用户名: 密码: 验证码:
新型永磁双馈发电机及其控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着风电机组容量的扩大和并网要求的不断提高,能源和环保成为关系到全球可持续发展的重大问题,能源的高效利用和可再生能源的开发变得尤为重要。风力发电是目前既节能又环保的一项可再生能源利用技术。然而随着风电装机容量不断增加,风力发电在整个电力系统中所占比重越来越大,风电系统与电网之间的相互影响也越来越明显。由于风力发电系统大多分布在地形复杂、气候条件多变的偏远地区,并网的距离较远,且线路较长,因而电压波动也较大。此外,风速的随机性导致风力发电系统在电网故障发生时更容易产生震荡现象。为了解决这些问题,在实际的并网风力发电系统中就必须要求并网风力发电机组具备故障情况下低电压穿越能力,控制策略必须保证系统在电网故障时能够不间断运行,防止风力发电系统发生脱网,影响电力系统的稳定运行。
     双馈感应风力发电机的相关研究很多,但主要集中在电机的控制策略的研究上,在电机本体的结构上有所创新和发展是比较困难的,如果从这方面入手,改善双馈发电机的运行性能,具有重要意义。本文主要以现有双馈型风力发电机的研究为基础,从双馈风力发电机本体结构和控制策略两方面同时入手,对传统的双馈风力发电机的结构进行了创新,提出了一种新型永磁双馈风力发电机。以电机的瞬态数学模型为基础,全面、深入地研究了该新型电机的结构、控制策略和动态性能。针对新型双馈发电机本身的结构特点,提出了相应的并网控制策略。
     论文的研究内容主要有以下几个方面:
     1、在分析永磁感应电机结构和工作原理的基础上,提出了新型永磁双馈发电机(permanent magnet doubly fed induction generator, PMDFIG)。首先进行了二维有限元电磁场仿真研究。建立了永磁双馈发电机三相静止坐标系和任意坐标系下的数学模型,在此基础上,构建了基于同步旋转坐标系下的永磁双馈电机的数学模型。建立了网侧变换器的数学模型,建立了转子侧变换器传统的双闭环矢量控制策略,从而为故障情况下永磁双馈风力发电系统的控制策略的有效实施提供了理论基础。稳态并网运行仿真分析验证了所建立的PMDFIG本体数学模型的正确性,并证明了在电网正常运行情况下PMDFIG风力发电系统比传统双馈风力发电系统并网运行的优越性。
     2、研究了电网电压骤降故障下永磁双馈发电机系统性能、动态建模与不间断运行能力的控制设计,主要包括:分析了PMDFIG在电压骤降情况下风力发电系统的动态过渡过程,采用计及定子励磁电流变化的转子侧变换器控制策略,采用加入负载电流前馈补偿和电网电压前馈控制双闭环的网侧变换器控制策略。建立了该发电系统的动态控制仿真模型。动态仿真结果表明,与传统双馈发电机相比,电压骤降情况下PMDFIG系统能减小电网扰动过渡过程中发电机定转子过电流,从而降低对电网的冲击。仿真结果验证了所提出的计及定子励磁电流变化的转子侧变换器控制策略比传统双闭环控制策略在电网电压小幅跌落时的有效性。
     3、当电网电压不平衡比较严重且发电机未采取相应的控制措施时,发电机将不得不与电网解列,这将影响电网运行的稳定性。因此在产生电压不平衡故障时,维持永磁双馈风力发电机与电网的稳定性是非常必要的。本文从不平衡故障下的电机数学模型出发,利用正负序分量分解法,推导了永磁双馈风力发电机在电压不平衡故障状态下的功率和转矩方程,根据永磁双馈发电机电网不平衡故障状态下的控制目标,通过仿真验证控制策略的有效性。
     4、为了提高电网电压严重跌落故障下双馈发电机的低压穿越性能,研究了新型永磁双馈发电机新型的低电压穿越控制策略。首先研究了PMDFIG的传统Crowbar控制方式,分析了影响Crowbar控制电路的参数,确定了Crowbar控制电路电阻值的选取方法。建立了PMDFIG低电压穿越的Crowbar控制模型并进行了仿真分析。对永磁双馈发电机在电网电压严重跌落时,提出了计及定子励磁电流变化的永磁双馈发电机零转矩控制策略,分别采用传统Crowbar控制和计及定子励磁电流变化的零转矩控制策略进行了对比仿真。仿真结果表明,计及定子励磁电流变化的零转矩控制策略能够改善永磁双馈发电机低压穿越运行能力。
As the increased penetration of wind power generations in power, modern grid codes concerning grid-connected wind turbines are developed, energy and environmental issues is a major strategic issue related to global sustainable development. The efficient use and development of renewable energy has become particularly important. The wind is a renewable energy technology not only saving energy but also protecting environment. However, with the wind powder installed capacity increased, wind power proportion in the power system is growing. The interaction between the wind power system and power network is more and more obvious. As the wind power generation system are mostly located in complex terrain, changeable weather condition in remote mountainous, far away from the grid, and the line is longer, so the voltage fluctuates relatively largely. Because of the randomness of wind speed, resulting in wind power generation systemis easy to generate oscillation fault when faults occur in the grid. In order to solve these problems, in the grid connected wind power generation system must have low voltage ride through capability(LVRT). The control strategy can prevent the wind power generation system from the grid during the grid fault, which ensure the stable operation of power system.
     A lot of researches concerning doubly fed induction wind power generator were carried out, but the main focus in the research of control strategy on the generator, Innovation and development in the structure of generator is more difficult. From this aspect, the operation performance of doubly fed generator can be improved, it is quite meaningful. This paper mainly studies on the existing double fed wind generator as the foundation, from the two aspects of structure and control strategy of DFIG at the same time, based on structure of DFIG, puts forward a novel permanent magnet doubly fed wind power generator (PMDFIG). Based on the transient mathematical model of the generator, the structure, the control strategy and dynamic performance of PMDFIG are comprehensive studied. According to the structure characteristics of a new type of doubly fed generator, corresponding grid connected control strategy is proposed. The model of doubly fed wind power generator connected to the grid is proposed. The improved the performance is conducive under the stable operation of power grid.
     The main contents of the dissertation are as follows:
     (1)Based on the analysis of permanent magnet machine structure and working principle, a novel permanent magnet doubly fed wind power generator was proposed to overcome the disadvantages of the present DFIG. The novel permanent magnet doubly fed wind power generator has a permanent magnet rotor inside a wind rotor. The wind rotor is linked to the shaft, and the built-in permanent magnet rotor is free to rotate against the shaft. One of the notable features of the PMDFIG is that the power density is higher compared to a conventional DFIG. The two-dimensional finite element electromagnetic simulation is conducted. The mathematical model concerning PMDFIG are established in the three-phase stationary reference frame, two-phase stator stationary reference frame and two-phase rotating reference frame at arbitrary angular speed, respectively. The mathematical model concerning the grid side converter are established. The rotor side converter uses double closed loop control strategy oriented the stator voltage vector, which provides a theoretical basis for the effective implementation of control strategy of fault cases permanent magnet doubly fed wind power generation system. Steady simulation analysis verified that the established mathematical model is correct. We also prove that the PMDFIG has superiority than traditional doubly fed induction generation.
     (2) The operation and control strategy of the PMDFIG wind power system are conducted when network voltage sag conditions. Control design of dynamic modeling and uninterrupted operation ability, Mainly includes:analysis of the dynamic process of PMDFIG when voltage sags, the rotor side converter control strategy considering the excitation current of stator, the load current feed forward compensation and voltage control for grid side converter control strategy.
     (3) When the grid voltage imbalance is more serious and without corresponding control measures are taken, the generator will have to be out of the grid. Therefore the power grid control strategy will be put into effect. Therefore in the unbalanced fault conditions, it is necessary to study the stability of permanent magnet doubly fed wind generator and grid maintenance. Under unbalanced network voltage condition, by using the method of positive and negative sequence component decomposition, the control model,the power equations and torque equations are deduced. The control target of PMDFIG is carried out under fault conditions, and the effectiveness of the control strategy is verified by simulation.
     (4)To improve LVRT performance of PMDFIG under severe grid voltage fault, the dissertation designs and develops a new rotor-side converter strategy for a new type PMDFIG. Firstly, the traditional PMDFIG control method of Crowbar is carried out, the influence of the parameters of Crowbar controller are emphasized and the Crowbar control circuit resistance values are determined. A crowbar circuit control model and simulation are analyzed. Under severely grid voltage dip, the control strategy of the permanent magnet doubly fed generator is put forward, excitation current of stator changes of zero torque, Zero torque respectively by traditional Crowbar control and stator excitation current change control strategies are compared and simulated. The simulation results show that, the change of zero torque and stator excitation current control strategy of doubly fed generator can improve low voltage ride through operation ability.
引文
[1]陈雷.大型风力发电机组技术发展趋势[J].可再生能源,2003,107(1):12-14.
    [2]国家电网公司.风电场接入电网技术规定(修订版)[S],2009-02.
    [3]王承煦,张源.风力发电[M].北京:中国电力出版社,2002.
    [4]T. Burton, D. Sharpe, N.Jenkins, etc. Wind Energy Handbook[M]. New York Wiley,2001.
    [5]施鹏飞.从世界发展趋势展望我国风力发电前景[J].中国电力,2003.
    [6]易跃春.风力发电现状、发展前景及市场分析[J].国际电力,2004,2004(10):18-22.
    [7]“十一五”国家高新技术发展技术发展计划能源技术专家委员会.能源发展战略研究[M].中国电力,2006.
    [8]施鹏飞.2008年国内外风电持续快速发展[J].可再生能源,2009,27(2):45-47.
    [9]包耳,胡红英.风力发电的发展状况与展望[J].大连民族学院学报,2011,13(1):24-27.
    [10]赵兴勇.直驱永磁同步风力发电机组低电压穿越控制策略[J].中国电力,2011,44(5):74-77.
    [11]瞿兴鸿,廖勇等.永磁同步直驱风力发电系统的并网变流器设计[J].电力电子技术,2008,42(3):22-24.
    [12]姚骏,廖勇,瞿兴鸿,等.直驱永磁同步风力发电机的最佳风能跟踪控制[J].电网技术,2008,32(10):11-15,27.
    [13]姜燕,陈顺,黄守道,等.直驱型永磁风力发电系统的电网同步化方法研究[J].电网技术,2010,34(11):182-187.
    [14]瞿兴鸿,廖勇,姚骏,等.永磁同步直驱风力发电系统的并网变流器设计[J].电力电子技术,2008,42(5):22-24.
    [15]廖勇,何金波,姚骏,等.基于变桨距和转矩动态控制的直驱永磁同步风力发电机功率平滑控制[J].中国电机工程学报,2009,29(18):71-76.
    [16]蔺红,晁勤.电网故障下直驱式风电机组建模与控制仿真研究[J].电力系 统保护与控制,2010,38(21):189-195.
    [17]王文亮,葛宝明,毕大强.储能型直驱永磁同步风力发电控制系统[J].电力系统保护与控制,2010,38(14):43-48,78.
    [18]吴竞之.基于鼠笼电机全功率风力发电的系统分析与研究[D].上海交通大学,2011.
    [19]王高林.感应电机无速度传感器转子磁场定向控制策略研究[D].哈尔滨工业大学,2010.
    [20]刘旭.异步电动机无速度传感器矢量控制系统研究[D].上海大学,2009.
    [21]刘军锋.定子磁场定向无速度传感器系统研究与开发[D].华中科技大学,2005.
    [22]翟良强.鼠笼式异步电机状态监测及故障诊断方法的研究[D].南华大学2012.
    [23]李建林,许洪华,胡书举,等.风力发电系统低电压运行技术[M].北京:机械工业出版社,2008,12.
    [24]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制[J].电力系统自动化,2003,23(20):62-67.
    [25]李建林,徐鸿雁,梁亮.VSCF-DFIG在电网电压跌落瞬间情况下的对应策略[J].电力系统自动化,2006,30(19):65-68.
    [26]赵吴鹏.变速恒频风力发电机功率控制及实验平台开发[D].华北电力大学,2009.
    [27]Abbey C, Joos G. Effect of low voltage ride through (LVRT) characteristic on voltage stability[J]. IEEE, Transactions on Industry Applications,2005,41(3): 1-7.
    [28]伍小杰,柴建云,王祥珩.变速恒频双馈风力发电系统交流励磁综述[J].电力系统自动化,2004,28(23):92-96.
    [29]陈雷源,邢作霞,潘建.大型风力发电机组技术发展趋势[J].可再生能源,2003,32(1):27-30.
    [30]杨继成.双馈风力发电机理想电压下及电网电压小值跌落时的控制[D].合肥工业大学,2010.
    [31]Yoshiyuki Shibata, Nuio Tsuchida and Koji Imai, High torque induction motor with rotating magnets in the rotor[J]. Electrical Engineering in Japan,1996, 117(3):102-109.
    [32]Yoshiyuki Shibata, Nuio Tsuchida. Koji Imai. Performance of induction motor with free-rotating magnets inside its rotor [J]. IEEE Transactions on Industrial Electronics,1999,46(3):646-652.
    [33]T. Tsuda, T. Fukami, Y. Kanamaru, et al. Effects of the built-in permanent magnet rotor on the equivalent circuit parameters of a permanent magnet induction generator[J]. IEEE Transactions on Energy Conversion,2007, 22(3):798-799.
    [34]Tadashi Fukami, Kenichi Nakagawa, Ryoichi Hanaoka, et al. Nonlinear modeling of a permanent-magnet induction machine[J]. Electrical Engineering in Japan,2003,144(1):58-67.
    [35]王朔.双转子异步电动机的研究[D].浙江工业大学,2007年12月.
    [36]王朔,冯浩.双转子异步电动机电磁场的有限元分析[J].机电工程技术,2007.36(10):25-28.
    [37]赵晓.高效节能异步电动机特性分析[D].浙江工业大学,2010.
    [38]赵晓,冯浩.基于ANSYS的双转子异步电动机结构优化设计[J].机械工程师,2010(4):63-64.
    [39]T. Fukami, K. Nakagawa, R. Hanaoka, S. et al. Nonlinear modeling of a permanent-magnet induction machine [J]. Electrical Engineering in Japan, 2003,144(1):58-67.
    [40]Toshihiro Tsuda, Tadashi Fukami, Yasunori Kanamaru, et al. Effects of the built-in permanent magnet rotor on the equivalent circuit parameters of a permanent magnet induction generator[J]. IEEE Transactions on Energy Conversion,2007,22(3):798-799.
    [41]Tadashi Fukami, Kenichi Nakagawa, Yasunori Kanamaru, et al. A technique for the steady-state analysis of a grid-connected permanent-magnet induction generator[J]. IEEE Transactions on Energy Conversion,2004,19(2):318-324.
    [42]Toshihiro Tsuda, Tadashi Fukami, Yasunori Kanamaru, et al. Performance analysis of the permanent-magnet induction generator under unbalanced grid voltages[J]. Electrical Engineering in Japan,2007,161(4):60-69.
    [43]吴建明.双馈风力发电机组及其低电压穿越技术研究[D].内蒙古科技大学,2011.
    [44]李梅,李建林,赵斌等.双馈感应式风力发电机的电压跌落响应分析[J].系统仿真学报,2007,19(22):5243-5245.
    [45]凌禹,张同庄.变速风力发电系统控制技术综述[J].电力自动化设备,2008,28(3):122-125.
    [46]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机的运行控制与建模仿真[J].中国电机工程学报,2006,26(5):43-50.
    [47]胡家兵,孙丹,贺益康,等.电网电压骤降故障下双馈风力发电机建模与控制[J].电力系统自动化,2006,30(8):21-25.
    [48]徐海亮,章玮,胡家兵,等.电网电压不平衡及谐波畸变时基波电压同步信号的检测[J].电力系统自动化,2012,36(5):90-95.
    [49]赵宇,王奔,仇乐兵,等.基于变结构控制的变速恒频双馈风力发电机并网控制[J].电力自动化设备,2010,30(9):77-81.
    [50]赵梅花,阮毅,杨勇.直驱式混合励磁风力发电系统控制策略的研究[J].电力系统保护与控制,2010,38(12):19-24.
    [51]胡家兵,贺益康.双馈风力发电系统的低压穿越运行与控制[J].电力系统自动化,2008,32(2):49-52.
    [52]杨淑英.双馈型风力发电变流器及其控制[D].合肥工业大学,2007.
    [53]王国民,吴政球,彭程,等.双馈电机改善系统阻尼的研究[J].电网技术,2011,35(6):144-148.
    [54]苏平.双馈感应风力发电机低电压穿越的研究与仿真分析[D].西安理工大学,2010.
    [55]徐海亮,胡家兵,贺益康.电网谐波条件下双馈感应风力发电机的建模与控制[J].电力系统自动化,2011,35(11):20-26.
    [56]郁灿.双馈风力发电机的稳态分析与变流器设计[D].北京交通大学,2010.
    [57]刘吉宏,徐大平,吕跃刚.双馈感应发电机转速的非线性模型预测控制[J].电 网技术,2011,35(4):159-163.
    [58]刘其辉,谢孟丽.双馈式变速恒频风力发电机的空载及负载并网策略[J].电工技术学报,2012,27(10):60-67.
    [59]贺益康,胡家兵.双馈异步风力发电机并网运行中的几个热点问题[J].中国电机工程学报,2012,32(27):1-15.
    [60]卞松江.变速恒频风力发电关键技术研究[D].浙江大学,2003.
    [61]刘其辉.变速恒频风力发电系统运行与控制研究[D].浙江大学,2005.
    [62]Panda D, Benedict E. L, Venkataramanan G. A novel control strategy for the rotor side control of a doubly-fed induction machine. IAS,2001,3: 1695-1702.
    [63]PeterssonA, Harnefors L, Thiringer T. Evaluation of current control methods for wind turbines using doubly-fed induction machines. IEEE Transactions on Energy Conversion,2005,20(1):227-235.
    [64]Cartwright P, Holdsworth L. et al. Co-ordinated voltage control strategy for a doubly-fed induction generator(DFIG)-based wind farm. IEE Proc.-Gener. Transmi. Distrib,2004,151(4):495-502.
    [65]T. Yifan, X. Longya. Vector control and fuzzy logic control of doubly fed variable speed drives with DSP implementation. IEEE Transactions on Energy Convers,1995,10(4):661-668.
    [66]Santiago A. G, Jose L. R. A Grid synchronization of doubly fed induction generators using direct torque control. IEEE 28th Annual Conference of Industrial Electronics Society,2002:3338-3343.
    [67]Arnalte S, Burgos J. C, Rodriguez A. J. L. Direct torque control of a doubly fed induction generator for variable speed wind turbines. Electric Power Components and Systems,2002,30(2):199-217.
    [68]王亮,林成武,姚鹏.双馈风力发电机的直接转矩控制技术[J].沈阳工业大学学报,2006,28(2):206-209.
    [69]邢作霞,郑琼林,刘光德,等.双馈变速恒频风电机组直接转矩控制[J].辽宁工程技术大学学报,2006,25(4):556-559.
    [70]宋文华.变速恒频双馈发电机直接转矩控制的研究[D].沈阳工业大学,2005.
    [71]魏学森.双馈电机直接转矩控制的研究[D].河北工业大学,2005.
    [72]梅文庆.双馈感应电动机直接转矩控制方法研究[D].华中科技大学,2007.
    [73]徐彬,杨丹,王旭,等.电压型PWM整流器模糊逻辑功率预测控制策略[J].电机与控制学报,2011,8(14):52-57.
    [74]马庆安,李群湛,邱大强,等.基于直接功率控制的单相AC-DC变流器控制器设计[J].电工技术学报,2012,27(7):251-255.
    [75]乐江源,张志,赖小华.三相并联型有源电力滤波器预测直接功率控制[J].电机与控制学报,2012,16(5):86-90.
    [76]Lie Xu, Phillip Cartwright. Direct active and reactive Power control of DFIG for wind energy generation. IEEE Transactions on Conversion,2006,21(9): 750-758.
    [77]Dawei Zhi, Lie Xu. Direct Power Control of DFIG with Constant Switching Frequency and Improved Transient Performance. IEEE Transactions on Energy Conversion,2007,22(1):110-118.
    [78]周鹏.双馈异步风力发电系统低电压穿越技术研究[D].浙江大学,2011.
    [79]Petersson A, Harnefors L, Thiringer T. Evaluation of current control methods for wind turbines using doubly-fed induction machines [J]. IEEE Transactions on Power Electronics,2005,20(1):227-235.
    [80]贺益康,胡家兵,Lie XU.并网双馈异步风力发电机运行控制[M].北京:中国电力出版社,2012.
    [81]年珩,宋亦鹏.谐波电网下基于矢量比例积分电流调节器的双馈异步发电机运行控制技术[J].中国电机工程学报,2013,33(6):111-112.
    [82]赵阳.风力发电系统用双馈感应发电机矢量控制技术研究[D].华中科技大学,2008.
    [83]邹旭东.变速恒频交流励磁双馈风力发电系统及其控制技术研究[D].华中科技大学,2005.
    [84]B. Hagenkort, T. Hartkopf, A. Binder, et al. Modelling a direct drive permanent magnet induction machine[C]//Proceedings of the International Conference on Electrical Machines, Aug.2000:1495-1499.
    [85]Johannes H. J. Potgieter. Design and analysis of gearless direct-grid permanent magnet induction wind generator [M]. the University of Stellenbosch, March, 2011.
    [86]胡家兵,孙丹,贺益康,等.电网电压骤降故障下双馈风力发电机建模与控制.电力系统自动化[J],2006,30(8):21-25.
    [87]王晓兰,孙万义.双馈风力发电机在不同电网故障下的动态响应仿真研究[J].电网技术,2010.34(8):170-175.
    [88]李梅,李建林,赵斌,等.不同电网故障情况下DFIG运行特性比较[J].高电压技术,2008,34(4):777-782.
    [89]Seman S, Niiranen J, Kanerva S, et al. Analysis of a 1.7MVA doubly fed wind-power induction generator during power systems disturbances[C]. Proceeding ofNORPIE, Trondheim, Norway,2004.
    [90]Niiranen J. Voltage dip ride through of doubly-fed generator equipped with active crowbar[C]. The Nordic Wind Power Conference, Goteborg, Sweden, 2004.
    [91]Lihui Yang, Zhao Xu. Advanced control strategy of DFIG wind turbines for power system fault ride through[J]. IEEE transactions on power systems, 2009,27(2):713-721.
    [92]张禄,金新民,唐芬,等.电网电压对称跌落下的双馈感应发电机PI-R控制及改进[J].中国电机工程学,2013,33(3):106-116.
    [93]Lopez J, Sanchis P, Roboam X, et al. Dynamic behavior of the doubly fed induction generator during three-phase voltage dips[J]. IEEE Transactions on Energy Conversion,2007,22(3):709-717.
    [94]Marques J, Pinheiro H. Dynamic behavior of the doubly-fed induction generator in stator flux vector reference frame[C]//Power Electronics Specialists Conference. Recife, Brazil,2005:2104-2110.
    [95]Hu J, He Y, Xu L, et al. Improved control of DFIG systems during network unbalance using PI-R current regulators[J]. IEEE Transactions on Industrial Electronics,2009,56(2):439-451.
    [96]Tan PC, Loh PC, Holmes DG. High-performance harmonic extraction algorithm for a 25 kV traction power quality conditioner[J]. IEE Proceedings-Electric Power Applications,2004,151(5):505-512.
    [97]何鸣明.不对称电网故障下PWM整流器的控制策略的研究[D].浙江大学,2006.
    [98]李文龙.不平衡电网电压双馈风力发电机的运行控制研究[D].兰州理工大学,2011.
    [99]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的系统仿真研究[J].中国电机工程学,2006,26(10):130-135.
    [100]叶仁杰.电网故障下双馈感应风力发电机组的暂态运行特性的研究[D].重庆大学,2009.
    [101]赵新.双馈型风力发电机控制策略及低电压穿越技术研究[D].北京交通大学,2010.
    [102]Yepes A G, Freijedo F D, Jes'us Doval-Gandoy, et al. Effects of discretization methods on the performance ofresonant controllers [J] IEEE Transactions on Power Electronics,2010,25(7):1692-1712.
    [103]胡之光.电机电磁场的分析与计算[M].北京:机械工业出版社,1982.
    [104]俞宏生.工程电磁场分析与计算[M].北京:人民交通出版社,1997.
    [105]巩源泉.磁通开关发电机系统研究[D].山东大学,2009.
    [106]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析[M].北京:电子工业出版社,2005.
    [107]Lihui Yang, Zhao Xu, Jacob (?)stergaard, et al. Advanced control strategy of DFIG wind turbines for power system fault ride through[J]. IEEE Transactions on Power Systems,2009,27(2):713-721.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700