用户名: 密码: 验证码:
特高压直流输电线路保护新原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特高压直流输电线路是电力系统的大动脉,肩负着能源产地与用电中心区域之间输送电能的重任。高性能的特高压直流输电线路保护可及时发现线路故障,是直流系统及与之相连的交流系统安全运行的重要保证。因此,提高特高压直流输电线路继电保护的性能,对提高电力系统的安全性具有重要作用。
     本文对特高压直流输电线路故障响应特性与保护新方法进行了研究,主要研究内容包括:
     (1)建立特高压直流输电系统的数值仿真模型,对特高压直流输电系统模型中的核心组件及参数配置进行详细分析、设计,测试结果验证了模型的可靠性。
     (2)分析了长距离特高压直流输电线路故障条件下分布电容电流的特点以及对差动保护的影响,提出了考虑分布电容电流补偿的直流差动保护。通过对比补偿分布电容电流前后差动保护的性能,证明经补偿后的直流差动保护的可靠性和灵敏度得到明显提高。
     (3)针对传统差动保护应用在特高压直流输电线路上遇到的不平衡电流引起的保护区外故障误动和区内故障拒动的问题,本文提出新型特高压直流输电线路差动保护方案。该方案基于直流输电线路参数,进行并联分支修正,消除暂态谐波电流的影响,有效提高了直流差动保护的可靠性和灵敏度。
     (4)分析了直流线路参数与特高压直流输电线路两端暂态能量增量的关联,总结出不同故障情况下线路两端暂态能量增量的特点。在此基础上,提出特高压直流输电线路暂态能量保护方案,该方案不仅可以准确、快速的区分区内与区外故障,也有很好的耐受过渡电阻能力。
     (5)依据特高压直流输电线路的边界特性,分析不同故障情况下特高压直流输电线路两端特征谐波电流的特点,结果显示内部故障存在连续特征谐波。提出特高压直流输电特征谐波保护方案,探讨了故障电阻和故障位置两个因素对本方案的影响。
     (6)VSC-HVDC是一种更为灵活的直流输电方式,能够实现有功和无功的独立解耦控制。分析了不同故障条件下VSC-HVDC输电线路两端的载波频率谐波电流响应特点,提出VSC-HVDC输电线路的载波频率保护方案,该保护方案可以正确的判定区内、外故障类型。
     (7)利用特高压直流现场录波数据和RTDS系统对本文的特高压直流输电线路保护方案进行了测试。测试结果表明本文所提保护均能正确动作。
Ultra High Voltage Direct Current (UHVDC) transmission line is main backbone ofpower system, the important mission of UHVDC transmission line is the electric energytransmission from the source of energy to the power load center. The high performanceprotection scheme for UHVDC transmission line can detect line faults quickly, itguarantees safety operation of the UHVDC system and the adjacent ac system. So theUHVDC transmission line protection has the important role in the security of the powersystem.
     The dissertation focuses on the response features of UHVDC transmission line faultsand novel protection schemes for UHVDC transmission line. The main contributions areas follows:
     (1) The UHVDC numerical simulation model is presented in this dissertation and thedetailed structures and parameter configuration of the UHVDC transmission system modelare also introduced comprehensively, the reliability of the UHVDC transmission systemmodel is verified.
     (2) The effect of long distance UHVDC transmission line on differential protection isanalyzed and an improved differential protection scheme with distributed capacitivecurrent compensation is proposed. Comparing the performances of differential protectionwith/without distributed capacitive current compensation, the result shows that thereliability and sensitivity of DC differential protection are effectively improved withdistributed capacitive current compensation.
     (3) Two problems facing traditional differential protection for UHVDC transmissionline: the misoperation under external faults and the refuse operation under internal faults.In the dissertation, a novel differential protection scheme for UHVDC transmission line ispresented. With parameters of DC transmission line, the shunt branches are corrected andthe harmonic currents are removed, the reliability and sensitivity of DC differentialprotection are effectively improved.
     (4) The relation between the parameters of DC transmission line and the variation of transient energy at two terminals of the UHVDC transmission line are analyzed and theresponses of the variation of transient energy under different faults are investigated. Atransient energy protection scheme for UHVDC transmission line is proposed. It can notonly identify internal fault and external fault correctly and quickly, but also can responseto the high ground resistance fault.
     (5) Based on the boundary characteristic of the UHVDC transmission line, theresponses of characteristic harmonic currents at two terminals of the UHVDCtransmission line are analyzed under various faults. The periodic characteristic harmoniccan be detected under internal fault. According to that, a new characteristic harmoniccurrent protection scheme is proposed and the influence on the performance of theproposed protection by two factors including fault resistance and fault location is alsodiscussed.
     (6) VSC-based HVDC is a more flexible HVDC transmission mode, the active powerand reactive power can be decoupled and controlled independently in VSC-HVDCtransmission system. The responses of the first carrier frequency harmonic current at twoterminals of VSC-Based HVDC transmission line are analyzed under various faults. Acarrier frequency protection scheme for VSC-Based HVDC transmission line is proposed.By the protection scheme, the internal fault and external fault can be identified correctly.
     (7) The RTDS system and fault recorder data from UHVDC converter substation areemployed to verify the proposed protection schemes. The presented protection schemescan trip correctly under internal faults, so the proposed protection schemes in thisdissertation are reliable and feasible.
引文
[1]. J. G. Holm. Direct-Current Power Transmission[J]. Power Apparatus and Systems,Part III. Transactions of the American Institute of Electrical Engineers,1953,72(2):1114-1120.
    [2]. B. O. N. Hansson. A Submarine Cable for100-Kv D-C Power Transmission[J].Power Apparatus and Systems, Part III. Transactions of the American Institute ofElectrical Engineers,1954,73(1):599-605.
    [3]. J. G. Holm. Economic Aspects of D-C Power Transmission[J]. Power Apparatus andSystems, Part III. Transactions of the American Institute of Electrical Engineers,1957,76(3):849-855.
    [4]. G. Bianchi, G. Luoni, A. Morello."High Voltage DC Cable for Bulk PowerTransmission"[J]. Power Apparatus and Systems, IEEE Transactions on,1980, PAS-99(6):2311-2317.
    [5]. N. G. Hingorani. High-voltage DC transmission: a power electronics workhorse[J].Spectrum, IEEE,1996,33(4):63-72.
    [6]. A. L. Verhiel. The Effects of High-Voltage DC Power Transmission Systems onBuried Metallic Pipelines[J]. Industry and General Applications, IEEE Transactions on,1971, IGA-7(3):403-415.
    [7].周波.直流输电技术的发展与展望[J].华北电力学院学报,1984,(01):27-34.
    [8].李兴源.高压直流输电系统的运行和控制[M].北京:科学出版社,1998.
    [9].徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社,2004.
    [10].赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004.
    [11].浙江大学直流输电组.直流输电[M].北京:水利电力出版社,1982.
    [12].杨万开,印永华,曾南超, etc.特高压直流输电工程系统调试研究(英文)[J].中国电机工程学报,2009,(22):83-87.
    [13].王峰.高压直流输电系统基本设计若干问题研究[D].浙江大学2011.
    [14].汤广福.2004年国际大电网会议系列报道——高压直流输电和电力电子技术发展现状及展望[J].电力系统自动化,2005,(07):1-5.
    [15].舒印彪.中国直流输电的现状及展望[J].高电压技术,2004,(11):1-2+20.
    [16].史劲,陈弘.高压直流输电与其关键技术的研究[J].电气技术,2012,(04):1-4.
    [17].彭毅晖.高压直流输电的发展与展望[J].湖南电力,2007,(01):52-54+57.
    [18].黄道春,魏远航,钟连宏,等.我国发展特高压直流输电中一些问题的探讨[J].电网技术,2007,(08):6-12.
    [19].杜至刚.中国特高压电网发展战略规划研究[D].山东大学2008.
    [20].袁清云.特高压直流输电技术现状及在我国的应用前景[J].电网技术,2005,(14):1-3.
    [21].王红梅.特高压直流输电技术及其应用研究[D].华北电力大学(北京)2006.
    [22].李峰,李兴源.特高压直流输电相关问题的综述[J].四川电力技术,2006,(06):13-19.
    [23].赵杰.高压直流输电的前沿技术[J].中国电力,2005,(10):1-6.
    [24].张文亮,周孝信,郭剑波,等.±1000kV特高压直流在我国电网应用的可行性研究[J].中国电机工程学报,2007,(28):1-5.
    [25].张文亮,汤广福,查鲲鹏,等.先进电力电子技术在智能电网中的应用[J].中国电机工程学报,2010,(04):1-7.
    [26].徐政,陈海荣.电压源换流器型直流输电技术综述[J].高电压技术,2007,(01):1-10.
    [27].刘振亚,舒印彪,张文亮,等.直流输电系统电压等级序列研究[J].中国电机工程学报,2008,(10):1-8.
    [28].陈谦.新型多端直流输电系统的运行与控制[D].东南大学2005.
    [29]. J. Arrillaga. High voltage direct current transmission[M]. Peregrinus,1983.
    [30].宋国兵,高淑萍,蔡新雷,等.高压直流输电线路继电保护技术综述[J].电力系统自动化,2012.
    [31].郑晓冬,邰能灵,杨光亮,等.特高压直流输电系统的建模与仿真[J].电力自动化设备,2012,(07):10-14+61.
    [32].李立浧.直流输电技术的发展及其在我国电网中的作用[J].电力设备,2004,(11):1-3.
    [33].陈宗器.中国发展直流输电工程的历程[J].电气技术,2007,(12):72-75.
    [34].陈宗器.中国发展直流输电工程的历程(续)[J].电气技术,2008,(02):75-77+81.
    [35].苏宏田,齐旭,吴云.我国特高压直流输电市场需求研究[J].电网技术,2005,(24):1-4+41.
    [36].舒印彪,刘泽洪,袁骏,等.2005年国家电网公司特高压输电论证工作综述[J].电网技术,2006,(05):1-12.
    [37].杨镝.特高压直流输电系统可靠性及其对交流系统的影响[D].上海交通大学2011.
    [38].舒印彪,刘泽洪,高理迎,等.±800kV6400MW特高压直流输电工程设计[J].电网技术,2006,(01):1-8.
    [39].刘泽洪,高理迎,余军.±800kV特高压直流输电技术研究[J].电力建设,2007,(10):17-23.
    [40].李战鹰,李建华,夏道止.±800kV特高压直流输电系统特征谐波分析[J].电网技术,2006,(24):6-9+30.
    [41].范建斌,于永清,刘泽洪,等.±800kV特高压直流输电标准体系的建立[J].电网技术,2006,(14):1-6.
    [41].陈潜,张尧,钟庆,等.±800kV特高压直流输电系统运行方式的仿真研究[J].继电器,2007,(16):27-32.
    [43].刘海峰,徐政,金丽成.世界远距离大容量高压直流输电工程可靠性调查综述[J].高压电器,2002,(03):1-4+6.
    [44].李爱民,蔡泽祥,任达勇,等.高压直流输电控制与保护对线路故障的动态响应特性分析[J].电力系统自动化,2009,(11):72-75+93.
    [45].吴宏波.探讨高压直流输电线路的保护[J].广东科技,2012,(11):76-77.
    [46].李爱民.高压直流输电线路故障解析与保护研究[D].华南理工大学2010.
    [47].罗德彬,汪峰,徐叶玲.国家电网公司直流输电系统典型故障分析[J].电网技术,2006,(01):35-39.
    [48].刘洋.直流输电系统换流器接地故障特征分析及保护改进研究[D].硕士,华南理工大学2011.
    [49].黄佳胤,周红阳,余江.“3·21”天广直流线路高阻抗接地故障的分析与仿真[J].广东电力,2005,(11):15-17+25.
    [50].朱韬析,彭武.天广直流输电系统线路高阻接地故障研究[J].电力系统保护与控制,2009,(23):137-140.
    [51].叶廷路,汪峰,杨本渤,等.2003年葛南直流输电系统运行情况报告[J].电力设备,2004,(05):24-28.
    [52].喻新强.2003年以来国家电网公司直流输电系统运行情况总结[J].电网技术,2005,(20):45-50.
    [53].李智勇,张国华,张国威,等.2009年国家电网公司直流输电系统可靠性分析[J].电网技术,2010,(11):77-80.
    [54].李霞.2009年全国直流输电系统运行可靠性分析报告[J].中国电力教育,2010,(28):253-256.
    [55].梁旭明,吴巾克,冀肖彤.国家电网公司直流输电工程控制保护系统运行情况分析[J].电网技术,2005,(23):7-10+17.
    [56].喻新强.国家电网公司直流输电系统可靠性统计与分析[J].电网技术,2009,(12):1-7.
    [57].杨镝,张焰,祝达康.特高压直流输电系统可靠性评估方法[J].现代电力,2011,(04):1-6.
    [58].朱韬析,汲广,毛海鹏.天广直流输电系统2007年运行情况总结分析[J].电力系统保护与控制,2009,(22):129-133+145.
    [59].张保会,张嵩,尤敏,等.高压直流线路单端暂态量保护研究[J].电力系统保护与控制,2010,(15):18-23.
    [60].艾琳,陈为化.高压直流输电线路行波保护判据的研究[J].继电器,2003,(10):41-44.
    [61].叶猛,曹海艳,马国鹏.高压直流输电线路保护分析[J].南方电网技术,2008,(06):43-46.
    [62].朱韬析,汲广.天广直流输电系统线路行波保护介绍[J].电力系统保护与控制,2008,(21):86-89.
    [63].李学鹏.高压直流输电线路行波保护及其故障定位的研究[D].华北电力大学(北京)2006.
    [64].艾琳.高压直流输电线路行波保护的研究[D].硕士,华北电力大学(北京)2003.
    [65].董鑫.高压直流输电线路行波保护的研究[D].东北电力大学2008.
    [66].孙舒捷.高压直流输电系统仿真及其输电线路行波保护方案[D].上海交通大学2009.
    [67].罗海云,傅闯.关于贵广二回直流线路行波保护中电压变化率整定值的讨论[J].南方电网技术,2008,(01):14-17.
    [68].李学鹏,全玉生,黄徐,等.数学形态学用于高压直流输电线路行波保护的探讨[J].继电器,2006,(05):5-9.
    [69]. S. l. Chen, H. C. Shu, Y. Z. Wang, etc. Distance protection scheme withtravelling wave for UHVDC transmission line based on wavelet transform[A]. In ElectricUtility Deregulation and Restructuring and Power Technologies,2008. DRPT2008.Third International Conference on[C],6-9April2008,2008;2162-2165.
    [70]. L. Shang, G. Herold, J. Jaeger, etc. High-speed fault identification and protectionfor HVDC line using wavelet technique[A]. In Power Tech Proceedings,2001IEEEPorto[C],2001;5pp. vol.3.
    [71].李爱民,蔡泽祥,李晓华,等.高压直流输电线路行波保护影响因素分析及改进[J].电力系统自动化,2010,(10):76-80+96.
    [72].李振强,鲁改凤,吕艳萍.基于小波变换的高压直流输电线路暂态电压行波保护[J].电力系统保护与控制,2010,(13):40-45.
    [73]. G. Wang, M. Wu, H. Li, etc. Transient Based Protection for HVDC Lines UsingWavelet-Multiresolution Signal Decomposition[A]. In Transmission and DistributionConference and Exhibition: Asia and Pacific,2005IEEE/PES[C],2005,2005;1-4.
    [74]. X. L. Liu, A. H. Osman, O. P. Malik. Hybrid Traveling Wave/BoundaryProtection for Monopolar HVDC Line[J]. Power Delivery, IEEE Transactions on,2009,24(2):569-578.
    [75].束洪春,刘可真,朱盛强,等.±800kV特高压直流输电线路单端电气量暂态保护[J].中国电机工程学报,2010,(31):108-117.
    [76].朱韬析,欧开健.高压直流输电线路高阻接地故障与后备保护[J].电力建设,2010,(04):21-24.
    [77].田庆,原敏宏,王志平.葛南直流线路高阻接地故障保护分析[J].电力系统及其自动化学报,2008,(06):60-63.
    [78].胡宇洋,黄道春.葛南直流输电线路故障及保护动作分析[J].电力系统自动化,2008,(08):102-107.
    [79].王钢,罗健斌,李海锋,等.特高压直流输电线路暂态能量保护[J].电力系统自动化,2010,(01):28-31.
    [80].张培东,何杰.高压直流输电线路纵联差动保护研究[J].电工技术,2008,(11):32-34.
    [81].张楠,陈潜,王海军,等.直流线路纵差保护算法的改进及仿真验证[J].南方电网技术,2009,(04):56-59.
    [82].雒铮,朱韬析.直流线路后备保护研究[J].广东输电与变电技术,2010,(06):1-4.
    [83]. Y. Kato, A. Watanabe, H. Konishi, etc. Cable Section Fault Detection for HVDCLine Protection[J]. Power Engineering Review, IEEE,1986, PER-6(7):69-70.
    [84]. H. Takeda, H. Ayakawa, M. Tsumenaga, etc. New protection method for HVDClines including cables[J]. Power Delivery, IEEE Transactions on,1995,10(4):2035-2039.
    [85]. H. X. Ha,Y. Yu, R. P. Yi, etc. Novel scheme of travelling wave based differentialprotection for bipolar HVDC transmission lines[A]. In Power System Technology(POWERCON),2010International Conference on[C],24-28Oct.2010,2010;1-6.
    [86]. D. Naidoo, N. M. Ijumba. HVDC line protection for the proposed future HVDCsystems[A]. In2004International Conference on Power System Technology,POWERCON2004, November21,2004-November24,2004[C], Singapore,2004;1327-1332.
    [87]. D. Naidoo, N. M. Ijumba. A protection system for long HVDC transmissionlines[A]. In Power Engineering Society Inaugural Conference and Exposition in Africa,2005IEEE[C],11-15July2005,2005;150-155.
    [88].邓本飞.天广高压直流输电线路保护系统综述[J].电力系统保护与控制,2008,(19):71-74+80.
    [89].周翔胜,林睿.高压直流输电线路保护动作分析及校验方法[J].高电压技术,2006,(09):33-37+49.
    [90].高锡明,张鹏,贺智.直流输电线路保护行为分析[J].电力系统自动化,2005,(14):96-99.
    [91]. X. D. Zheng, N. L. Tai, G. L. Yang, etc. A Transient Protection Scheme forHVDC Transmission Line[J]. Power Delivery, IEEE Transactions on,2012,27(2):718-724.
    [92].高淑萍,索南加乐,宋国兵,等.利用电流突变特性的高压直流输电线路纵联保护新原理[J].电力系统自动化,2011,(05):52-56+86.
    [93].高淑萍,索南加乐,宋国兵,等.高压直流输电线路电流差动保护新原理[J].电力系统自动化,2010,(17):45-49.
    [94]. X. D. Zheng, N. L. Tai, G. L. Yang, etc. A novel protection scheme for HVDCtransmission line[A]. In Advanced Power System Automation and Protection (APAP),2011International Conference on[C],16-20Oct.2011,2011;341-345.
    [95].苏峰.基于PSCAD的高压直流输电控制系统建模的研究[D].华北电力大学(北京)2009.
    [96]. G. Sybille, P. Brunelle, P. Giroux, etc. SimPowerSystems User’s Guide. InVersion:2004.
    [97]. P. S. Bodger, G. D. Irwin, D. A. Woodford. Controlling harmonic instability ofHVDC links connected to weak AC systems[J]. IEEE Transactions on Power Delivery,1990,5(4):2039-2046.
    [98]. W. Zhang, G. Asplund, A. Aberg, etc. Active DC filter for HVDC system-a testinstallation in the Konti-Skan DC link at Lindome converter station[J]. IEEETransactions on Power Delivery,1993,8(3):1599-1606.
    [99]. A. Ekstrom, G. Liss. A refined HVDC control system[J]. Power Apparatus andSystems, IEEE Transactions on,1970,(5):723-732.
    [100].丁浩寅,邰能灵,郑晓冬.利用信号距离识别的高压直流输电线路保护方案[J].高电压技术,2011,(05):1186-1193.
    [101].董新洲,苏斌,薄志谦,等.特高压输电线路继电保护特殊问题的研究[J].电力系统自动化,2004,(22):19-22.
    [102].刘浩芳.特高压输电线路保护新原理及自适应重合闸技术的研究[D].华北电力大学(河北)2007.
    [103].郭征.特高压长线路分相电流差动保护新原理[D].天津大学2004.
    [104].樊占峰,李瑞生,张红霞,等.特高压输电线路保护的方案研究——纵联差动保护[J].继电器,2005,(19):5-9.
    [105]. H. X. Ha, Z. Q. Zhang, Y. Z. Tan, etc. Novel transient differential protectionbased on distributed parameters for EHV transmission lines[A]. In IET9th InternationalConference on Developments in Power Systems Protection, DPSP2008, March17,2008-March20,2008[C], Glasgow, United kingdom,2008;186-191.
    [106].吴通华,郑玉平,朱晓彤.基于暂态电容电流补偿的线路差动保护[J].电力系统自动化,2005,(12):61-67.
    [107].毕天姝,于艳莉,黄少锋,等.超高压线路差动保护电容电流的精确补偿方法[J].电力系统自动化,2005,(15):30-34.
    [108].蒋兴良,苑吉河,孙才新,等.我国±800kV特高压直流输电线路外绝缘问题[J].电网技术,2006,(09):1-9.
    [109].舒印彪.我国特高压输电的发展与实施[J].中国电力,2005,(11):1-8.
    [110].尚春.特高压输电技术在南方电网的发展与应用[J].高电压技术,2006,(01):35-37.
    [111].袁荣湘,陈德树,张哲.高压输电线路新型差动保护的研究[J].中国电机工程学报,2000,(04):10-14.
    [112].李岩,陈德树,张哲,等.超高压长线电容电流对差动保护的影响及补偿对策仿真分析[J].继电器,2001,(06):6-9.
    [113].贺家李,李永丽,李斌,等.特高压输电线继电保护配置方案(二)保护配置方案[J].电力系统自动化,2002,(24):1-6.
    [114]. M. Yamaura, Y. Kurosawa, H. Ayakawa. Improvement of internal chargingcurrent compensation for transmission line differential protection[A]. In Developments inPower System Protection, Sixth International Conference on (Conf. Publ. No.434)[C],25-27Mar1997,1997;74-77.
    [115].苏斌,董新洲,孙元章.适用于特高压线路的差动保护分布电容电流补偿算法[J].电力系统自动化,2005,(08):36-40+59.
    [116]. P. C. Magnusson. Transmission lines and wave propagation[M]. CRC,2001.
    [117]. J. L. Stewart. Circuit Analysis of Transmission Lines[M]. New York: Wiley,1958.
    [118]. T. Takagi, J. Baba, K. Uemura, etc. Fault protection based on travelling wavetheory, part1: theory[A]. In IEEE PES Summer Meeting[C],1977;750-3.
    [119].葛耀中.新型继电保护与故障测距原理与技术[M].西安交通大学出版社,1996.
    [120].宋国兵,索南加乐,高淑萍,等.直流输电线路差动保护方法[P].2009.
    [121].李勇,罗隆福,贺达江,等.新型直流输电系统典型谐波分布特性分析[J].电力系统自动化,2009,(10):59-63.
    [122].胡泽芳.新型±800kV直流输电系统谐波特性及治理研究[D].湖南大学2009.
    [123].刘青.含FACTS元件线路保护若干问题的研究[D].华北电力大学(河北)2010.
    [124].吴振杰. STATCOM对距离保护影响的研究[D].华北电力大学(北京)2003.
    [125].郝巍,李兴源,金小明,等.直流输电引起的谐波不稳定及其相关问题[J].电力系统自动化,2006,(19):94-99.
    [126].史丹,任震,余涛.高压直流输电系统的谐波分析方法综述[J].电力自动化设备,2006,(04):93-97.
    [127].游广增.高压直流输电直流侧谐波计算及滤波器设计[D].浙江大学2007.
    [128]. H. Pang, Z. Wang, J. Chen. Study on the control of shunt active DC filter forHVDC systems[J]. IEEE Transactions on Power Delivery,2008,23(1):396-401.
    [129].焦彦军,于江涛,王增平.基于贝瑞隆模型的特高压线路单端暂态电流保护[J].中国电机工程学报,2010,(16):86-92.
    [130].李瑞生,索南加乐.750kV输电线路的特殊问题及其对线路保护的影响[J].继电器,2006,(03):1-4.
    [131].刘浩芳,王增平,徐岩,等.超高压输电线路波过程及暂态电流保护性能分析[J].电网技术,2006,(03):71-75.
    [132].张直平.谐波对继电保护和自动装置的影响和允许值[J].电力技术,1992,(05):19-23.
    [133].陈皓.超高压输电线路暂态电流保护的研究[D].重庆大学2001.
    [134].王俊生,李海英,曹冬明.±800kV特高压直流保护阀组区测量点配置的探讨[J].电力系统自动化,2006,(22):81-84.
    [135].王俊生,沈国民,李海英,等.±800kV特高压直流输电双极区保护的若干问题探讨[J].电力系统自动化,2006,(23):85-88.
    [136].王钢,罗健斌,李海锋, etc.特高压直流输电线路暂态能量保护[J].电力系统自动化,2010,(01):28-31.
    [137]. Z. Q. Bo, F. Jiang, Z. Chen, etc. Transient based protection for powertransmission systems[A]. In Power Engineering Society Winter Meeting,2000. IEEE[C],23-27Jan2000,2000;1832-1837vol.3.
    [138].吕延洁,张保会,哈恒旭.基于暂态量超高速线路保护的发展与展望[J].电力系统自动化,2001,(05):56-61.
    [139]. P. Anderson. Power system protection[M]. McGraw-Hill New York,1999.
    [140]. P. F. Gale, P. Taylor, P. Naidoo, etc. Travelling wave fault locator experience onEskom's transmission network[J].2001.
    [141]. X. L. Liu, A. H. Osman, O. P. Malik. Hybrid traveling wave/boundary protectionfor monopolar HVDC line[J]. IEEE Transactions on Power Delivery,2009,24(Compendex):569-578.
    [142]. X. L. Liu, A. H. Osman, O. P. Malik. Real-time implementation of a hybridprotection scheme for bipolar HVDC line using FPGA[J]. IEEE Transactions on PowerDelivery,2011,26(Compendex):101-108.
    [143]. K. K. Li, C. J. Fan, W. L. Chan, etc. Study of protection scheme for transmissionline based on wavelet transient energy[J]. International Journal of Electrical Power&Energy Systems,2006,28(Copyright2006, The Institution of Engineering andTechnology):459-470.
    [144]. B. Wang, X. Z. Dong, Z. Q. Bo, etc. RTDS environment development ofultra-high-voltage power system and relay protection test[A]. In2007IEEE PowerEngineering Society General Meeting, PES, June24,2007-June28,2007[C], Tampa,FL, United states,2007.
    [145]. B. Wang, X. Z. Dong, Z. Q. Bo, etc. Residual compensation for groundimpedance relay with applications in UHV transmission lines[J]. IEEE Transactions onPower Delivery,2009,24:1072-8.
    [146].哈恒旭.超高压输电线路边界保护的研究[D].西安交通大学2002.
    [147].段建东,张保会,任晋峰,等.超高压输电线路单端暂态量保护元件的频率特性分析[J].中国电机工程学报,2007,(01):37-43.
    [148].哈恒旭,张保会.输电线路边界保护中雷电冲击与故障的识别[J].继电器,2003,(04):1-5.
    [149].许庆强,索南加乐,杨立璠,等.基于故障边界条件的高压输电线路故障选相元件[J].西安交通大学学报,2006,(12):1446-1449+1462.
    [150]. A. T. Johns, P. Agrawal. New approach to power line protection based upon thedetection of fault induced high frequency signals[J]. Generation, Transmission andDistribution, IEE Proceedings C,1990,137(4):307-313.
    [151].张保会,郝治国.智能电网继电保护研究的进展(一)——故障甄别新原理[J].电力自动化设备,2010,(01):1-6.
    [152]. A. T. Johns, Z. Q. Bo, R. K. Aggarwal. A novel non-unit protection schemebased on fault generated high frequency noise on transmission lines[A]. In Developmentsin Power System Protection,1993., Fifth International Conference on[C],1993,1993;65-68.
    [153]. Aggarwal, R. K.,Johns, A. T.,Bo, Z. Q. Non-unit protection technique for EHVtransmission systems based on fault-generated noise. Part2: signal processing[J].Generation, Transmission and Distribution, IEE Proceedings-,1994,141(2):141-147.
    [154]. R. K. Aggarwal, A. T. Johns, Z. Q. Bo. Nonunit protection technique for EHVtransmission systems based on fault-generated noise. Part3: Engineering and HVlaboratory testing[J]. Generation, Transmission and Distribution, IEE Proceedings-,1996,143(3):276-282.
    [155]. R. K. Aggarwal, A. T. Johns, Z. Q. Bo. Non-unit protection technique for EHVtransmission systems based on fault-generated noise. Part1: signal measurement[J].Generation, Transmission and Distribution, IEE Proceedings-,1994,141(2):133-140.
    [156].哈恒旭,张保会,吕志来.利用暂态电流的输电线路单端量保护新原理探讨[J].中国电机工程学报,2000,(11):57-62.
    [157].束洪春,田鑫萃,张广斌,等.±800kV直流输电线路故障定位的单端电压自然频率方法[J].中国电机工程学报,2011,(25):104-111.
    [158]. B. H. Zhang, J. D. Duan, H. X. Ha, etc. Boundary protection, a new concept forextra high voltage transmission lines-Part II: Discriminative criterions andsimulations[A]. In2005IEEE/PES Transmission and Distribution Conference andExhibition: Asia and Pacific, August15,2005-August18,2005[C], Dalian, China,2005.
    [159]. B. H. Zhang, H. X. Ha, J. D. Duan, etc. Boundary Protection, A New Conceptfor Extra High Voltage Transmission Lines---Part I: Spectrum Analysis of Fault InducedTransients[A]. In Transmission and Distribution Conference and Exhibition: Asia andPacific,2005IEEE/PES[C],2005,2005;1-5.
    [160]. S. Zhang, B. H. Zhang, M. You, etc. Realization of the transient-based boundaryprotection for HVDC transmission lines based on high frequency energy criteria[A]. InPower System Technology (POWERCON),2010International Conference on[C],24-28Oct.2010,2010;1-7.
    [161]. X. L. Liu, A. H. Osman, O. P. Malik. Real-Time Implementation of a HybridProtection Scheme for Bipolar HVDC Line Using FPGA[J]. Power Delivery, IEEETransactions on,2011,26(1):101-108.
    [162]. R. Yacamini, J. W. Resende. Harmonic generation by HVDC schemes involvingconverters and static VAr compensators[J]. Generation, Transmission and Distribution,IEE Proceedings-,1996,143(1):66-74.
    [163]. P. Riedel. Harmonic voltage and current transfer, and AC-and DC-sideimpedances of HVDC converters[J]. Power Delivery, IEEE Transactions on,2005,20(3):2095-2099.
    [164]. I. J. Xiao, L. Zhang. Harmonic cancellation for HVDC systems using anotch-filter controlled active DC filter[J]. IEE Proceedings-Generation, Transmission andDistribution,2000,147(3):176-81.
    [165]. A. G. Phadke, J. S. Thorp. Computer relaying for power systems[M]. Wiley,2009.
    [166].陈海荣.交流系统故障时VSC-HVDC系统的控制与保护策略研究[D].浙江大学2007.
    [167].胡兆庆,毛承雄,陆继明,等.一种新型的直流输电技术——HVDC Light[J].电工技术学报,2005,(07):12-16.
    [168].李庚银,吕鹏飞,李广凯,等.轻型高压直流输电技术的发展与展望[J].电力系统自动化,2003,(04):77-81.
    [169].李广凯,梁海峰,赵成勇,等.几种特殊输电方式的分析比较和展望[J].中国电力,2004,(04):48-53.
    [170].李永坚,周有庆,宋强.轻型直流输电(HVDC Light)技术的发展与应用[J].高电压技术,2003,(10):26-28.
    [171].汤广福,贺之渊,滕乐天,等.电压源换流器高压直流输电技术最新研究进展[J].电网技术,2008,(22):39-44+89.
    [172].张桂斌.新型直流输电及其相关技术研究[D].浙江大学2001.
    [173]. F. Schettler, H. Huang, N. Christl. HVDC transmission systems using voltagesourced converters design and applications[A]. In Power Engineering Society SummerMeeting,2000. IEEE[C],2000,2000;715-720vol.2.
    [174]. B. R. Andersen, L. Xu. Hybrid HVDC system for power transmission to islandnetworks[J]. Power Delivery, IEEE Transactions on,2004,19(4):1884-1890.
    [175]. B. R. Andersen, L. Xu, P. J. Horton, etc. Topologies for VSC transmission[J].Power Engineering Journal,2002,16(3):142-150.
    [176]. N. Flourentzou, V. G. Agelidis, G. D. Demetriades. VSC-Based HVDC PowerTransmission Systems: An Overview[J]. Power Electronics, IEEE Transactions on,2009,24(3):592-602.
    [177]. L. Xu, L. Z. Yao, C. Sasse. Grid Integration of Large DFIG-Based Wind FarmsUsing VSC Transmission[J]. Power Systems, IEEE Transactions on,2007,22(3):976-984.
    [178]. W. X. Lu, O. Boon-Teck. Premium quality power park based on multi-terminalHVDC[J]. Power Delivery, IEEE Transactions on,2005,20(2):978-983.
    [179].张桂斌,徐政.直流输电技术的新发展[J].中国电力,2000,(03):32-35.
    [180]. J. Yang, J. E. Fletcher, J. O'Reilly. Multiterminal DC Wind Farm Collection GridInternal Fault Analysis and Protection Design[J]. Power Delivery, IEEE Transactions on,2010,25(4):2308-2318.
    [181]. J. Candelaria, P. Jae-Do. VSC-HVDC system protection: A review of currentmethods[A]. In Power Systems Conference and Exposition (PSCE),2011IEEE/PES[C],20-23March2011,2011;1-7.
    [182]. E. B. Mesut, R. M. Nikhil. Overcurrent Protection onVoltage-Source-Converter-Based Multiterminal DC Distribution Systems[J]. PowerDelivery, IEEE Transactions on,2007,22(1):406-412.
    [183]. D. G. Holmes, T. Lipo. Pulse width modulation for power converters: principlesand practice[M]. Wiley-IEEE Press,2003.
    [184]. M. H. Bierhoff, F. W. Fuchs.. DC-Link Harmonics of Three-PhaseVoltage-Source Converters Influenced by the Pulsewidth-Modulation Strategy-AnAnalysis[J]. Industrial Electronics, IEEE Transactions on,2008,55(5):2085-2092.
    [185]. B. P. McGrath, D. G. Holmes. A General Analytical Method for CalculatingInverter DC-Link Current Harmonics[J]. Industry Applications, IEEE Transactions on,2009,45(5):1851-1859.
    [186]. D. G. Holmes, B. P. McGrath. Opportunities for harmonic cancellation withcarrier-based PWM for a two-level and multilevel cascaded inverters[J]. IndustryApplications, IEEE Transactions on,2001,37(2):574-582.
    [187]. M. Odavic, M. Sumner, P. Zanchetta, etc. A Theoretical Analysis of theHarmonic Content of PWM Waveforms for Multiple-Frequency Modulators[J]. PowerElectronics, IEEE Transactions on,2010,25(1):131-141.
    [188].杨迪.基于RTDS的±800kV特高压直流输电控制系统的研究[D].华南理工大学2011.
    [189]. H. Taoka, I. Iyoda, H. Noguchi, etc. Real-time digital simulator for powersystem analysis on a hypercube computer[J]. Power Systems, IEEE Transactions on,1992,7(1):1-10.
    [190].高鹏,赵中原,田杰,等.基于RTDS和实际控制系统的±800kV直流输电系统仿真[J].中国电力,2007,(10):33-37.
    [191].郭琦,韩伟强,贾旭东,等.云广直流输电工程安稳装置的RTDS试验方法研究[J].南方电网技术,2010,(02):43-46.
    [192].李战鹰,韩伟强,黄立滨.云广孤岛运行方式RTDS试验平台的构建及研究[J].南方电网技术,2010,(02):47-51.
    [193].张尧,陈文滨,林凌雪,等.基于RTDS双12脉动换流器解/闭锁策略的仿真[J].高电压技术,2009,(06):1260-1266.
    [194].郑传材,黄立滨,管霖,等.±800kV特高压直流换相失败的RTDS仿真及后续控制保护特性研究[J].电网技术,2011,(04):14-20.
    [195].张建设,韩伟强,张尧,等.含±800kV云广直流的南方电网交直流系统RTDS仿真研究[J].南方电网技术,2009,(01):32-35.
    [196].郭贤珊,马为民.向家坝—上海±800kV特高压直流示范工程的低频谐振分析[J].电网技术,2008,(10):1-4+10.
    [197].康宇斌,卞玉萍.向家坝—上海±800kV特高压直流输电线路的检测与运行维护[J].华东电力,2011,(01):114-116.
    [198].刘宝宏,殷威扬,杨志栋,等.±800kV特高压直流输电系统主回路参数研究[J].高电压技术,2007,(01):17-21.
    [199].马为民,聂定珍,曹燕明.向家坝—上海±800kV特高压直流工程中的关键技术方案[J].电网技术,2007,(11):1-5.
    [200].杨万开,印永华,曾南超,等.向家坝—上海±800kV特高压直流输电工程系统调试技术分析[J].电网技术,2011,(07):19-23.
    [201].杨志栋,李亚男,殷威扬,等.±800kV向家坝—上海特高压直流输电工程谐波阻抗等值研究[J].电网技术,2007,(18):1-4+14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700