用户名: 密码: 验证码:
全垫升气垫船安全航行自抗扰控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为典型的两栖高性能船舶,全垫升气垫船在军事和民用领域得到了广泛的应用。特殊的航行机理使全垫升气垫船能够脱离水面(地面)航行,但也造成其操纵性与常规水面船有明显差别。由于船体与航行表面之间的阻力很小,受环境扰动时,航向极易改变。回转时,船体横倾,一舷漏气,容易出现大横倾-大侧滑的危险航行状态。在水面航行时,波浪会造成围裙底部泄流面积、气垫体积的周期性改变,以致气垫压力大范围变化,进而造成船体垂向加速度剧烈改变,使全垫升气垫船适航性较差。针对全垫升气垫船难以控制的特点,研究其安全、高效、精确的航行控制方法是有必要的,因此,本课题基于自抗扰控制策略(Active Disturbance Rejection Control, ADRC)研究了全垫升气垫船航行控制问题。
     首先,建立了全垫升气垫船6自由度运动数学模型。根据船模水池实验及风洞试验,得到了水动力模型及空气动力模型;考虑增压风扇吸入的空气需被加速到全垫升气垫船航行速度,得到了空气动量力模型;根据垫升系统结构,建立了气垫力模型,将各自由度的合外力(矩)进行合成,进而得到了全垫升气垫船6自由度运动数学模型,为后续安全航行控制问题奠定了基础。
     然后,深入研究了具有动态补偿线性化功能、不依赖被控对象精确数学模型的自抗扰控制策略。根据一般状态观测器理论,对扩张状态观测器(Extended State Ovbserver,ESO)的稳定性及误差范围进行了分析。在跟踪微分器(Tracking Differentiator, TD)设计过程中,引入了fsun ()函数,有效地消除了系统状态的颤振现象。分析了非线性状态误差反馈控制律(Nonlinear State Error Feedback,NLSEF)的稳定性。为后续针对全垫升气垫船航行控制特点而对自抗扰控制策略作出的改进奠定了基础。
     其次,研究了基于ADRC的全垫升气垫船航向及航迹控制方法。设计了全垫升气垫船ADRC航向控制器、航迹引导控制器。根据自抗扰控制理论中的安排过渡过程思想,提出了回转率-航向协调控制策略,使全垫升气垫船以安全的回转率进行航向控制,避免了侧滑角经常进入安全限界。针对全垫升气垫船对环境扰动敏感,运动非线性强,运动数学模型难以准确建立等特点,提出了一种基于支持向量回归机的参数自整定自抗扰控制算法,明显增强了所设计航向控制器、航迹引导控制器的自适应性,有效地改善了控制效果。
     再次,研究了基于ADRC的全垫升气垫船航向-横倾解耦控制方法。针对全垫升气垫船航向控制过程中,经常出现大横倾-大侧滑危险航行状态,提出了一种航向-横倾ADRC解耦控制方法,解决了航向控制通道(执行机构为空气舵)和横倾控制通道(执行机构为艏喷管)的控制耦合问题。提出了一种动态面ADRC控制算法,利用动态面控制算法代替自抗扰控制策略中的NLSEF,这样既提高了航向-横倾解耦控制的效率,又解决了动态面控制算法对系统精确模型的高度依赖。
     最后,研究了垫升系统运动及静态特性,设计了基于ADRC的气垫压力控制方法。在基本假设条件下,建立垫升系统的非线性压力流量方程组。在垫升系统数学模型的基础上,研究了全垫升气垫船进行典型运动时的垫升系统运动特性,并研究了升沉稳定性及升沉阻尼(升沉位置导数及速度导数)。建立了垫升系统控制模型,提出了一种基于ADRC的垫升风机进气量控制方法,以控制气垫压力。利用ESO估计各气垫压力,利用fal ()函数反馈结构估计垂向加速度,设计了NLSEF,并实现了垂向加速度补偿。仿真结果表明,所设计带有加速度补偿的ADRC气垫压力控制方法,有效地改善了全垫升气垫船的适航性及航行稳定性。
Air cushion vehicle (ACV) has been widely used in military and civilian fields, as atypical amphibious high performance ship. With the special navigation mechanism, ACV islifted from water (or ground), which makes its maneuverability significantly different fromconveantional surface ships. With little resistance between the surface and the hull, headingcan be easily changed under the environment disturbance. When ACV is turning, the hullheeling makes air leakage from one side, sometimes large heeling can induce large sideslipdangerously. When ACV is sailing on the water, the wave can cause the effusion area underthe skirt and cushion volume change periodically, cushion pressure and heave accelerationvary severely, so the seaworthiness of ACV is poor. Obviously ACV is difficult to control, itis necessary to study safety, efficiency, precise navigation control methods, therefore, thispaper studies the navigation control problem of ACV based on Active disturbance rejectioncontrol (ADRC).
     Firstly, a six-degree motion mathematical model of ACV is established. Hydrodynamicsand aerodynamics moel is obtained from the tank and tunnel experimental data. Consideringthe sucked air from the fan need to be accelerated to the same speed of ACV, the airmomentum force model is established. Cushion force model is set up based on the cushionsystem. By synthetizing the external force (torque) on each DOF, the motion mathematicalmodel of ACV is finished, it’s the foundation of the navigation control problem.
     Secondly, the theory of ADRC is well studied, which can achieve linearized dynamiccompensation and does not depend on the accurate mathematical model of the controlledobject. According to the theory of general state observer, the stability and error range ofextended state ovbserver (ESO) are analysised. In the design of tracking differentiator (TD),fsun()function is used to eliminate the flutter of system state. The stability of the nonlinearstate error feedback (NLSEF) control law is studied. The work above is the foundation for theimprovement of ADRC for the different navigation control assignment of ACV.
     Thirdly, the motion control method of ACV is studied based an ADRC. The heading andtrack guidance controllers of ACV are designed. Based on the theory of arrangement fortransitional process from ADRC, the coordinated control strategy of heading and turning isproposed, with method, ACV can achieve heading control under the safety turning rate, andthe sideslip angle is restricted in its safety boundary. To solve the problem that ACV issensitive to environment disturbance, its motion nonlinearity is obvious and its motion mathematical model of ACV is not so accurate, ADRC with control parameters self-tuningbased on support vector regression is proposed. With the adaptive ADRC, the control effectsof heading and track guidance are improved.
     Fourthly, heading-heeliing decoupling control of ACV is studied based on ADRC. In theheading control process of ACV, sometimes, large heeling can cause severe sidelipdangerously. To solve the problem above, ADRC decoupling control method is used, thedecoupling between heading control passage (The actuator is air rudders.) and heeling controlpassage (The actuator is nozzle.) is weakened. Dynamic surface ADRC is proposed, theNLSEF is replaced by dynamic surface control, then, the control efficiency ofheading-heeling decoupling control is improved and the high dependence on accurate systemmathematical model of Dynamic surface control is reduced.
     Finally, the static and motion characteristics, control method based on ADRC is studiedfor the cushion system. Under the basic assumptions, the nonlinear pressure-flow equations ofcushion system are established. With the mathematical mode of cushion system, the motioncharacteristics for the typical motion of ACV, the heave stability and damping (the heavelocation derivative and speed derivative) are studied. The control model of cushion system isestablished, ADRC is used to control the air into the fan to control the pressures of cushions.ESOs are used to estimate pressures of cushions and heave acceleration, NLSEF is designedwith compensation of heave acceleration. The method proposed effectively improves theseaworthiness and sailing stability of ACV.
引文
[1]赵连恩,谢永和.高性能船舶原理与设计.北京:国防工业出版社,2009:1-3页
    [2]郭值学.高性能船的发展与前景之管见(一).中国造船.2001,42(4):73-82页
    [3]恽良.气垫船原理与设计.北京:国防工业出版社,1990:1-10页
    [4]周红友.气垫船及其军事用途浅析.船舶电子工程.2008,28(2):20-22页
    [5]王洪修.适应新时代军事斗争需要加速军用气垫船发展.2001航海技术现状与发展趋势论文集.2001,117-119页
    [6]骆海民,张洪雨,兰波.气垫船操纵性运动建模与仿真.船舶.2009,(4):49-54页
    [7]庄元.全垫升气垫船的埋首与翻船的原因探讨.航海技术.2000,(6):10-11页
    [8]王颖,吴翰声,马涛.基于对象模型的气垫船升沉自动控制专家系统.华东船舶工业学院学报.1993,7(3):68-74页
    [9]陈小剑.浅谈全垫升气垫船操纵装置的设计.船舶工程.1983,(4):13-19页
    [10]郑楠,马涛,邬延芳.旋转喷管的设计研究.舰船科学技术.1993,(2):49-56页
    [11]韩京清.自抗扰控制技术.北京:国防工业出版社,2008:255-262页
    [12] Yuanqing Xia, Bo Liu, Mengyin Fu. ACTIVE DISTURBANCE REJECTIONCONTOL FOR POWER PLANT WITH A SINGLE LOOP. Asian Journal of Control.2010,14(2):1-12P
    [13] Yuhang Wang, Yu Yao, Kemao Ma. Lateral Thrust and Aerodynamics Blended ControlSystem Design Based on Auto Disturbance-Rejection Controller. Proceedings of theIEEE International Conference on Automation and Logistics, Qingdao, China,2008:416-420P
    [14]郭其顺.世界军用气垫船发展现状.船舶.2001,(2):11-15页
    [15]陈小弟.梦想已成真-气垫船发展概述.船舶.1998,(6):4-5页
    [16]彭桂华.气垫船的回顾与展望.船舶工程.2001,(1):9-13页
    [17] Fein J A, Magnuson A H, and Moran D D. Dynamic Performance of an Air CushionVehicle in a Marine Environment, AIAA Paper74-323P
    [18] Cumming D, Kern E, Shursky S. Mathematical model of an air cushion Vehicle,AD-A015699. Cambridge, MA, USA: Charles Stark Draper Lab,1975.
    [19] Antonio Pedro Aguiar, Lars Cremean, Joao Pedro Hespanha. Position Tracking for aNonlinear Underactuated Hovercraft: Controller Design and Experimental Results.Proceedings of the42ed IEEE Conference on Decision and Control, Maui, Hawaii,USA,2003:3858-3863P
    [20] David R. Tyner, Andrew D. Lewis. Controllability of a hovercraft model. Proceedingsof the43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island,Bahamas,2004:1204-1209P
    [21] Hebertt Sira-Ramirez. Dynamic Second-Order Sliding Mode Control of the HovercraftVessel. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,2002,10(6):860-865P
    [22] M. M. EI-khatib, W. M. Hussein. Design, modeling, implementation and intelligentfuzzy control of a hovercraft. Proc. SPIE8045,80450L (2011).
    [23] Daniele Bertin, Sergio Bittanti, Sergio M. Savaresi. Decoupled cushion control in ridecontrol systems for air cushion catamarans. Control Engineering Practice.2000,(8):191-203P
    [24] V. M. Kozin, A. V. Pogorelova. Variation in the wave resistance of an amphibian aircushion vehicle moving over a broken ice field. Journal of Applied Mechanics andTechnical Physics.2007,41(8):80-84P
    [25] Koichi OSUKA, Ryota HAYASHI, Toshiro ONO. Linear Robust Control of NonlinearSystems. The Japan Society of Mechanical Engineers.1995,38(4):701-707P
    [26] I.Fantoni, R. Lozano, F. Mazenc, K. Y. Pettersen. Stabilization of a nonlinearunderactuated hovercraft. INTERNATIONAL JOURNAL OF ROBUST ANDNONLINEAR CONTROL.2000,(10):645-654P
    [27]黄国梁,刘天成,周伟麟,赵健.全垫升气垫船操纵运动研究.船舶工程.1996,(2):20-23页
    [28]李根林.侧壁气垫船在短波上的升沉特性分析.江苏船舶.1996,13(3):1-7页
    [29]李根林.气垫船的兴波和兴波阻力.船舶.1999,(1):54-61页
    [30]李根林.气垫船的动量阻力和喷射阻(推)力.船舶.1999,(4):54-62页
    [31] ZHAO Shuqin, SHI Xiaocheng, SHI Yilong, BIAN Xinqian. Simulation study of planemotion of air cushion vechicle. Journal of Marine Science and Application.2003,2(2):67-71P
    [32]刘春光,马涛.基于SIMULINK的气垫船垫升推进控制系统仿真.船舶.2005,(1):22-24页
    [33]安卫,敖晨阳,刘强.气垫船垫升推进控制系统仿真.中国造船.2005,46(4):104-108页
    [34]付明玉,张洪雨,施小成,边信黔.气垫船操纵性能理论分析.中国造船.2006,47(3):14-20页
    [35]卢军,黄国梁.全垫升气垫船4自由度操纵性.上海交通大学学报.2007,41(3):0216-0220页
    [36]周佳,唐文勇,张圣坤.气垫船三维耐波性分析.船舶力学.2009,13(4):557-565页
    [37]周佳,唐文勇,张圣坤.全垫升气垫船全圆周浪向下耐波性分析.中国造船.2009,50(2):23-29页
    [38]王成龙,边信黔,付明玉,施小成.全垫升气垫船航向稳定性研究.海军工程大学学报2009,21(1):73-78页
    [39]唐尧.全垫升气垫船载荷及运动响应计算方法研究.哈尔滨工程大学硕士学位论文.2011
    [40]李宁.气垫船航行特性的非线性分析方法研究.哈尔滨工程大学硕士学位论文.2011
    [41]刘巨斌,张志宏,张辽远,姚俊.气垫船兴波破冰问题的数值计算.华中科技大学学报.2012,40(4):91-95页
    [42]吴翰声,马涛.基于对象模型的气垫船航行控制专家系统.中国造船.1995,3(3):9-16页
    [43] HAN Bing, ZHAO Guoliang. Course-keeping control of underactuated hovercraft.Journal of Marine Science and Application.2004,3(1):24-27P
    [44]黄勇,边信黔,匡红波,付明玉.常规控制和模糊PID控制在全垫升气垫船航向控制中的应用.自动化技术与应用.2005,24(12):36-38页
    [45]匡红波,施小成,田亚杰,付明玉.全垫升气垫船航迹保持的变结构模糊PID控制.自动化技术与应用.2006,25(8):4-6页
    [46]王成龙,施小成,付明玉,边信黔.神经网络PID在全垫升气垫船航向控制中的应用.中国造船.2008,49(3):62-67页
    [47] WANG Chenglong, FU Mingyu, BIAN Xinqian, SHI Xiaocheng.Research on Headingcontrol of Air Cushion Vehicle. Proceeding of the IEEE International Conference onAutomation and Logistics. Qingdao, China,2008:650-655P
    [48] Chenglong WANG, Xiaocheng SHI, Mingyu FU, Xinqian BIAN. An Idea of HeadingControl for Air Cushion Vehicle. Proceeding of the2007IEEE InternationalConference on Integration Technology. Shenzhen, China,2007:334-337P
    [49] Mingyu Fu, Fuguang Ding, Xiaocheng Shi. Research on the Course and Turn-rateCoordinated Control for an Air Cushion Vehicle. Proceeding of the2007IEEEInternational Conference on Mechatronics and Automation. Harbin, China,2007:2424-2428P
    [50]付明玉,王奎民,边信黔,匡洪波.模糊-反步串级控制方法在气垫船航迹保持中的应用.中国造船.2008,49(3):62-67页
    [51]付明玉,施小成,丁福光.气垫船航迹反步控制方法研究.哈尔滨工程大学学报.2008,29(3):251-255页
    [52] LU Jun, HUAND Guoliang, LI Shuzhi. A Study of Maneuvering Control for an AirCushion Vehicle Based on Back Propagation Neural Network. Journal of ShanghaiJiaotong University (Science).2009,14(4):482-485P
    [53] WANG Chenglong, LIU Zhenye, FU Mingyu, BIAN Xinqian. Amphibious HovercraftCourse Control Based on Adaptive Multiple Model Approach. Proceeding of the2010IEEE International Conference on Mechatronics and Automation. Xi’an, China,2010:601-604P
    [54]梁媛.全垫升气垫船航迹向控制专家系统研究.哈尔滨工程大学硕士学位论文.2011
    [55]胡研研.气垫船特有操纵装置在航向控制中的应用研究.哈尔滨工程大学硕士学位论文.2011
    [56]黄一,张文革.自抗扰控制器的发展.控制理论与应用.2002,19(4):485-492页
    [57]韩京清.非线性PID控制器.自动化学报.1994,20(4):487-490页
    [58]韩京清.利用非线性特性改进PID控制律.信息与控制.1995,20(6):356-363页
    [59]韩京清.一种新型控制器.控制与决策.1994,9(6):401-407页
    [60]韩京清.非线性状态误差反馈控制律-NLSEF.控制与决策.1995,10(3):221-231页
    [61]韩京清,王伟.非线性跟踪微分器.系统科学与数学.1994,14(2):177-183页
    [62]黄焕袍,万晖,韩京清.安排过渡过程是提高闭环系统“鲁棒性、适应性和稳定性”的一种有效方法.控制理论与应用.1994,14(2):89-94页
    [63]史永丽,侯朝桢.改进的非线性跟踪微分器设计.控制与决策.2008,6(6):647-659页
    [64]孙彪,孙秀霞.离散系统最速控制综合函数.控制与决策.2010,25(3):473-477页
    [65]张文革.时间尺度与自抗扰控制器.中国科学院博士论文.1999:27-34页
    [66]韩京清.一类不确定对象的扩张状态观测器.控制与决策.1995:85-88页
    [67]韩京清,张荣.二阶扩张状态观测器的误差分析.系统科学与数学.1999:19(4):465-471页
    [68]林飞,孙湖,郑琼林,夏岩锋.用于带有量测噪声系统的新型扩张状态观测器.系控制理论与应用.2005:22(6):995-998页
    [69]王培光,甘作新,吕文静.二阶扩张状态观测器的稳定性分析.河北大学学报.2007:27(1):4-11页
    [70] Gao Ying. Active Disturbance rejection control of voice coil motor based on RBFneural network.2011International Conference on Consumer Electronics,Communication and Networks. Xianning, China,2011:3895-3898P
    [71] Quan Dong, Quan Li. Current Control of BLDCM Based on Fuzzy Adaptive ADRC.2009Ninth International Conference on Hybrid Intelligent Systems. Taiwan,2009:355-358P
    [72]乔国林,童朝南,孙一康.基于神经网络自抗扰控制的结晶器液位拉速协调系统研究.自动化学报.2007:33(6):641-648页
    [73] Xiaoli Liu, Weihai Liang, Haijing Kang. Research and application based on geneticallyoptimized active disturbance rejection controller.20112nd International Conference onArtificial Intelligence, Management Science and Eletronic Commerce. Zhengzhou,China,2011:4172-4175P
    [74]韩京清,张文革,高志强.模型配置自抗扰控制器.中国控制会议论文集.1998:273-267页
    [75]张荣,韩京清.串联型扩张状态观测器构成的自抗扰控制器.控制与决策.2000:15(1):122-124页
    [76]陈智华,耿修堂,肖建华,张勋才,甘作新.基于模拟退火只能算法的自抗扰控制器参数整定及仿真.信息与控制.2009:38(3):315-325页
    [77]李菁菁,任章,曲鑫.机动滑翔飞行器的自抗扰反步高精度姿态控制.系统工程与电子技术.2010:32(8):1711-1721页
    [78] Xianpeng Shi, Shirong Liu. Extended State Observer Based Robust Control ofElectrically Driven Modular Manipulator. Proceedings of the8th World Congress onIntelligent Control and Automation. Jinan, China,2010:1033-1038P
    [79]侯利民,张化光,刘秀翀.带ESO的自适应滑模调节的SPMSM自抗扰-无源控制.控制与决策.2010:25(11):1651-1656页
    [80] Mina Shi, Xinhui Liu, Yaowu Shi, Wei Chen, Qingbo Zhao. Research on the SlidingMode Based on ADRC for Hydraulic Active Suspension of a Six-wheel Off-roadVehicle.2011International Conference on Electronic&mechanical Engineering andInformation Techology. Harbin, China,2011:1066-1069P
    [81]夏卫星,杨晓东,严建华.舰艇环航时电罗经主轴的鲁棒自抗扰控制算法.中国造船.2010:51(2):162-167页
    [82]王宇航,姚郁,毕永涛.基于自抗扰的直接力与气动力复合控制系统设计.宇航学报.2009:30(4):1544-1550页
    [83] Rui Song, Yibin Li, Jiuhong Ruan. Jinying Huang. Study on ADRC based MobileRobot Lateral Control. Proceedings of the2007IEEE International Conference onRobotics and Biomimetics. Sanya, China,2007:1190-1193P
    [84] Liang Jiao, Qinglin Sun, Xiaofeng Kang, Zengqiang Chen, Zhongxin Liu.Automomous Homing of Parafoil and Payload System Based on ADRC. Journal ofCONTROL ENGINEERING AND APPLIED INFORMATICS.2011,13(3):25-31P
    [85] Liu Zhaohua, Zhang Jing, Zhang Yingjie, Li XiaoHua, Wu Jianhui. ADRC and CMACcombined optimization and control for a class of discrete-time uncertain chaoticsystems. ACTC PHYSICA SINICA.2011,60(3),030701:1-9P
    [86] Yuntao Han, Zengkun Qi. The design of active disturbance rejection control law ofunderwater high-speed vehicle longitudinal channel.22ed Chinese Control andDecision Conference. Xuzhou, China,2010:975-978P
    [87] Mingwei Sun, Ruiguang Yang, Zengqiang Chen. Flight Active Disturbance RejectionControl Design and Performance Analysis. Proceedings of the8th World Congress onIntelligent Control and Automation. Jinan, China,2010:765-770P
    [88]熊治国,孙秀霞,尹晖,胡孟权.飞机俯仰运动自抗扰控制器设计.信息与控制.2005:34(5):576-579页
    [89] FOSSEN T I. Marine Control Systems: Guidance, Navigation and Control of Ships,Rigs and Underwater Vehicles. Trondheim: Marine Cybernetics,2002:17-22P
    [90]李殿璞.船舶运动与建模.哈尔滨工程大学出版社,1999:1-32页
    [91] Bao Shi,Shiau. Velocity spectra and turbulence statistics at the northeastern coast ofTaiwan under highwind. Journal of Wind Engineering and Industrial Aerodynamics.2000,88:139-155P
    [92] Qing Zheng, Linda Q.Gao, Zhiqiang Gao. On Validation of Extended State ObserverThrough Analysis and Experimentation. Journal of Dynamic Systems, Measurement,and Control.2012(134):0245051-0245056P
    [93] M.S. Branicky. Multiple Lyapunov functions and other analysis tools for switched andhybrid systems. IEEE Trans on Automatic Control.1998,43(4):475-482P.
    [94] Guohui Qiao, Minglei Sun. An Improved Self-Adaptive Tracking Differentiator. IEEEInternational Conference on Information and Automation. Macau, China,2009:980-984P
    [95] Yunde Xie, Zhiqiang Long. Research on a New Nonlinear Discrete-time Trackingdifferentiator Filtering Characteristic. Proceedings of the7th World Congress onIntelligent Control and Automation. Chongqing, China,2008:6750-6755P
    [96] Yonggang Tang, Yuanxin Wu, Meiping Wu. Nonlinear Tracking-Differentiator forVelocity Determination. IEEE Journal of Selected Topics in Signal Processing.2009,3(4):716-725P.
    [97] D.Swaroop, J. Gerdes, P. Yip, et al. Dynamic Surface Control of Nonlinear Systems.Proceedings of the American Control Conference. Albuquerque, USA,1997:3028-3034P
    [98] D.Swaroop, J. Gerdes, P. Yip, et al. Dynamic Surface Control for a Class of NonlinearSystems. IEEE Transactions on Automatic control.2000,45(10):1893-1899P
    [99]贾涛,刘军,钱富才.一类非线性时滞系统的自适应模糊动态面控制.自动化学报.2011:37(1):83-91页
    [100] Qichao Zhao, Yan Lin. Adaptive Fuzzy Dynamic Surface Control with PrespecifiedTracking Performance for a Class of Nonlinear Systems. Asian Journal of Control.2012,14(1):1-10P
    [101]周丽,姜长生.改进的非线性鲁棒自适应动态面控制.控制与决策.2008:23(8):938-943页
    [102] MingZhe Hou, GuangRen Duan. Robust Adaptive Dynamic Surface Control ofUncertain Nonlinear Systems. International Journal of Control, Automation, andSystems.2011,9(1):161-168P
    [103] Dongkyoung Chwa. Clobal Tracking Control of Underactuated Ships with Input andVelocity Constraints Using Dynamic Surface control Method. IEEE Transactions onControl Systems Technology.2011,19(6):1357-1370P
    [104] MingZhe Hou, GuangRen Duan. Adaptive Dynamic Surface Control for IntegratedMissile Guidance and Autopilot. International Journal of Automation and Computing.2011,8(1):122-127P
    [105] Qiang Chen, Xuemei Ren, Jesus Angel Oliver. Identifier-based adaptive neuraldynamic surface control for uncertain DC-DC buck converter system with inputconstraint. Communications in Nonlinear Science and numerical Simulation.2012(17):1871-1883P
    [106] Yue Fu, Tianyou Chai, Hong Wang. Intelligent decoupling control of nonlinearmultivariable systems. Proceedings of the46th IEEE conference on Decision andControl. New Orleans, LA, USA,2007:1350-1355P
    [107] Ding Fang, Zhan Feng, Xie Keming. Dual-Variables Decoupling Control System BasedOn Artificial Neural Network. Proceedings of the7th World Congress on IntelligentCoontrol and Automation. Chongqing, China,2008:9393-9397P
    [108] Chunfang Liu, Jia Liu, Shenglin Wu. Research on Dynamic robust CompensationDecoupling Controller of Hydraulic Flight Simulator.2008Chinese Control andDecision Conference. China,2008:3765-3769P
    [109] Chuanfu Jin, Yangguang Sun, Qinghai Fang. Decoupling Contr control and Automation.Xiamen,China,2010:1048-1052P
    [110]李桂春,李铮捷.气垫船气囊与气垫.北京:国防科技出版社.2011
    [111]王绍明,姚征.全垫升气垫船内部流场的数值模拟与改进.华中科技大学学报.2007,11(2):179-184页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700