜.风力机叶片载荷谱及疲劳寿命分析[J].工程力学,2004,21(6):118-123.
    [208].贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社,2006.
    [209].梁晶晶.兆瓦级风力发电机组独立变桨距载荷分布优化控制策略[D].沈阳:沈阳工业大学,2009.
    [210]. Thomsen K, Madsen H A. A new simulation method for turbines in wake—applied to extremeresponse during operation[J]. Wind Energy,2005,8(1):35-47.
    [211]. Gupta S. Development of a time-accurate viscous Lagrangian vortex wake model for windturbine applications[D]. University of Maryland,2006.
    [212].陈清丽.风力发电机组风轮建模及运行特性研究[D].北京:华北电力大学(北京),2007.
    [213].王臻.风力发电机叶片与塔架耦合动力学分析[D].沈阳:沈阳工业大学,2009.
    [214].尹佐明.水平轴风力机叶片气动特性分析及外形设计[D].北京:华北电力大学(北京),2008.
    [215]. Wilson R E, Lissaman P B S, Walker S N. Aerodynamic performance of wind turbines[R].Oregon State Univ., Corvallis,1976.
    [216].王现青.风速特性与风力发电机组动态特性耦合关系的研究[D].兰州理工大学,2010.
    [217]. Le Gourieres D,施鹏飞.风力机的理论与设计[M].北京:机械工业出版社,1987.
    [218]. Bossanyi E. GH Bladed Theory Manual, Version3.81[M]. London: Garrad Hassan and Partners,2008.
    [219]. Courtecuisse V, El Mokadem M, Saudemont C, Robyns B, Deuse J. Experiment of a windgenerator participation to frequency control[C]. Wind Power to the Grid-EPE Wind Energy2008:1-6.
    [220]. Vongmanee V. Emulator of wind turbine generator using dual inverter controlled squirrel cageinduction motor[C]. Power Electronics and Drive Systems,2009:1313-1316.
    [221].程孟增.双馈风力发电系统低电压穿越关键技术研究[D].上海:上海交通大学,2012.
    [222].柯伟.风力发电机组传动系统性能研究[D].北京:华北电力大学(北京),2008.
    [223].李东东,陈陈.风力发电机组动态模型研究[J].中国电机工程学报,2005,25(3):115-119.
    [224]. Trudnowski D, LeMieux D. Independent pitch control using rotor position feedback forwind-shear and gravity fatigue reduction in a wind turbine[C]. The American Control Conference,2002:4335-4340.
    [225]. DOU Z, WANG H, LING Z, CAI X. Individual pitch control for torque fluctuation reduction inlarge-scale wind turbine generator systems[J]. Przeglad Elektrotechniczny,2013,89(3b):3.
    [226]. Dou Z L, Ling Z B, Cai X. Torque smoothing control of wind turbine generator system usingindividual pitch control[C]. The7th International Power Electronics and Motion ControlConference (IPEMC),2012:2157-2161.
    [227].陈曼.基于单神经元PID的永磁同步电动机速度控制器设计[D].合肥:合肥工业大学,2007.
    [228].杨天智.一种自适应PID控制器在双边剪夹送辊中的应用[D].武汉:武汉科技大学,2007.
    [229]. Wang M, Cheng G, Kong X. A Single Neuron Self-Adaptive PID Controller of Brushless DCMotor[C]. Third International Conference on Measuring Technology and MechatronicsAutomation,2011:262-266.
    [230].陶永华等.新型PID控制及其应用[M].北京:机械工业出版社,1998.
    [231].郭泽龙.基于单神经元的永磁同步电动机控制系统研究[D].哈尔滨:哈尔滨工程大学,2009.
    [232].罗士军.轮式铰接转向装载机线控转向控制系统研究[D].长春:吉林大学,2008.
    [233].林烜.船用舵机电液伺服单元单神经元PID控制[D].哈尔滨:哈尔滨工业大学,2008.
    [234].陈金华. TCP拥塞控制中主动队列管理算法的研究[D].南京:南京理工大学,2004.
    [235].李金霞.时滞系统的DMC—神经元PID串级控制的研究[D].福州:福州大学,2004.
    [236].凌志斌,窦真兰,张秋琼,蔡旭.风力机组电动变桨系统[J].电力电子技术,2011,45(8):101-103.
    [237].惠晶,顾鑫,杨元侃.兆瓦级风力发电机组电动变桨距系统[J].电机与控制应用,2007,34(011):51-54.
    [238].李强,姚兴佳,陈雷.兆瓦级风电机组变桨距机构分析[J].沈阳工业大学学报,2004,26(2):146-148.
    [239].顾鑫.兆瓦级风力发电机组液压变桨距系统研究[D].无锡:江南大学,2008.
    [240].秦立学.兆瓦级风力发电机组变桨距系统研究[D].沈阳工业大学,2006.
    [241].郭朝.变速风力发电机组的电液伺服变桨距控制研究[D].镇江:江苏大学,2007.
    [242].林伟杰,郑灼,李兴根,林瑞光.模糊自适应PI控制永磁同步电机交流伺服系统[J].中小型电机,2005,32(3):10-13.
    [243].牛洪海,赵荣祥,吴茂刚.基于模糊PI参数自整定的永磁同步电动机矢量控制系统[J].电气应用,2005,24(012):79-82.
    [244].林伟杰.永磁同步电机伺服系统控制策略的研究[D].杭州:浙江大学,2005.
    [245].刘金昆.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2004.
    [246].赵涛,王群京,姜卫东,倪有源.基于模糊自校正PI的直流电动机PWM控制系统的仿真分析[J].机电工程,2005,21(10):23-26.
    [247]. Dou Z L, Cheng M Z, Ling Z B, Cai X. An adjustable pitch control system in a large windturbine based on a fuzzy-PID controller[C].2010International Symposium on Power Electronics,Electrical Drives, Automation and Motion, SPEEDAM2010, June14,2010-June16,2010,2010:391-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700