用户名: 密码: 验证码:
有机氯农药中氯同位素分析技术研究及其环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机氯农药(Organochlorino Pesticides,简称OCPs)是一类分子结构中含氯元素的有机化合物。2001年5月23日,包括中国在内的120多个国家和地区在瑞典的斯德哥尔摩签署了《关于持久性有机污染物的斯德哥尔摩公约》,对12种持久性污染物给以限制或禁止生产和使用。其中9种为有机氯农药或杀虫剂,如滴滴涕、氯丹、灭蚁灵、艾氏剂、狄氏剂、异狄氏剂、七氯、毒杀酚;其他三种为工业化学品(六氯苯和多氯联苯)和工业生产过程或燃烧生产的副产品二嗯英和呋喃。2009年,α,β-及γ-(Lindane)六六六已被增补到禁用名单中;2011年,硫丹(Endosulfan)被增补到了禁用名单中。持久性有机污染物具有生态环境毒性,半衰期较长、可以在自然环境中残留较长时间,并且具有半挥发性可以随大气传输以致更大面积的污染。我国有机氯农药累积生产量和使用量占世界前列,自1982年起开始宣布禁止或限制多种有机氯农药的生产和使用。然而,我国有机氯农药累积生产期长、使用区域广,许多土地仍然存在有机氯农药残留污染。
     环境有机化学常以化合物分子为研究单元,分析有机污染物在环境中的分配、迁移与转化。国内外关于有机氯农药的环境污染问题研究多集中污染在环境中的分布、含量水平、环境行为及归趋等。但是由于环境污染的多源性、污染途径和污染物转化过程的复杂性,传统的环境化学方法尚不能完满地解析环境中有机污染物的来源和环境行为。近年来稳定同位素分析在环境科学领域开始得到越来越多的应用,如污染物溯源、自然衰减及降解效率等方面的研究。利用同位素分析技术可有效地进行污染物溯源研究,有助于解析其迁移转化过程、量化污染物转化效率。而针对特定化合物所含同位素的分析方法被称为“单体同位素分析(CSIA, compound specific isotope analysis)",这种方法拓展了传统环境有机化学以污染物分子为基本研究单元的思路。
     氯元素原子序数17,在自然界有两种稳定同位素,35Cl和37Cl,在不同物相或化合物中的丰度存在一定的差异,即所谓的同位素指纹特征(isotope fingerprints)。氯作为地球的最广泛分布的元素之一,在各圈层的科学研究中受人重视,而氯同位素研究更是用于示踪陆地卤素循环。与碳、氢等其他同位素相比,氯稳定同位素分析在环境有机污染研究中的应用起步较晚。复杂多样的污染物和不同的研究目的也对氯同位素测试技术提出了更多的要求。
     目前与有机氯农药相关的同位素研究报道尚为有限,而针对有机氯农药中的氯稳定同位素研究则存在许多技术难点。传统的氯同位素分析方法中需要通过富集、分离、纯化、氯素提取等层层技术手段,影响了氯同位素分析的普及。如IRMS和TIMS的离线方法均要求待测样品转换为可测物质,在有机氯农药的单体氯同位素测试中,前处理较为复杂。环境样品需经提取、净化和富集等,再将氯素转制成可测物质。需要注意转化条件可能需要根据目标化合物的性质进行调整,让待测样品中的氯素充分转化到可测物质中,以免在转化过程产生影响最终结果的同位素分馏。新近采用在线方法进行有机氯农药的单体氯同位素分析研究有限,但是在线技术的引入大大简化了样品前处理的复杂程度,然而在最终应用到与环境样品之前,还需要对这些方法的技术细节加以完善。
     本选题目的即在于分析在线仪器方法对有机氯农药中氯同位素分析的可行性,并试分析探讨环境实际样品中有机氯农药的氯同位素,为今后开展有机氯农药的氯同位素分析提供研究思路。创新点在于本研究系统分析了GC-qMS仪器测试有机氯农药及相应结构中氯同位素的方法,利用GC-MS/MS进行有机氯农药中氯同位素的在线方法研究;利用GC-qMS对环境土壤样品中有机氯农药进行了氯同位素分析并对相关环境意义进行了探讨。
     本选题通过理论研究与实验分析研究,主要有以下研究及成果:
     一、GC-qMS分析有机氯农药化合物及相应结构中的氯同位素技术研究
     通过质谱基础理论分析,氯同位素在质谱分析中的信号表达随采用的仪器和测试对象而存在差异,表现在质谱分析中测定的目标离子不同、质量数不同。如以氯甲烷为测试对象的IRMS方法中以CH3Cl+离子的氯同位素体的质量数和电信号作为质谱分析信号;以氯化铯为测试对象的TIMS方法中以CS2Cl-的氯同位素体的质量数和电信号作为质谱信号。由于仪器方法和测试对象的差异,氯同位素在不同质谱分析方法中的信号表达不同,决定了在质谱结果分析中的计算方法有异。以单氯核氯同位素体离子为检测对象的测试方法中,37Cl/35Cl比值RCl为对应目标离子丰度的比值;以多氯核氯同位素体离子为对象的测试方法中,37Cl/35Cl比值的计算为对应目标离子丰度比值与离子中氯核数量倒数的乘积。若以目标化合物在质谱中电离后生成的多碎片离子进行拟合计算,应计算各碎片离子在整体化合物碎片中的相对丰度,进行加权计算。
     目前GC-qMS进行在线氯同位素分析研究者主要以挥发性氯代烃做为研究对象,而对于有机氯农药的研究仅提及DDT的单体氯同位素分析,且只采用特定浓度下的分子离子为分析对象。有机氯农药在EI源中的裂解和电离情况要比挥发性氯代烃等直链烃复杂得多。通过谱库检索和质谱解析工具分析有机氯农药化合物在离子源中的裂解规律,将质谱图中质量峰与其实际离子元素组成与结构对应起来。经过筛选,适于开展GC-qMS同位素分析的离子应是存在氯同位素体、来源结构明确、丰度较高的质量离子;质谱图中的同位素体峰簇的丰度大小正是进一步进行同位素分析的数据来源。
     1.通过谱库检索和质谱解析工具分析有机氯农药化合物在离子源中的裂解规律,可能适合EI源质谱进行氯同位素分析可以利用的离子有HCB,p,p'-DDE的分子离子,p,p'-DDT、 o,p'-DDT、p,p'-DDD表征双苯环结构的碎片离子(质量数235、237),和氯丹、七氯、硫丹表征氯代环戊烯结构的碎片离子(质量数270、272)
     2.影响GC-qMS测试有机氯农药中氯同位素测试结果的可能因素有:质谱条件设定如质量扫描驻留时间,以及进样量。低浓度与较高浓度进样下37Cl/35Cl计算值相比偏高、数据重现性较差,表明在采用GC-qMS进行准确的氯同位素测量要注意确定合适的进样量范围以保证测得值的重现性。
     3.若分子中具有含氯核的特定结构便于质谱分析,那么可以进行特定位置的氯同位素分析。实验结果表明DDT分子在EI源中产生的碎片离子中,质量数为235和237的碎片离子由于丰度较大,计算得到的37Cl/35Cl比值在不同DDT浓度进样量下较为稳定,与全分子离子相比,在较低浓度下即可得到较稳定的结果,且利于计算DDT含双苯环结构中的氯同位素比值。
     4.对于有机氯农药的GC-qMS分析,应考虑不同碎片离子在离子源中的丰度差异及由产生的不确定性,若采用碎片离子拟合方法应首先确定采用的离子在同一进样量下的计算结果稳定性,这也使碎片离子拟合法较难应用于有机氯农药分子的氯同位素计算。
     5.连续三日重复进样实验结果显示GC-qMS测量DDT中氯同位素的多日测量稳定性较好(Rc1平均标准偏差0.00042~0.00071,n=3;进样量10ng~50ng)。
     6.通过比对经IRMS测量的标准样品,确定合适进样量及方法标准偏差(精度):利用235和237离子测试DDT的双苯环结构上氯同位素值,进样量为50ng时,分析精度为±0.51‰;而50~100ng的进样区间上,分析精度为±1.59‰利用352和354离子测试DDT分子中氯同位素值,进样量在300ng时,分析精度为±2.24960。
     二、三重四极杆串联质谱分析有机氯农药中氯同位素的可能性分析
     气相色谱-串联质谱联用仪的核心是串联质谱,串联质谱(tandem mass spectrometry,或标记为MS/MS)是20世纪70年代后期发展起来的质谱检测技术。与一级质谱相比,串联质谱可以通过诱导第一级质谱产生的分子离子裂解,研究子离子和母离子的关系,进而给出该分子离子的结构信息,扩大了检测质量范围;并且可在基质或其它化合物干扰单级质谱分析的样品中抽取有用数据,提高质谱检测的选择性,可有效分离化合物色谱共溢出,排除假阳性;并且提高了分析灵敏度,在检测有机氯农药时甚至能优于ECD的检出限。为.了探寻有机氯农药中氯同位素分析的更多可能,研究中分析了气相色谱-三极四重杆串联质谱杆在进行氯同位素分析的可行性。通过掌握GC-MS/MS的仪器特点与其定性定量方法,初步尝试了利用其进行特定有机氯农药的同位素体离子的扫描并测定相应化合物中氯同位素信息,并对其可行性进行了探讨。研究中分析了配备三重四极杆串联质谱的工作原理,考察了气相-三重四极杆串联质谱联用仪分析有机氯农药定性定量分析特点,对三重四极杆质谱分析有机氯农药中氯同位素的可能性进行了分析。
     1.以DDT两种异构体标准品作为分析对象,梯度浓度进样分析,单次进样中将第二级四极杆(Q2)设为通道模式、第一级四级杆(Q1)和第三级四极杆(Q3)以同样质谱条件进行同质量离子扫描,检验两极相应离子的氯同位素测试结果。实验结果显示在50ng-250ng的进样量下,各离子在各极四级杆分析中的丰度响应与进样量之间有较好的线性关系,表明在该进样量范围内仪器对各分析物、离子的响应正常,对浓度梯度的区分较为准确;
     2.两种DDT的各自产生的237/235和354/352两对离子分别计算得到在Q1与Q3两极中的氯同位素比值却存在较大差异,推断可能发生了氯同位素分馏。那么以串联质谱的工作方式,由Q1到Q3过程中,若目标化合物的氯同位素发生了分馏,也可能会影响到进一步测定的准确性。串联质谱分析用于有机氯农药中氯同位素分析还需要进一步分析和验证。
     三、环境样品中有机氯农药的氯同位素分析具有独特的环境意义
     论文中应用GC-qMS方法进行了环境样品的氯同位素分析。将特定位置氯同位素分析与研究场地的环境化学分析相结合,对污染物溯源及其环境行为进行了分析,探讨了氯同位素分析的环境意义。主要内容和结论小结如下:
     1.利用GC-qMS在线方法对实际环境中的土壤样品进行了DDT分子特定结构的氯同位素分析。与传统氯同位素分析方法相比,此方法简化了前处理操作,而且能在50ng-100ng的含量水平上进行氯同位素分析,进一步拓展了氯同位素在环境样品中的应用。
     2.目前的机理研究表明,DDT分子中的苯环位置取代氯素的氯同位素信息不受DDT主要降解过程影响,可以用作氯同位素示踪标识物;
     3.氯同位素差异主要来源于生产过程中的氯同位素分馏。半挥发性氯代有机物的氯同位素和碳同位素分布范围较挥发性有机氯代物窄,而其氯同位素较其碳同位素分布较宽,氯同位素可能在半挥性氯代有机物的源解析方面发挥独特作用。
     4.利用氯同位素进行有机氯农药污染示踪时,可能会面临因厂家产品工艺不稳定、生产原料中氯同位素差异等情况所造成的溯源困难,应将环境过程分析与氯同位素分析结合在一起。
     不局限于有机氯农药的研究,氯同位素分析技术与其环境应用的应用前景展望如下:
     1.有机氯农药因其施用时间、施用量和土地利用不同,残留在不同地点、不同深度土壤中的含量也有差别。在环境化学分析中,有机污染分析也常归类于“痕量分析”。进行相关氯同位素测试有待于同位素仪器与方法灵敏度和精确度需要提高;
     2.新的在线方法应用将同位素质谱方法拓展到了其它质谱仪器如四极杆质谱、mcICP-MS,拓宽了氯同位素分析的分析对象、降低了分析难度,具有一定应用前景。然而在方法精度上较传统方法不及,有待更多研究。
     3.氯同位素的同位素指纹特征对于半挥性有机物具有较好的示踪应用潜力。与其它元素同位素相结合进行多元素同位素分析将是进一步研究的趋势。
Organochloro Pesticides (OCPs)-a class of chlorinated organic compounds, once were used in agriculture and disease control. On May23,2001, more120countries and regions including China signed the Stockholm Convention on Persistent Organic Pollutants (POPs) to ban12sorts of POPs. In the notorious list of dirty dozen there were9OCPs or herbicides, i.e. DDT, Chlordane, mirex, aldrin, dieldrin, endrin, heptachlor, toxaphane; and the other3are technique chemicals (hexachlorobenzene, and PCBs) and dioxin and Furan as the by-products in industry or from combustion. In2009, α-,β-and γ-(Lindane) HCH were supplemented to the banning list; and Endosulfan too in2011. POPs are toxic to the ecology, long half-live in the environment, and stay as residues in the nature for long time and can be transported far away from sources. China has a long history of producing OCPs. Though the produce and use of OCPs were banned since1982, the heavy residues of the OCPs still in lots of the territory.
     The studies on the OCPs are still going on on the distribution, contamination, environmental behaviors, and fate of OCPs. And the molecular can be a a unit of environmental science studies. However, the environmental pollutions are from always multi-sources, the pollution pathway and the transform of the pollutants are complex. The traditional environmental chemical methods could hardly completely retrieve the chemical sources and environmental behaviors. Recently, the stable isotope analysis were more and more introduced into the field of environmental sciences, i.e. the apportionment, attenuation, and degradation efficiency of the pollutants. Especially the Compound Specific Isotope Analysis expanded the applications of traditional environmental organic chemistry.
     Chlorine, with an atomic number of17, has two stable isotopes,35Cl and37Cl. The abundance of these two isotopes vary between phases or compounds, and the variation is unique as fingerprints-isotope fingerprints. The chlorine is one of the most widely presented elements which are studied widely. Compared to carbon and hydrogen, the stable isotope analysis are lately applied into the environmental organic pollutions. Various pollutants and the studies purpose call for more powerful chlorine analysis techniques.
     To date, related isotope researches on organochloro pesticides were rarely reported, and there are many technical difficulties for the the stable chlorine isotope analysis for organochloro pesticides. The enrichment, separation, purification, chromatographic extraction may be required by the traditional chlorine isotope analysis method. The inconveniences of the pretreatment of the chlorine isotope methods make chlorine isotope analysis a difficult art. The recent online approach has been applied in a volatile chlorinated hydrocarbon, reducing the analysis of pre-treatment difficulties, to improve the method sensitive. Online methods such as GC-qMS analysis may be applied to the chlorine isotope analysis of organochloro pesticides. But there are still some technique problems to be solved and then the online CSIA-Cl (compound specific isotope analysis) could be a unique tool.
     This thesis mainly analyzed the feasibility for online instrument chlorine isotope analysis for organochloro pesticides, and tried analyzing chlorine isotopes of OCPs in environmental samples. The innovations of this study are systematical analysis of the possibility of chlorine isotope analysis of OCPs using GC-qMS; novel test of the feasibility of GC-MS/MS method for chlorine isotope analysis; and initial application of the GC-qMS method in chlorine isotope analysis of the OCPs in actual soil samples.
     This thesis based on the theoretical and experimental researches mainly focuses on the following issues:
     I. GC-qMS method for chlorine isotope analysis of OCPs and relevant structures in the congener molecules.
     The instrumental analysis of chlorine isotope may require different mass spectrometry signals based on specific apparatus or the targets. Different target ions with different mass to charge ratios may be required for further detection in the mass spectrometry. IRMS (stable isotope ratio mass spectrometry) method counts the CH3Cl+ions and the TIMS (thermal ionization mass spectrometry) method the CS2Cl-. Due to the differences of the instruments and analytes, the chlorine isotope signal expression is different for different mass spectrometry methods, and the calculation strategy of mass spectrometry may vary.37Cl/35Cl ratios are calculated from ions carrying37Cl and35Cl. Polychlorinated ions calculation should be corrected to the number of the chlorine nucleus of the target ion. And also the multi-fragment ion calculation may be performed after relevant ion masses are scanned in the mass spectrometer.
     To date, the online chlorine isotope analysis using GC-qMS is mainly dealing with light weighted volatile chlorinated hydrocarbons. There was only one case till now analyzed the Cl isotopes in DDT using GC-qMS, but only use one certain ion and large sample amount. The reason why it is hard to apply GC-qMS method for Cl isotope in DDTs is that the DDT fragments in the El source are much more complex than those of light weighted chlorinated hydrocarbons. The fragmentation pattern of OCPs in the ion source can be sorted from the spectral library where the composition and structure of the mass peak can be paired using a mass interpreter tool. Suitable ions for the GC-qMS isotope analysis method should be ions with cleared structure, with enough abundance, and also isotopologues.
     1. With mass spectral library tools including mass information of a number of indexed compounds and mass interpreter tool, OCPs compounds in the ion source fragmentation regularity are analyzed. For the El source mass spectrometry, Chlorine isotope analysis may be easily setup using the molecular ions of HCB and p, p'-DDE; the chlorinated aromatic fragments ions of p,p'-DDT, o,p'-DDT, p,p'-DDD (m/z235,237), and the unique structure of the chlorinated cyclopentene structures of chlordane, heptachlor, and endosulfan (m/z270,272).
     2. The results of chlorine isotope analysis for OCPs using GC-qMS can be affected by the following factors:the dwell time of the mass scan; and the concentrations of target compounds. Too low or too high amount of injection of the target compounds may yield unstable37Cl/35Cl ratio. The results shown that for certain ion from target compound, appropriate injection volume should be set to ensure reproducibility of the measured values chlorine isotope.
     3. An ion with specific structure or position in the molecule may be used for position-specific chlorine isotope analysis. The37Cl/35Cl ratio of fragments ions with m/z of235and237in DDT may stand for the chlorine isotope ratio of the chlorinated aromatic part of the DDT. The mass abundance of237/235can be high enough at a low sample amount and the results may be more stable than that calculated from the molecular ions.
     4. The abundance of main fragment ions containing chlorine from OCP molecule may vary in the El source, and thus the stability in chlorine isotope analysis for different fragment may be different at a set amount of OCPs sample. The equation using different fragment ions for chlorinated VOCs can hardly adapted for OCPs.
     5. Continuous days of multi-batch of sample analysis of the instrument were tested.4concentrations of standard material solution with5ng~100ng were injected at each batch and" repeated in3days. The experiment results show that the data of the chlorine isotope ratios of certain fragments in DDT were stable during the3days (Standard deviation of RCl:0.00042~0.00071, n=3; sample amount10ng~50ng).
     6. A DDT standard material, with its δ37Cl measured by IRMS, was tested in the GC-qMS method validation. For measuring the chlorine isotope ratios of the double benzene structures of DDT by scanning the m/z237/235ions, the best injection amount of DDT is tested. With50ng of DDT injected into the GC, the method accuracy is±.51‰; in a scale of50~100,±1.59‰. For measuring the chlorine isotope ratios of DDT by scanning the m/z354/352ions,300ng is a valid injection amount for DDT whiles the accuracy stay within±2.24%o
     Ⅱ. The feasibility study of GC-MS/MS with triple-quadrupole mass analyzer in the chlorine isotope analysis for OCPs.
     Gas chromatography-tandem mass spectrometry with the core part tandem mass spectrometry (or marked as MS/MS) is developed in the late1970s. Tandem mass spectrometry with triple quadrupole mass analyzer has two mass analyzers tracing the mass ions (i.e. precursor ions or product ions) and an part of collision-induced dissociation (CID) for yielding product ion. By pairing the precursor ion and the specific product, the structure information of the molecular ions is given and thus expand the detection mass range. To explore more possibilities of chlorine isotope analysis method of OCPs, in this thesis the feasibility of chlorine isotope analyzing using gas chromatography-triple quadrupole tandem mass spectrometer was discussed.
     1. Standard solution with gradient concentrations of DDT's two isomers was analyzed. In each single injection, the second-stage quadrupole (Q2) was set to pathway mode, the first quadrupole (Q1) and third quadrupole (Q3) were set SIM mode with the same MS settings. Experimental results show that under50ng-250ng injection volume, the abundance of each ion in the respective pole quadrupole analysis have a good linear relationship versus the injection volume, indicating sample amount in the range of50ng-250ng is still in the linearity scale of each mass analyzer.
     2. Two pairs of ions with m/z237/235and354/352of two isomers of DDT were analyzed for chlorine isotope calculation. In the range of50ng-250ng the mass abundance responded in a good linearity against the sample amount. However, in Q1and Q3there is a big difference in chlorine isotope calculation results, indicating chlorine isotope fractionation may occur. Therefore, if a mode with tandem mass spectrometry working, the chlorine isotope of a certain compound may be fractionated from Q1to Q3, and thus affect the accuracy of further measurement. Tandem Mass Spectrometry with triple-quadruple mass analyzer may be not so suitable for chlorine isotope analysis like GC-qMS for OCPs, whereas further study is needed.
     Ⅲ. The chlorine isotope analysis of OCPs in the environmental samples are of unique signification in environmental studies.
     In this thesis, chlorine isotope analysis of several environmental samples were carried out using GC-qMS method. Combined with the chlorine isotope analysis, the source apportionment and environmental behaviors of the pollutants in the study area were analyzed. The environmental meanings of the chlorine isotope was discussed.
     1. The position specific chlorine isotope information of DDT in several soil sample were analyzed using GC-qMS. Compared with the traditional chlorine isotope method, the GC-qMS method need only the pretreatment like that for environmental chemistry analysis. And this method requires sample
     2. To date, the mechanism study shows the chlorine isotopes on aromatic position of the DDT molecular are not effected in the main degradation routine of DDT, and therefore may be a chlorine isotope indictor in pollutant apportionment.
     3. The variation of chlorine isotope in different compound is mainly caused by the chlorine isotope fractionation during the producing process. The semi-volatile chlorinated organic compounds have a narrower range of chlorine and carbon isotope ratios than the volatile ones, and the chlorine isotope ratios of semi-volatile chlorinated compounds range wider than its carbon isotope ratios. These characteristics may be an unique indication in the source apportionment of the semi-volatile chlorinated compounds.
     4. The source information may be still blurred when applied an chlorine isotope apportionment. Therefore, the chlorine isotope analysis should be combined with the environmental analysis.
     More expectations than OCPs, the prospects of chlorine isotope analysis can be expected for the following aspects:
     1. OCPs were once long-time used, and different residues were found in farmland. In different locations, there were differences in content. In different depths of soil, the content of OCPs was also distinctive. In the environmental chemical analysis, the analysis of organic pollution often require "trace analysis". For the techniques of chlorine isotope analysis, the sensitivity and accuracy of the instruments and methods needs to be improved;
     2. The new online application isotope mass spectrometry method has expanded to other mass spectrometer, such as quadrupole mass spectrometry, mcICP-MS. It also broaden the object of the compounds of the chlorine isotope analysis, and reduced the difficulty of the analysis. However, the method accuracy was less than that of the traditional method, therefore more efforts should be input to improve the accuracy.
     3. The chlorine isotope ratios in different product batch or kinds of compounds can be isotopic fingerprints for pollution apportionments. And the multi-isotope analysis with chlorine isotope may be a trend in future studies.
引文
[1]Lohmann R, Muir D. Global Aquatic Passive Sampling (AQUA-GAPS):Using Passive Samplers to Monitor POPs in the Waters of the World[J]. Environmental Science & Technology,2010, 44(3):860-864.
    [2]Cok I, Durmaz T C, Durmaz E, et al. Determination of organochlorine pesticide and polychlorinated biphenyl levels in adipose tissue of infertile men[J]. Environmental Monitoring and Assessment,2010,162(1-4):301-309.
    [3]Augusto S, Maguas C, Matos J, et al. Lichens as an integrating tool for monitoring PAH atmospheric deposition:A comparison with soil, air and pine needles[J]. Environmental Pollution, 2010,158(2):483-489.
    [4]Wang X, Ren N Q, Qi H, et al. Levels, distributions, and source identification of organochlorine pesticides in the topsoils in Northeastern China[J]. Journal of Environmental Sciences-China, 2009,21(10):1386-1392.
    [5]Hunkeler D, Van Breukelen B M, Ersner M. Modeling Chlorine Isotope Trends during Sequential Transformation of Chlorinated Ethenes[J]. Environmental Science & Technology,2009,43(17): 6750-6756.
    [6]Schmidt T, Zwank L, Ersner M, et al. Compound-specific stable isotope analysis of organic contaminants in natural environments:a critical review of the state of the art, prospects, and future challenges[J]. Analytical and Bioanalytical Chemistry,2004,378(2):283-300.
    [7]Zhang G, Li J, Cheng H, et al. Distribution of organochlorine pesticides in the northern South China Sea:Implications for land outflow and air-sea exchange[J]. Environmental Science & Technology,2007,41(11):3884-3890.
    [8]Liu L Y, Jiang A X, Ren N Q, et al. Gridded inventories of historical usage for selected organochlorine pesticides in Heilongjiang River Basin, China[J]. Journal of Environmental Sciences-China,2006,18(4):822-826.
    [9]华小梅,单正军.我国农药的生产,使用状况及其污染环境因子分析[J].环境科学进展,1996,4(2):33-45.
    [10]李军.珠江三角洲有机氯农药污染的区域地球化学研究[D].广州;中国科学院研究生院(广州地球化学研究所),2005.
    [11]Stockholm Convention on Persistent Organic Pollutants (POPs)[EB/OL]. [2013-03-25]. http://chm.pops.int/Portals/0/download.aspx?d=UNEP-POPS-COP-CONVTEXT.En.pdf.
    [12]Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry[M].2nd ed. Hoboken:John Wiley & Sons, Inc,2003.
    [13]Daly G L, Lei Y D, Teixeira C, et al. Pesticides in western Canadian mountain air and soil[J]. Environmental Science & Technology,2007,41(17):6020-6025.
    [14]Loewen M, Wania F, Wang F Y, et al. Altitudinal transect of atmospheric and aqueous fluorinated organic compounds in western Canada[J]. Environmental Science & Technology,2008,42(7): 2374-2379.
    [15]Choi S D, Baek S Y, Chang Y S, et al. Passive air sampling of polychlorinated biphenyls and organochlorine pesticides at the Korean Arctic and Antarctic research stations:Implications for long-range transport and local pollution[J]. Environmental Science & Technology,2008,42(19): 7125-7131.
    [16]Su Y, Wania F, Lei Y D, et al. Temperature dependence of the air concentrations of polychlorinated biphenyls and polybrominated diphenyl ethers in a forest and a clearing[J]. Environmental Science & Technology,2007,41(13):4655-4661.
    [17]Shen L, Wania F, Lei Y D, et al. Atmospheric distribution and long-range transport behavior of organochlorine pesticides in north America[J]. Environmental Science & Technology,2005, 39(2):409-420.
    [18]Zhao Y L, Yang L M, Wang Q Q. Modeling persistent organic pollutant (POP) partitioning between tree bark and air and its application to spatial monitoring of atmospheric POPs in mainland China[J]. Environmental Science & Technology,2008,42(16):6046-6051.
    [19]Li J, Lin T, Qi S H, et al. Evidence of local emission of organochlorine pesticides in the Tibetan plateau[J]. Atmospheric Environment,2008,42(32):7397-7404.
    [20]Collins C D, Finnegan E. Modeling the Plant Uptake of Organic Chemicals, Including the Soil-Air-Plant Pathway[J]. Environmental Science & Technology,2010,44(3):998-1003.
    [21]Li X M, Gan Y P, Yang X P, et al. Human health risk of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in edible fish from Huairou Reservoir and Gaobeidian Lake in Beijing, China[J]. Food Chemistry,2008,109(2):348-354.
    [22]Sweetman A J, Dalla Valle M, Prevedouros K, et al. The role of soil organic carbon in the global cycling of persistent organic pollutants (POPs):interpreting and modelling field data[J]. Chemosphere,2005,60(7):959-972.
    [23]Wang F, Bian Y R, Jiang X, et al. Residual characteristics of organochlorine pesticides in Lou soils with different fertilization modes[J]. Pedosphere,2006,16(2):161-168.
    [24]王峰,朱彤,徐柏青,等.珠穆朗玛峰东绒布冰川新降雪中有机氯农药[J].中国科学D辑:(地球科学),2007,37(5):670-675.
    [25]Falloon P, Jones C D, Cerri C E, et al. Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil[J]. Agriculture Ecosystems & Environment, 2007,122(1):114-124.
    [26]Valle M D, Codato E, Marcomini A. Climate change influence on POPs distribution and fate:A case study[J]. Chemosphere,2007,67(7):1287-1295.
    [27]Wang T Y, Lu Y L, Dawson R W, et al. Effects of environmental factors on organochlorine pesticide residues in soils of the Guanting Reservoir area, China[J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes,2006,41(3): 309-321.
    [28]Meijer S N, Steinnes E, Ockenden W A, et al. Influence of environmental variables on the spatial distribution of PCBs in Norwegian and UK soils:Implications for global cycling[J]. Environmental Science & Technology,2002,36(10):2146-2153.
    [29]Daly G L, Wania F. Organic contaminants in mountains[J]. Environmental Science & Technology, 2005,39(2):385-398.
    [30]Hassanin A, Breivik K, Meijer S N, et al. PBDEs in European background soils:Levels and factors controlling their distribution[J]. Environmental Science & Technology,2004,38(3): 738-745.
    [31]Grimalt J O, van Drooge B L, Ribes A, et al. Persistent organochlorine compounds in soils and sediments of European high altitude mountain lakes[J]. Chemosphere,2004,54(10):1549-1561.
    [32]Barra R, Popp P, Quiroz R, et al. Persistent toxic substances in soils and waters along an altitudinal gradient in the Laja River Basin, Central Southern Chile[J]. Chemosphere,2005,58(7): 905-915.
    [33]Zhang H B, Luo Y M, Zhao Q G, et al. Residues of organochlorine pesticides in Hong Kong soils[J]. Chemosphere,2006,63(4):633-641.
    [34]Ruzickova P, Klanova J, Cupr P, et al. An assessment of air-soil exchange of polychlorinated biphenyls and organochlorine pesticides across Central and Southern Europe[J]. Environmental Science & Technology,2008,42(1):179-185.
    [35]Wania F, MacKay D. Peer Reviewed:Tracking the Distribution of Persistent Organic Pollutants[J]. Environmental Science & Technology,1996,30(9):390A-396A.
    [36]Meijer S N, Halsall C J, Harner T, et al. Organochlorine Pesticide Residues in Archived UK Soil[J]. Environmental Science & Technology,2001,35(10):1989-1995.
    [37]Jaward F M, Farrar N J, Harner T, et al. Passive Air Sampling of PCBs, PBDEs, and Organochlorine Pesticides Across Europe[J]. Environmental Science & Technology,2003,38(1): 34-41.
    [38]Shen L, Wania F, Lei Y D, et al. Hexachlorocyclohexanes in the North American Atmosphere[J]. Environmental Science & Technology,2004,38(4):965-975.
    [39]关于禁止生产、流通、使用和进出口滴滴涕、氯丹、灭蚁灵及六氯苯的公告[J].农药科学与管理,2009,(06):9.
    [40]折冬梅,黄啟良,李凤敏,等.高纯度o,p-DDT的合成[J].核农学报,2010,24(4):868-870.
    [41]马瑾,邱兴华,周永章,等.湛江市土壤有机氯农药残留状况及空间分布特征[J].地理学报,2010,65(1):103-112.
    [42]Snedeker S M. Pesticides and breast cancer risk:A review of DDT, DDE, and dieldrin[J]. Environmental Health Perspectives,2001,10935-47.
    [43]华小梅,江希流.我国农药的生产使用状况及其对环境的影响[J].环境保护,1999,(9):23-25.
    [44]龚钟明,曹军,朱雪梅,等.天津市郊污灌区农田土壤中的有机氯农药残留[J].农业环境保护,2002,21(5):459-461.
    [45]安琼,董元华,王辉,等.南京地区土壤中有机氯农药残留及其分布特征[J].环境科学学报,2005,25(4):470-474.
    [46]马文洁,何江涛,金爱芳,等.北京市郊再生水灌区土壤有机氯农药垂向分布特征[J].生态 环境学报,2010,19(7):1675-1681.
    [47]唐巧虹.国内三氯杀螨醇质量状况浅析[J].农药市场信息,2001,(9):30-31.
    [48]赵道辉,吴晶文,倪蕾,等.茶叶中三氯杀螨醇、六六六及DDT农药残留量检测与现状分析[J].中国卫生检验杂志,2004,14(3):328-327.
    [49]白清云.六六六在环境中的异构化作用[J].农业环境科学学报,1983,(02):20-22.
    [50]廖培成.关于六六六无效体利用问题的建议[J].农药工业,1980,(04):60.
    [51]曹红英,梁涛,陶澍.1950年以来BHC在杭州环境中积累、迁移与残留动态的模拟研究[J].环境科学学报,2005,(04):475-482.
    [52]孙可,刘希涛,高博,等.北京通州灌区土壤和河流底泥中有机氯农药残留的研究[J].环境科学学报,2009,29(5):1086-1093.
    [53]Tao S, Liu W X, Li Y, et al. Organochlorine Pesticides Contaminated Surface Soil As Reemission Source in the Haihe Plain, China[J]. Environmental Science & Technology,2008,42(22): 8395-8400.
    [54]Hao H T, Sun B, Zhao Z H. Effect of land use change from paddy to vegetable field on the residues of organochlorine pesticides in soils[J]. Environmental Pollution,2008,156(3): 1046-1052.
    [55]郭淼,陶澍,杨宇,等.天津地区人群对六六六的暴露分析[J].环境科学,2005,26(1):164-167.
    [56]Gong Z M, Tao S, Xu F L, et al. Level and distribution of DDT in surface soils from Tianjin, China[J]. Chemosphere,2004,54(8):1247-1253.
    [57]曹红英,龚钟明,曹军,等.估算天津环境中γ-HCH归宿的逸度模型[J].环境科学,2003,24(2):77-81.
    [58]Cai Q-Y, Mo C-H, Wu Q-T, et al. The status of soil contamination by semivolatile organic chemicals (SVOCs) in China:A review[J]. Science of the Total Environment,2008,389(2-3): 209-224.
    [59]王琪,赵娜娜,黄启飞,等.氯丹和灭蚁灵在污染场地中的空间分布研究[J].农业环境科学学报,2007,26(5):1630-1634.
    [60]李国刚,李红莉.持久性有机污染物在中国的环境监测现状[J].中国环境监测,2004,20(4):53-60.
    [61]中国国家环境保护总局斯德哥尔摩履约办公室,北京大学环境学院.中国淘汰杀虫剂类持久性有机污染物战略[M].2004.
    [62]张文君POPs公约简介[J].农药,2000,39(10):43-46.
    [63]李尧,左谦,刘文新,等.河北表层土壤中七氯残留污染现状及其空间分异特征[J].农业环境科学学报,2007,26(1):230-234.
    [64]丁中,安礼如.硫丹合成工艺的研究[J].农药,2001,(06):18-21.
    [65]Weber J, Halsall C J, Muir D, et al. Endosulfan, a global pesticide:A review of its fate in the environment and occurrence in the Arctic[J]. Science of the Total Environment,2010,408(15): 2966-2984.
    [66]Wang X J, Piao X Y, Chen J, et al. Organochlorine pesticides in soil profiles from Tianjin, China[J]. Chemosphere,2006,64(9):1514-1520.
    [67]Wang X J, Liu R M, Wang K Y, et al. Application of multivariate spatial analysis in scale-based distribution and source study of PAHs in the topsoil:an example from Tianjin, China[J]. Environmental Geology,2006,49(8):1208-1216.
    [68]Tao S, Xu F L, Wang X J, et al. Organochlorine pesticides in agricultural soil and vegetables from Tianjin, China[J]. Environmental Science & Technology,2005,39(8):2494-2499.
    [69]丛鑫,朱书全,薛南冬,等.有机氯农药企业搬迁遗留场地土壤中污染物的垂向分布特征[J].环境科学研究,2009,22(2):351-355.
    [70]周丽,史双昕,张烃,等.污染场地有机氯农药残留特征及对周边大气的影响;持久性有机污染物论坛2009暨第四届持久性有机污染物全国学术研讨会[C],中国浙江宁波,2009.
    [71]Sturchio N C, Clausen J L, Heraty L J, et al. Chlorine isotope investigation of natural attenuation of trichloroethene in an aerobic aquifer[J]. Environmental Science & Technology,1998,32(20): 3037-3042.
    [72]Elsner M. Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants:principles, prospects and limitations[J]. Journal of Environmental Monitoring,2010,12(11):2005-2031.
    [73]van Warmerdam E M, Frape S K, Aravena R, et al. Stable chlorine and carbon isotope measurements of selected chlorinated organic solvents[J]. Applied Geochemistry,1995,10(5): 547-552.
    [74]Holt B D, Sturchio N C, Abrajano T A, et al. Conversion of Chlorinated Volatile Organic Compounds to Carbon Dioxide and Methyl Chloride for Isotopic Analysis of Carbon and Chlorine[J]. Analytical Chemistry,1997,69(14):2727-2733.
    [75]Tanaka N, Rye D M. Chlorine in the stratosphere[J]. Nature,1991,353(6346):707-707.
    [76]Jendrzejewski N, Eggenkamp H G M, Coleman M L. Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions:scope of application to environmental problems[J]. Applied Geochemistry,2001,16(9-10):1021-1031.
    [77]Wassenaar L I, Koehler G. On-line technique for the determination of the delta Cl-37 of inorganic and total organic Cl in environmental samples[J]. Analytical Chemistry,2004,76(21): 6384-6388.
    [78]Rosenbaum J M, Cliff R A, Coleman M L. Chlorine stable isotopes:A comparison of dual inlet and thermal ionization mass spectrometric measurements[J]. Analytical Chemistry,2000,72(10): 2261-2264.
    [79]Eastoe C J, Guilbert J M, Kaufmann R S. Preliminary Evidence for Fractionation of Stable Chlorine Isotopes in Ore-Forming Hydrothermal Systems[J]. Geology,1989,17(3):285-288.
    [80]Eastoe C J, Guilbert J M. Stable Chlorine Isotopes in Hydrothermal Processes[J]. Geochimica et Cosmochimica Acta,1992,56(12):4247-4255.
    [81]Kaufmann R S, Frape S K, Mcnutt R, et al. Chlorine Stable-Isotope Distribution of Michigan Basin Formation Waters[J]. Applied Geochemistry,1993,8(4):403-407.
    [82]Numata M, Nakamura N, Gamo T. Precise measurement of chlorine stable isotopic ratios by thermal ionization mass spectrometry[J]. Geochemical Journal,2001,35(2):89-100.
    [83]郑淑蕙.稳定同位素地球化学分析[M].北京:北京大学出版社,1986.
    [84]Holmstrand H, Andersson P, Gustafsson O. Chlorine isotope analysis of submicromole organochlorine samples by sealed tube combustion and thermal ionization mass spectrometry[J]. Analytical Chemistry,2004,76(8):2336-2342.
    [85]Hoering T C, Parker P L. The geochemistry of the stable isotopes of chlorine[J]. Geochimica et Cosmochimica Acta,1961,23(3-4):186-199.
    [86]Godon A, Jendrzejewski N, Eggenkamp H G M, et al. A cross-calibration of chlorine isotopic measurements and suitability of seawater as the international reference material[J]. Chemical Geology,2004,207(1-2):1-12.
    [87]Xiao Y K, Zhou Y M, Wang Q Z, et al. A secondary isotopic reference material of chlorine from selected seawater[J]. Chemical Geology,2002,182(2-4):655-661.
    [88]Hunkeler D, Meckenstock R U, Lollar B S, et al. A guide for assessing biodegradation and source identification of organic ground water contaminants using Compound Specific Isotope Analysis (CSIA)[M/OL].2008[2013-02-23]. http://nepis.epa.gov/Exe/ZyPURL.cgi?Docke P1002VAI.txt
    [89]Shouakar-Stash O, Drimmie R J, Zhang M, et al. Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS[J]. Applied Geochemistry,2006, 21(5):766-781.
    [90]McHugh T, Kuder T, Fiorenza S, et al. Application of CSIA to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs[J]. Environmental Science & Technology,2011,45(14): 5952-5958.
    [91]Holmstrand H, Mandalakis M, Zencak Z, et al. First compound-specific chloriae-isotope analysis of environmentally-bioaccumulated organochlorines indicates a degradation-relatable kinetic isotope effect for DDT[J]. Chemosphere,2007,69(10):1533-1539.
    [92]Zwank L, Berg M, Elsner M, et al. New Evaluation Scheme for Two-Dimensional Isotope Analysis to Decipher Biodegradation Processes:□ Application to Groundwater Contamination by MTBE[J]. Environmental Science & Technology,2004,39(4):1018-1029.
    [93]Meckenstock R U, Morasch B, Griebler C, et al. Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers[J]. Journal of Contaminant Hydrology,2004, 75(3-4):215-255.
    [94]Long A, Eastoe C J, Kaufmann R S, et al. High-Precision Measurement of Chlorine Stable-Isotope Ratios[J]. Geochimica et Cosmochimica Acta,1993,57(12):2907-2912.
    [95]Eggenkamp H G M. [Delta] p37 sCl:the geochemistry of chlorine isotopes[D]. Utrecht; Universiteit Utrecht,1994.
    [96]Jendrzejewski N, Eggenkamp H G M, Coleman M L. Sequential Determination of Chlorine and Carbon Isotopic Composition in Single Microliter Samples of Chlorinated Solvent[J]. Analytical Chemistry,1997,69(20):4259-4266.
    [97]Ader M, Coleman M L, Doyle S P, et al. Methods for the stable isotopic analysis of chlorine in chlorate and perchlorate compounds[J]. Analytical Chemistry,2001,73(20):4946-4950.
    [98]Xiao Y K, Zhang C G. High-Precision Isotopic Measurement of Chlorine by Thermal Ionization Mass-Spectrometry of the Cs2cl+ Ion[J]. International Journal of Mass Spectrometry and Ion Processes,1992,116(3):183-192.
    [99]Magenheim A J, Spivack A J, Volpe C, et al. Precise Determination of Stable Chlorine Isotopic-Ratios in Low-Concentration Natural Samples[J]. Geochimica et Cosmochimica Acta, 1994,58(14):3117-3121.
    [100]Numata M, Nakamura N, Koshikawa H, et al. Chlorine stable isotope measurements of chlorinated aliphatic hydrocarbons by thermal ionization mass spectrometry[J]. Analytica Chimica Acta,2002,455(1):1-9.
    [101]Xiao Y K, Liu W G. Precision measurement of chlorine isotope based on Cs2Cl+ by thermal ionization mass spectrometry [J]. Analytical Letters,1995,28(7):1295-1304.
    [102]Kaufmann R, Long A, Bentley H, et al. Natural chlorine isotope variations[J]. Nature,1984, 309(5966):338-340.
    [103]Sharp Z D, Barnes J D, Brearley A J, et al. Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites[J]. Nature,2007,446(7139):1062-1065.
    [104]Teffera Y, Kusmierz J J, Abramson F P. Continuous-Flow Isotope Ratio Mass Spectrometry Using the Chemical Reaction Interface with Either Gas or Liquid Chromatographic Introduction[J]. Analytical Chemistry,1996,68(11):1888-1894.
    [105]Van Acker M R M D, Shahar A, Young E D, et al. GC/multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons[J]. Analytical Chemistry, 2006,78(13):4663-4667.
    [106]Aeppli C, Holmstrand H, Andersson P, et al. Direct Compound-Specific Stable Chlorine Isotope Analysis of Organic Compounds with Quadrupole GC/MS Using Standard Isotope Bracketing[J]. Analytical Chemistry,2010,82(1):420-426.
    [107]Jin B, Laskov C, Rolle M, et al. Chlorine Isotope Analysis of Organic Contaminants Using GC-qMS:Method Optimization and Comparison of Different Evaluation Schemes[J]. Environmental Science & Technology,2011,45(12):5279-5286.
    [108]Sakaguchi-Soder K, Jager J, Grund H, et al. Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis[J]. Rapid Communications in Mass Spectrometry,2007,21(18):3077-3084.
    [109]Laube J C, Kaiser J, Sturges W T, et al. Chlorine Isotope Fractionation in the Stratosphere[J]. Science,2010,329(5996):1167.
    [110]Bernstein A, Shouakar-Stash O, Ebert K, et al. Compound-Specific Chlorine Isotope Analysis:A Comparison of Gas Chromatography/Isotope Ratio Mass Spectrometry and Gas Chromatography/Quadrupole Mass Spectrometry Methods in an Interlaboratory Study [J]. Analytical Chemistry,2011,83(20):7624-7634.
    [111]Drenzek N J, Tarr C H, Eglinton T I, et al. Stable chlorine and carbon isotopic compositions of selected semi-volatile organochlorine compounds[J]. Organic Geochemistry,2002,33(4): 437-444.
    [112]Reddy C M, Xu L, Drenzek N J, et al. A Chlorine Isotope Effect for Enzyme-Catalyzed Chlorination[J]. Journal of the American Chemical Society,2002,124(49):14526-14527.
    [113]Reddy C M, Drenzek N J, Eglinton T I, et al. Stable chlorine intramolecular kinetic isotope effects from the abiotic dehydrochlorination of DDT[J]. Environmental Science and Pollution Research,2002,9(3):183-186.
    [114]Reddy C M, Heraty L J, Holt B D, et al. Stable chlorine isotopic compositions of aroclors and aroclor-contaminated sediments[J]. Environmental Science & Technology,2000,34(13): 2866-2870.
    [115]Sturchio N C, Hatzinger P B, Arkins M D, et al. Chlorine Isotope Fractionation during Microbial Reduction of Perchlorate[J]. Environmental Science & Technology,2003,37(17):3859-3863.
    [116]Sturchio N C, Bohlke J K, Beloso A D, et al. Oxygen and Chlorine Isotopic Fractionation during Perchlorate Biodegradation:□ Laboratory Results and Implications for Forensics and Natural Attenuation Studies[J]. Environmental Science & Technology,2007,41(8):2796-2802.
    [117]Bartholomew R M, Brown F, Lounsbury M. CHLORINE ISOTOPE EFFECT IN REACTIONS OF TERT-BUTYL CHLORIDE[J]. Canadian Journal of Chemistry,1954,32(10):979-983.
    [118]Hill J W, Fry A. Chlorine Isotope Effects in the Reactions of Benzyl and Substituted Benzyl Chlorides with Various Nucleophiles[J]. Journal of the American Chemical Sbciety,1962,84(14): 2763-2769.
    [119]Numata M, Nakamura N, Koshikawa H, et al. Chlorine Isotope Fractionation during Reductive Dechlorination of Chlorinated Ethenes by Anaerobic Bacteria[J]. Environmental Science & Technology,2002,36(20):4389-4394.
    [120]Huang L, Sturchio N C, Abrajano Jr T, et al. Carbon and chlorine isotope fractionation of chlorinated aliphatic hydrocarbons by evaporation[J]. Organic Geochemistry,1999,30(8, Part 1): 777-785.
    [121]Heraty L J, Fuller M E, Huang L, et al. Isotopic fractionation of carbon and chlorine by microbial degradation of dichloromethane[J]. Organic Geochemistry,1999,30(8A):793-799.
    [122]Drenzek N J, Eglinton T I, Wirsen C O, et al. Invariant chlorine isotopic signatures during microbial PCB reductive dechlorination[J]. Environmental Pollution,2004,128(3):445-448.
    [123]张崇耿,肖应凯.高精度热电离质谱法测定氯同位素[J].盐湖研究,1993,1(2):1-5.
    [124]Wei H-Z, Jiang S-Y, Xiao Y-K, et al. Precise Determination of the Absolute Isotopic Abundance Ratio and the Atomic Weight of Chlorine in Three International Reference Materials by the Positive Thermal Ionization Mass Spectrometer-Cs2Cl+-Graphite Method[J]. Analytical Chemistry,2012,84(23):10350-10358.
    [125]Reddy C M, Drenzek N J, Heraty L J, et al. Intramolecular stable chlorine isotope effects from the abiotic dehydrochlorination of DDT.[J]. Abstracts of Papers of the American Chemical Society,2000,220U330-U330.
    [126]盛龙生,苏焕华,郭丹滨.色谱质谱联用技术[M].北京:化学工业出版社,2005.
    [127]Sakaguchi-Soder K, Jager J, Grund H, et al. Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis [J]. Rapid Communications in Mass Spectrometry,2007,21(18):3077-3084.
    [128]王光辉,熊少祥.有机质谱解析[M].北京:化学工业出版社,2005.
    [129]黄达峰,罗修泉,李喜斌,等.同位素质谱技术与应用[M].北京:化学工业出版社,2006.
    [130]Shouakar-Stash O, Frape S K, Aravena R, et al. Analysis of Compound-Specific Chlorine Stable Isotopes of Vinyl Chloride by Continuous Flow-Isotope Ratio Mass Spectrometry (FC-IRMS)[J]. Environmental Forensics,2009,10(4):299-306.
    [131]余应新,韩姝媛,贾望鲁,等.滴滴涕在模拟胃肠中的消化特征及其稳定碳同位素效应[J].科学通报,2009,54(4):441-447.
    [132]Xiao Y K, Zhou Y M, Liu W G. Precise Measurement of Chlorine Isotopes Based on Cs2Cl2 by Thermal Ionization Mass Spectrometry[J]. Analytical Letters,1995,28(7):1295-1304.
    [133]佟玲,杨佳佳,吴淑琪.气相色谱-串联质谱技术分析地质调查植物样品中持久性有机污染物的优势[J].岩矿测试,2012,(06):1021-1027.
    [134]王玉飞,陈晓红,傅小红.气相色谱-串联质谱法测定生物样品中的多氯联苯和滴滴涕[J].色谱,2007,25(1):112.
    [135]佟玲,杨佳佳,吴淑琪.气相色谱-串联质谱法测定植物样品中17种有机氯农药和8种多氯联苯[J].农药学学报,2012,(2):185-190.
    [136]方向,覃莉莉,白岗.四极杆质量分析器的研究现状及进展[J].质谱学报,2005,26(4):234-42.
    [137]国家环境保护部网站.http://kjs.mep.gov.cn/hjbhbz/bzwb/trhj/trhjzlbz/200706/t20070620_105489.htm.
    [138]Slater G F, Dempster H S, Lollar B S, et al. Headspace analysis:A new application for isotopic characterization of dissolved organic contaminants[J]. Environmental Science & Technology, 1999,33(1):190-194.
    [139]Hunkeler D, Abe Y, Broholm M M, et al. Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon-chlorine isotope analysis and quantitative PCR[J]. J Contam Hydrol,2011,119(1-4):11-11.
    [140]Hunkeler D, Aravena R, Shouakar-Stash O, et al. Carbon and Chlorine Isotope Ratios of Chlorinated Ethenes Migrating through a Thick Unsaturated Zone of a Sandy Aquifer[J]. Environmental Science & Technology,2011,45(19):8247-8253.
    [141]Ertl S, Seibel F, Eichinger L, et al. Thel3C/12C and 2H/1H Ratios of Trichloroethene, Tetrachloroethene and Their Metabolites[J]. Isotopes in Environmental and Health Studies,1998, 34(3):245-253.
    [142]刘卫国,肖应凯,彭子成.柴达木盆地盐湖卤水硼、氯同位素的水化学特性探讨[J].盐湖研究,1999,(03):8-14.
    [143]Long A, Eastoe c J, Kaufmann R S, et al. High-precision measurement of chlorine stable isotope ratios[J]. Geochimica et Cosmochimica Acta,1993,57(12):2907-2912.
    [144]Beneteau K M, Aravena R, Frape S K. Isotopic characterization of chlorinated solvents-laboratory and field results[J]. Organic Geochemistry,1999,30(8A):739-753.
    [145]Hunkeler D, Aravena R. Evidence of substantial carbon isotope fractionation among substrate, inorganic carbon, and biomass during aerobic mineralization of 1,2-dichloroethane by Xanthobacter autotrophicus[J]. Applied and Environmental Microbiology,2000,66(11):4870-+.
    [146]Shouakar-Stash O, Frape S K, Drimmie R J. Stable hydrogen, carbon and chlorine isotope measurements of selected chlorinated organic solvents[J]. Journal of Contaminant Hydrology, 2003,60(3-4):211-228.
    [147]Zwank L, Berg M, Schmidt T C, et al. Compound-Specific Carbon Isotope Analysis of Volatile Organic Compounds in the Low-Microgram per Liter Range[J]. Analytical Chemistry,2003, 75(20):5575-5583.
    [148]漳州市人民政府.漳州概况-地理环境http://www.zhangzhou.gov.cn/cms/html/zzszf/2007-11-08/339227.html.
    [149]中国天气网.漳州气候背景分析.http://www.weather.com.cn/cityintro/101230601.shtml.
    [150]福建省情网.http://www.fjsq.gov.cn.
    [151]王向琴,祁士华,邢新丽,等.川西北至重庆市土壤剖面中有机氯农药的组成特征[J].中国环境科学,2008,28(6):548-551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700