用户名: 密码: 验证码:
多功能自主式水下机器人运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运动控制是自主式水下机器人进行自主作业的基础,是水下机器人的核心技术之一,因此对其进行深入研究具有重要的理论意义与工程应用价值。本文研究目的在于改善运动控制效果、提高运动控制系统的智能水平、完善控制软件的自诊断与容错处理,从而保障水下机器人具有良好的运动控制性能,能够适应复杂的海洋环境,同时保证运动控制系统具有较高的可靠性。
     论文研究对象为哈尔滨工程大学研制的某自主式水下机器人,该机器人搭载了多种探测传感器,具有多种探测作业功能。由于各种作业任务对水下机器人运动的需求不同,要求运动控制系统能够根据各种任务的特点,调整控制策略及控制方法,保证探测任务的顺利进行。同时要求运动控制系统能够对来自于系统外部的信息进行有效的理解,从而提高运动控制的执行效率和控制效果。另外,机器人系统可靠性要求运动控制软件具有自诊断与容错能力。因此本文重点研究了水下机器人运动S面控制方法的稳定性问题、欠驱动运动控制问题、外部信息理解技术与运动控制软件的自诊断与容错技术。
     针对水下机器人S面运动控制方法的稳定性问题,从位置控制和速度控制两方面进行了分析。应用李亚普诺夫稳定理论和T-无源理论,完成了S面位置控制器的稳定性证明。在位置控制器基础上推导了S面速度控制器,并对速度控制器的稳定性进行了分析。对S面控制进行自适应改进,提出了自适应S面控制方法,进行了实际海上试验验证,并给出了试验结果。
     针对机器人在快速航行时由于关闭槽道桨产生的横移与升沉自由度欠驱动问题,采用椭圆视线法与反步法构造了欠驱动直线路径跟踪控制器,实现了对直线路径的跟踪控制,给出了海上试验结果;利用T-S模糊融合的机器人高度信息构造了欠驱动地形跟踪控制器,实现了对水底地形的跟踪控制,并进行了试验验证;构造了基于虚拟控制量的欠驱动深度控制器,实现了带有剩余浮力的水下机器人欠驱动深度控制,并进行了仿真试验。
     针对规划指令与水声目标两种外部信息的理解问题分别进行了研究。借鉴Itti视觉注意力模型,建立了规划指令理解模型,并且根据规划指令的理解结果进行了再次规划,以便于规划系统期望的运动状态能够以合理的方式实现,并进行了仿真试验验证;应用带有遗忘因子的动态聚类的方法实现了水声目标的分类与甄别,并采用强跟踪卡尔曼滤波器对跟踪目标运动信息进行滤波,提高信息准确度,在水池目标跟踪试验对水声目标信息理解行了验证。
     针对运动控制软件的自诊断与容错问题,将基于vxWorks操作系统的运动控制软件进行分解,得到了若干个由函数组成的系统级任务与普通任务,并从系统级、任务级、函数级三个层次进行了软件故障自诊断与容错设计,保证了运动控制软件在特定故障时的可靠性。
As the autonomous work basis of autonomous underwater vehicle (AUV), motioncontrol is one of the key technologies of AUV. Thus, it is significant in theory and engineeringto research on the motion control. This thesis aims at improving motion control effect,enhancing the intelligence of motion control system and modifying the fault diagnosis andtolerance ability of control software, so that better motion control performance, higherreliability and fitness for complex ocean environment can be acquired.
     A newly developed AUV which is taken as the research object is equipped with kinds ofdetective sensors and so can do kinds of detective works. Since there are differentrequirements for the motion performance in accordance with different working tasks, themotion control system has to adjust control strategy and control method according to thecharacteristics of different tasks. Meanwhile, the motion control system has to efficientlycomprehend the outer information in order to improve the execution efficiency and controllerperformance. Besides, the system reliability of the AUV needs a motion control system withfault diagnosis and tolerance abilities. And the stability of the motion control algorithmS-plane control algorithm, under-actuated motion control, comprehension technology of theouter information, and fault diagnosis and tolerance of motion control software are reseachedin this dissertation.
     Aiming at the stability of S-plane motion control method, it is analyzed in two aspects,position control and speed control. Using Lyapunov stability theory and T non-source theory,the stability of the S-plane position controller is proved. And S-plane speed controller isderived based on the position controllet, then the stability of speed controller is analyzed. Theadaptive S-plane control method is proposed by modifying the traditional S-plane control, andit is tested during real sea trial in which the experiments results are acquired.
     The under-actuated problems of sway and heave motion happen owing to shutting downthe tunnel thrusters while the AUV moves at a high speed, in order to solve these, the ellipsesight ray method and anti-step method are used to construct the under-actuated line path tracking controller, and the line path trackingcontrol is achieved, the ses trial results aregiven. The under-actuated terrain tracking controller is built by using the height data fused inT-S fuzzy method, and the terrain tracking under sea is achieved, the method is tested in seatrial. The under-actuated depth controller based on virtual control varible is built, so that thedepth control of the AUV with excess buoyancy is avhieved, the method is tested insimulation experiments.
     Researches on two kinds of outer information, comprehension of planning instructionsand acoustic targets, are discussed. The planning instruction comprehension model is builtaccording to the thoughts of Itti vision attention model, and the re-planning is done accordingto the comprehension of planning instruction, so that the expected motion state of planningsystem can be realized in a reasonable way, and the method above is tested in simulationexperiments. The classification and identification of acoustic targets are achieved usingdynamic clustering method with forgotten factor. Besides, the motion information of trackingtargets is filtered by using strong tracking kalman filter to make the information more precise,and the method is tested by target tracking trial in tank.
     To slove the fault diagnosis and tolerance problems of motion control system software,the motion control system software based on vxWorks OS is divided into system level tasksand normal level tasks formed by several functions. And software fault diagnosis andtolerance is designed from three levels, system level, task level and function level, thus, thereliablity of motion control system software is guaranteed when certain faults happen.
引文
[1] http://tech.sina.com.cn/d/jiaolong7000
    [2]王诗成.财富取自海上危险亦来自海上——21世纪中国海洋战略研究.海洋开发与管理,1998,4:14-21
    [3]王诗成.财富取自海上危险亦来自海上——21世纪中国海洋战略研究(续).海洋开发与管理,1999,1:8-18
    [4] http://www.whoi.edu/alvin
    [5] http://www.zwbk.org/MyLemmaShow.aspx?/lid=196797
    [6] http://km.kongsberg.com
    [7] http://www.noc.soton.ac.uk//nmf/us/index.php?page=as
    [8]李一平,封锡盛.“CR-01”6000m自治水下机器人在太平洋锰结核调查中的应用.高技术通讯,2001,1:85-87
    [9]李一平,燕奎臣.“CR-02”自治水下机器人在定点调查中的应用.机器人,2003,25(4):359-362
    [10]茅及愚译.“海沟号”潜入万米海底.机器人技术与应用,1996,2:24-25
    [11] https://portal.navfac.navy.mil
    [12]王成.执着创新为深海探测服务.海峡科技与产业,2011,11:68-69
    [13]封锡盛.从有缆遥控水下机器人到自治水下机器人.中国工程科学,2000,2(12):29-33
    [14]封锡盛,刘永宽.自治水下机器人研究开发的现状和趋势.高技术通讯,1999,13(9):55-59
    [15]桑恩方,庞永杰,卞红雨.水下机器人技术.机器人技术与应用,2003,3:8-13
    [16]冯正平.国外自治水下机器人发展现状综述.鱼雷技术,2005,3:5-9
    [17] Von Alt Christopher. Remus100transportable mine countermeasure package. OcensConference Record(IEEE),2003,4:1925-1930
    [18] Stokey Roger P., Roup Alexander, Von Alt Chris, Allen Ben, et al. Development of theREMUS600autonomous underwater vehicle. Proseedings of MTS/IEEE OCEANS,2005
    [19] Purcell Michael, Gallo Dave, Sherrell Andy, Rothenbeck Marcel, et al.Use of REMUS6000AUVs in the search for the air France flight447. MTS/IEEE Kona Conference,OCEANS’11,2011
    [20] Bowen A.D., Yoerger D.R., Taylor C., et al. The Nereus hybrid underwater roboticvehicle. Undervater Thchnology,2009,28(3):79-89
    [21] Baker Berenice. Drop in the ocean. Ehgineer,2008,293(7756):30-31
    [22] Nagahashi Kenji, Ura Tamaki, Asada Akira, et al. Underwater volcano observation byautonomous underwater vehicle “r2D4”. Oceans2005Europe,2005,1:557-562
    [23] Storkersen Nils, Kristensen Jon, Indreeide Arne, et al. Hugin-UUV for seabedsurveying. Sea Technology,1998,39(2):99-104
    [24] Gustafson Einar, Jalving Bjrn, Engelhardtsen Φystein, et al. HUGIN1000arctic classAUV. Society of Petroleum Engineers–Arcitc Technology Conference2011,2:714-721
    [25] Vestgard K., Hansen R., Jalving B., et al. The HUGIN3000survey AUV. Proceedingsof the International Offshore and Polar Engineering Conference,2001,4:679-684.
    [26]彭学伦.水下机器人的研究现状与发展趋势.机器人技术与应用,2004,4:43-47
    [27]徐玉如,李彭超.水下机器人发展趋势.自然杂志,2011,33(3):125-133
    [28]马伟锋,胡震. AUV的研究现状与发展趋势.火力与指挥控制,2008,22(6):10-13
    [29]李晔,常文田,孙玉山,苏玉民.自治水下机器人的研发现状与展望.机器人技术与应用,2007,1:25-31
    [30] Antonelli Gianluca. Adaptive/integral actions for6-DOF control of AUVs. Proceedings2006IEEE International Conference on Robotics and Automation,2006:3214-3219
    [31] Tang Zhijie, He Qingbo, Wang Shua, et al. An improved generalized predictive controlfor AUV yaw.2nd International Conference on Mechatronics and Intelligent Materials2012,2012,1709-1713
    [32] Ha Tae Kyu, Binugroho Eko Henfri, Seo Young Bong, Choi Jae Weon. Sliding modecontrol for autonomous underwater vehicle under open control platform environment.Proceedings of SICE Annual Conference2008-International Conference onInstrumentation, Control and Information Technology,2008,1345-1350
    [33] Wu Baoju, Li Shuo, Wang Xiaohui. Adaptive sliding mode control of an autonomousunderwater vehicle. Robot,2009,31:22-25
    [34] Khan Imran, Bhatti A.I., Khan Qudrat, Ahmad Qadeer. Sliding mode control of lateraldynamics of an AUV. Proceedings of20129th International Bhurban Conference onApplied Sciences and Technology,2012,27-31
    [35]汤兵勇,路林吉,王文杰.模糊控制理论与应用技术.北京:清华大学出版社,2002
    [36] Paul A. DeBitetto. Fuzzy logic for Depth Control of Unmanned Undersea Vehicles.IEEE Journal of Oceanic Engineering,1995,(20)3:242-248
    [37] Akkizidis I. S., Roberts G. N..Fuzzy modeling&fuzzy-neuro motion control of anautonomous underwater robot. International Workshop on Advanced Motion Control,1998,641-646
    [38] Ishii Kazuo, Fujii Teruo, Ura Tamaki. On-line adaptation method in a neural networkbased congrol system for AUV’s. IEEE Journal of Oceanic Engineering,20(3):221-228
    [39] Lorentz Jorgen, Yuh J.. Survey and experimental study of neural network AUV control.Proceedings of the1996IEEE Symposium on Autonomous Underwater VehicleTechnology,1996,109-116
    [40] Antonelli G., Chiaverini S., Sarkar N., West M.. Adaptive control of an autonomousunderwater vehicle: Experimental results on ODIN. IEEE Transctions on ControlSystems Technology,2001,9(5):756-765
    [41] Hong Seok Won, Lee Pan Mook, Jeon Bong Hwan, Lee Chong Moo. Design of anunderwater vehicle-mounted manipulator system and non-regressor based adaptivecontrol. Proceedings of the International Offshore and Polar Engineering Conference,2000,2:314-319
    [42] Lebedev Alexander, Filaretov Vladimir F.. The synthesis of adaptive control systemwith reference model for autonomous underwater vehicle. Proceedings of ASMEInternational Mechanical Engineering Congress and Exposition,2002,981-985
    [43] Gonzalez Julian, Benezra Andreina, Gomariz Spartacus, et al. Limitations of linearcontrol for Cormoran-AUV. Proceedings of2012International Instrumentation andMeasurement Technology Conference,2012,1726-1729
    [44] Liu Sheng, Ren Dong, Li, Bing, Chang Xucheng. Research on variable directionrotatable axis variable vector propeller of AUV in vertical motion. Proceedings of2010International Forum on Information Technology and Applications,2010,267-270
    [45] Park Rang-eun, Hwang Eun Ju, Lee Heejin, Park Mignon. Motion control of an AUV(Autonomous Underwater Vehicle) using fuzzy gain scheduling. Journal of Institute ofControl, Robotics and Systems,2010,16(6):592-600
    [46] Sun Yeow Cheng, Cheah Chien Chern. Adaptive control schemes for autonomousunderwater vehicle. Robotica,2009,27(1):119-129
    [47] Shen Jian Sen, Zhou Xu Chang, Zhang Hong Gang. Research on sliding mode controlfor near-surface AUV depth regulation in wave’s circumstance. Proceedings ofInternational Conference on Electrical and Control Engineering,2010,1760-1764
    [48] Zhou Huan Yin, Liu Kai Zhou, Feng Xi Sheng. State feedback sliding mode controlwithout chattering by constructing Hurwitz matrix for AUV movement. InternationalJournal of Automation and Computing,2011,8(2):262-268
    [49] Ding Hao, Wang DeShi. Autonomous underwater vehicle heading control based onsliding mode fuzzy control. Proceedings of the2nd International Conference onModelling and Simulation,2009,4:505-508
    [50] Hong Eng You, Soon Hong Geok, Chitre Mandar. Depth control of an autonomousunderwater vehicle, STARFISH. OCEANS'10IEEE Sydney,2010
    [51] Shi Xiaocheng, Chen Jiang, Yan Zheping, Li, Tao. Design of AUV height control basedon adaptive neuro-fuzzy inference system.2010IEEE International Conference onInformation and Automation,2010,1646-1651
    [52] Mon Yi-Jen, Lin Chih-Min. Supervisory recurrent fuzzy neural network guidance lawdesign for autonomous underwater vehicle. International Journal of Fuzzy Systems,2012,14(1):54-64
    [53] Shi Xiaocheng, Xiong Huashen, Wang Chunguo, Chang Zonghu. A new model offuzzy CMAC network with application to the motion control of AUV. IEEEInternational Conference on Mechatronics and Automation,2005,2173-2178
    [54] Zhang Li-Jun, Qi Xue, Pang Yong-Jie. Adaptive output feedback control based onDRFNN for AUV. Ocean Engineering,2009,36(9-10):716-722
    [55] Lebedev Alexander. The multi-dimensional adaptive control system with referencemodel for the AUV.2010IEEE International Conference on Mechatronics andAutomation,2010,1837-1841
    [56] Nambisan Pradeep R., Singh Sahjendra N. Adaptive output feedback control of mimoauv with unknown gain Matrix. Systems Science,2009,35(2):5-10
    [57] Haghi Poorya, Naraghi Mahyar, Vanini Seyyed Ali Sadough. Adaptive position andattitude tracking of an AUV in the presence of ocean current disturbances. Proceedingsof the IEEE International Conference on Control Applications,2007,741-746
    [58]王芳,万磊,李晔,苏玉民,徐玉如.欠驱动AUV的运动控制技术综述.中国造船,2010,51(2):227-241
    [59]贾鹤鸣,程相勤,张利军等.基于自适应Backstepping的欠驱动AUV三维航迹跟踪控制.控制与决策,2012,27(5):652-657
    [60] Raimondi Francesco M., Melluso Maurizio. Hierarchical fuzzy/lyapunov control forhorizontal plane trajectory tracking of underactuated AUV. IEEE InternationalSymposium on Industrial Electronics,2010,1875-1882
    [61] Refsnes Jon E., Srensen Asgeir J. Pettersen Kristin Y.. Model-based output feedbackcontrol of slender-body underactuated AUVs: Theory and experiments. IEEETransactions on Control Systems Technology,2008,16(5):930-946
    [62] Brhaug, Even, Fettersen Kristin Y.. Adaptive way-point tracking control forunderactuated autonomous vehicles. Proceedings of the44th IEEE Conference onDecision and Control, and the European Control Conference,2005,4028-4034
    [63] Brhaug Even, Pettersen Kristin Y., Pavlov Alexey. An optimal guidance scheme forcross-track control of underactuated underwater vehicles.14th MediterraneanConference on Control and Automation,2006
    [64] Kim Kyoung Joo, Park Jin Bae, Choi Yoon Ho. Path tracking control for underactuatedautonomous underwater vehicles using approach angle. IEICE Transactions onFundamentals of Electronics, Communications and Computer Sciences,2012,E95-A(4):760-766
    [65] Repoulias Filoktimon, Papadopoulos Evangelos. Trajectory planning and trackingcontrol of underactuated AUVs. Proceedings of IEEE International Conference onRobotics and Automation,2005,1610-1615
    [66] Young-Shik Kim, Jihong Lee, Sung-Kook Park, Bong-Hwan Jeon, Pan-Mook Lee.Path tracking control for underactuated AUVs based on resolved motion accelerationcontrol. Proceedings of the4th International Conference on Autonomous Robots andAgents,2009,342-346
    [67]高剑,徐德民,严卫生等.欠驱动自主水下航行器轨迹跟踪控制.西北工业大学学报,2010,28(3):404-408
    [68]贾鹤鸣,程相勤,张利军等.基于离散滑模预测的欠驱动AUV三维航迹跟踪控制.控制与决策,2011,26(10):1452-1458
    [69] He-Ming Jia, Wen-Long Song, Zi-Yin Chen. Bottom following control ofunderactuated AUV based on nonlinear backstepping method. Advances in InformationSciences and Service Sciences,2012,4(12):362-369
    [70] Bian Xinqian, Zhou Jiajia, Jia Heming, Zhao Xiaoyi. Adaptive neural network controlsystem of bottom following for an underactuated AUV. MTS/IEEE Seattle, OCEANS2010,2010
    [71]边信黔,程相勤,贾鹤鸣等.基于迭代滑模增量反馈的欠驱动AUV地形跟踪控制.控制与决策,2011,26(2):289-292
    [72]甘永.水下机器人运动控制系统体系结构的研究.哈尔滨工程大学博士学位论文,2007
    [73]甘永,王丽荣,刘建成,徐玉如.水下机器人嵌入式基础运动控制系统.机器人,2004,26(3):246-249
    [74]孔祥营,柏桂枝. vxWorks及其开发环境Tornado.北京:中国电力出版社,2001
    [75]施生达.潜艇操纵性.北京:国防工业出版社,1995
    [76] THOR I. F. Marine Control Systems: Guidance, Navigation and Control of Shops Rigsand Underwater Vehicles. Trondheim, Norway: Marine Cybernetics AS,2002.
    [77]刘学敏,徐玉如.水下机器人运动的S面控制方法.海洋工程,2001,19(3):81-84
    [78]李晔.微小型水下机器人运动控制技术研究.哈尔滨工程大学博士学位论文,2007
    [79] Khalil H K. Nonlinear systems.朱义胜,董辉,李作洲等译.非线性系统(第三版).北京:机械工业出版社,2006
    [80]尚宏,陈志敏,任永平.一种新型非线性PID控制器及其参数设计.控制理论与应用,2009,26(4):439-442
    [81] Li Ye, Pang Yong-Jie, Wan Lei, et al. Stability analysis on speed control system ofanutonomous underwater vehicle. China Ocean Engineering,2009,23(2):345-354
    [82] Morris Driels. Linear Control Systems Engineering.金爱娟,李少龙,李航天译.线性控制系统工程.北京:清华大学出版社,2005
    [83]李晔,庞永杰,万磊,常文田,梁霄.水下机器人S面控制器的免疫遗传算法优化.哈尔滨工程大学学报,2006,27(7):324-330
    [84]唐旭东,庞永杰,万磊.改进PSO算法在水下机器人S面运动控制参数整定中的应用.应用基础与工程科学学报,2009,17(1):153-160.
    [85]郭冰洁,徐玉如,李岳明.水下机器人S面控制器的改进粒子群优化.哈尔滨工程大学学报,2008,29(12):1277-1282
    [86]刘建成,于华男,徐玉如.水下机器人改进的S面控制方法.哈尔滨工程大学学报,2002,23(1):33-36.
    [87]唐旭东,庞永杰,王建国.基于单神经元的水下机器人S面自适应运动控制.计算机应用,2007,27(12):2899-2901
    [88]李岳明,庞永杰,万磊.水下机器人自适应S面控制.上海交通大学学报,2012,46(2):195-200
    [89]李岳明,万磊,王波.新型切换函数滑模控制。第29届中国控制会议,北京,2010:2250-2253
    [90]唐旭东,朱炜,庞永杰,李晔.水下机器人光视觉目标识别系统.机器人,2009,31(2):171-178
    [91]唐旭东,庞永杰,张铁栋,李晔.基于2维Tsallis熵的水下图像目标检测.机器人,2010,32(3):289-297
    [92] Forssen T.I., M. Breivik, R. Skjetne. Line-of-sight path following of underactuatedmarine craft. Proceedings of the6th IFAC MCMC,2003,244-249
    [93] Tamaki Ura, et al. Dives of AUV "r2D4" to Rift Valley of Central Indian Mid-OceanRidge System. Oceans2007Europe International Conference,2007,1078-1083
    [94] Nuno Paulino, Carlos Silvestre, Rita Cunha, and Ant′onio Pascoal. ABottom-Following Preview Controller for Autonomous Underwater Vehicles.Proceedings of the45th IEEE Conference on Decision and Control,2006,715-720
    [95] Stephen M. Autosub6000: A Deep Diving Long Range AUV. Journal of BionicEngineering,2009,6(1):55-62
    [96] G. N. Roberts, R. Sutton. Advances in Unmanned Marine Vehicles.任志良,张刚译.北京:电子工业出版社,2009
    [97] Silvestr C, Pascoal A. Depth control of the INFANTE AUV using gain-scheduledreduced order output feedback. Control Engineering Practice,2007,15:883-895
    [98] Li J H, Lee P M. Design of an adaptive nonlinear controller for depth control of anautonomous underwater vehicle. Ocean Engineering,2005,32:2165-2181.
    [99] Allen Ben, Stokey Roger, Austin Tom, et al. REMUS: A small, low cost AUV; SystemDescription, Field Trials and Performance Results. Oceans Conference Record(IEEE),1997,2:994-1000
    [100] McPhail S D, Pebody M. AUTOSUB-1. A Distributed Approach to Navigation andControl of an Autonomous Undervater Vehicle. IEE Conference Publication,1997:16-22
    [101] W. Naeem, R.Sutton, S.M.Ahmad, R.S.Burns. A Revies of Guidance Laws Applicableto Unmanned Underwater Vehicles. Oceanic Engineering.2002,15(3):161-166
    [102]刘学敏,庞永杰,徐玉如.一种基于虚拟传感信息的轨迹跟踪模糊控制方法.机器人,1998,20(4):73-78
    [103]张杰,魏维.基于视觉注意力模型的显著性提取.计算机技术与发展,2010,20(11):109-113
    [104]张铁栋,万磊,徐玉如,马悦.一种单波束前视声纳成像方法.声学与电子工程,2008,91(3):14-18
    [105] Zhang Tiedong,Wan Lei, Chen Yan, Li Dongqi. Object track in underwater sonarimages. Proceedings of2nd International Conference on Image and Signal Processing,2009
    [106]王学民.应用多元分析.上海:上海财经大学出版社,2004
    [107]李璐.机动目标跟踪领域的数据滤波技术应用.电子科学技术评论,2005,4:25-28
    [108]王春柏,赵保军,何配琨.模糊自适应强跟踪卡尔曼滤波器研究.系统工程与电子技术,2004,26(10):1367-1370
    [109]赵学梅,陈恳,李冬.强跟踪卡尔曼滤波在视频目标跟踪中的应用.计算机工程与应用,2011,47(11):128-131
    [110]王青,伍书剑,李明树.软件缺陷预测技术.软件学报,2008,7:1565-1580
    [111] IEEE. IEEE Std610.12-1990. IEEE standardg lossary of software engineeringterminology,1990.
    [112]蔡开元.软件可靠性工程基础.北京:清华大学出版社,1995
    [113]单锦辉,徐克俊.软件故障诊断探讨.北京化工大学学报,2007,34(I):5-8
    [114] Munson J C, Nikorab A P, Sherif J S. Softw are faults: A quantifiable definition.Advances in Engineering Software,2006,37(5):327-333.
    [115]王志兵,李长云.软件故障诊断技术综述.微计算机信息,2010,26(12):161-164
    [116] P Zoeteweij, R Abreu, AJC Van Gemund. Software Fault Diagnosis.19th IFIPInternational Conference on Testing of Communicating Systems,2007
    [117]刘英华,安秀文.计算机软件容错技术.航空电子技术,1997,2:34-39
    [118]林中达.实时软件的容错技术.电力自动化设备,1994,4:1-3
    [119]刘云龙,陈俊亮.一种新的软件容错方法及应用.北京邮电大学学报,1998,21(1):23-28
    [120]马文涛,郭东亮,张立臣.实时系统的软件容错技术.福建电脑,2007,3:3-5
    [121] Horning J.J, Lauer H.C., Melliar-Smith P.M., Randell B. A Program Structure forError Detection And Recovery. Lecture Notes in Computer Science,1974,16:172-187
    [122] Randell B. System Structure for Software Fault–Tolerance. IEEE Transactions onSoftware Engineering,1975, SE-1:220-232
    [123]孙鹏,赵军锁,张文君.软件容错:技术与展望.计算机工程与科学,2007,8:88-93
    [124] Elmendorf W R. Fault-Tolerant Programming. Proc of FTCS-2,1972,79-83
    [125] Avizienis A, Chen L. On the Implementation of N-Version Programming for SoftwareFault Tolerance During Execution. Proc of IEEE COMPSAC’77,1977,149-155.
    [126]刘光辉.星载并行计算机体系结构的研究与实现.国防科学技术大学硕士学位论文,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700