用户名: 密码: 验证码:
南方岩溶金属矿区地下水防治理论与实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属矿产是国民经济赖以发展的支柱,我国金属矿产有一半以上分布长江以南的岩溶发育地区。南方岩溶金属矿区往往岩溶强烈发育、水量巨大,水害几乎成为唯一制约矿区安全开采的的因素;而疏干排水又严重破坏地下水资源,为地质环境留下无穷后患。金属矿床受其矿体成因控制,分布范围一般较小。我国的金属矿区勘察,大多集中在上世纪七八十年代,受当时勘察技术限制,勘察的深度也有限。随着国民经济发展的需求增大,金属矿床开采的规模不断扩大,一些原认为不适应开采的大水矿区也纳入开采范围,而原有矿区也大都通过技改扩大开采规模,向深部延伸,使矿区防治水工作难度加大。矿区防治水的关键在于水文地质条件的查明,而进行大规模的水文地质补充勘察耗资巨大,致使矿区水文地质条件的研究几乎停止不前。因此,如何利用矿区生产过程中积累的水文地质资料,增加简单、实用的新理论、新方法,进一步查明矿区水文地质条件,将成为南方岩溶金属矿区防治水工作的重点。
     马坑铁矿位于福建省龙岩市,具有储量大、层位稳定、可选性好等特点,已查明矿体储量达4.2亿吨,是华东地区第一大规模的铁矿。马坑矿区分布面积小,仅4.5km2;矿体埋藏深度达400~800m,主矿体在分布在+200m~-200m水平。矿区目前开采规模为100万t/a,开采水平延伸至+250m水平,基建水平已达+100m水平。2010年矿区通过新增《马坑铁矿新增500万t/a采选工程项目申请报告书》,预计至2017年,产量增至300万t/a,之后逐步增加至600万t/a。开采水平逐步延伸至+200m水平、Om水平,直至-200m水平。马坑矿区断裂构造错综复杂、平均岩溶率达6.02%。井巷掘进过程中涌、突水事故频发。马坑矿区为水文地质条件复杂的顶板岩溶直接充水矿区,是南方岩溶金属矿区的典型代表。在马坑矿区进行地下水防治研究,是保证矿区安全生产的必要措施。也可在南方岩溶金属矿区地下水防治工作起到重要的示范作用。
     笔者自2006年至今,长期在马坑铁矿从事水文地质条件及防治水方法研究,并走访了我国多个南方岩溶金属矿区,如广东凡口铅锌矿,马鞍山白象山铁矿、南京栖霞山铁矿、江西武山铜矿等,根据资料收集及实践过程中积累的大量数据为基础,从而完成了该篇论文的编写。
     本文以地下水系统理论为指导,提出从整体上对南方岩溶金属矿区岩溶水系统进行分析。从勘察钻孔、采掘工程揭露资料、水位、水温、水化学、示踪试验等多源信息中挖掘矿区岩溶水系统的信息:圈定了马坑矿区岩溶含水系统边界;分析了岩溶含水系统结构特征;揭示了岩溶含水系统与岩溶流动系统的关系;掌握了开采条件下岩溶流动系统的演化规律;查明了开采条件下岩溶水系统补给量的变化;定量或半定量地查明了大气降雨、上部砂岩裂隙水、花岗岩低温热水对岩溶水的补给作用及集中补给通道;针对性地提出了矿区岩溶水防治措施。
     本文取得的主要认识和结论如下:
     (1)对含水系统边界的圈定可促使研究者的研究范围突破原勘察范围的限制,对岩溶水系统进行整体把握,同时也可确定矿区岩溶水疏干影响地下水资源枯竭及环境破坏的范围。矿区地下水含水系统的圈定是以对矿坑有充水意义的含水系统为目的。利用勘察阶段阶段积累的水文地质资料,绘制穿过可能边界的水文地质剖面,是确定岩溶水含水系统边界的有效方法之一。马坑矿区岩溶水含水系统以溪马河断层、F1断层及天山凹断层、无名断层、陈坑至崎濑断层为边界。
     (2)以断层作为边界的岩溶含水系统,边界断层外侧岩性及其裂隙发育情况决定了边界的性质。马坑矿区岩溶含水系统除上部边界为相对隔水边界外,其它均为弱透水边界。
     (3)岩溶含水系统内部的断层及岩溶是造成岩溶含水系统非均质性的重要因素。利用遥感解译、地表构造行迹调查、井巷断层破碎带调查、地表物探等资料,对马坑矿区断裂构造发育有了进一步的认识;通过对不同开采水平上下钻孔岩溶率的统计,绘制了不同开采水平岩溶发育规律图,掌握了矿区岩溶发育规律。
     (4)岩溶水系统流场图及剖面图是岩溶水流动系统重要的表现形式。利用天然条件F的岩溶水系统流场图及剖面图,说明马坑矿区岩溶水流动系统具有层次性,泉1、泉3为矿区岩溶水系统上部局域流排泄点,而崎濑泉为岩溶水系统区域排泄点。
     (5)不同疏干状态下岩溶水系统流场图说明,随着岩溶水系统排泄途径的改变及岩溶水位的下降,马坑矿区岩溶水系统不断演化,岩溶水流动系统原有层次性被打乱,平面上逐渐呈现出强烈的非统一性。岩溶水流动系统受含水系统结构的控制。岩溶水含水系统及流动系统的相互关系对矿区地下水防治具有重要意义。岩溶水含水系统结构控制着岩溶流动系统的演化;而岩溶水流动系统的演化可促使研究者更深入、更精细的研究含水系统结构。
     (7)岩溶水补给条件是决定岩溶水能否预先疏干的关键因素。岩溶水系统边界的性质决定着岩溶水补给特征,岩溶水系统的水位动态特征说明,2010年雨季开始岩溶水系统补给量增大,岩溶水系统补给来源大多集中矿区东部。大气降雨为马坑矿区岩溶水系统主要补给来源,因开挖出露地表溶洞、采空塌陷裂隙、褐铁矿开采地表扰动及沟谷堵塞等是引起大气降雨入渗补给量增加的主要原因。
     (8)岩溶水系统排泄点的水化学、水量、水位及水温特征在一定程度上显示着补给来源的特征。采掘工程引起的岩溶含水系统的变化,使岩溶水系统补给条件发生改变。马坑矿区井巷揭露的断层破碎带
     (9)在利用流量断面法初步查明地表水系渗漏段的基础上,利用高精度示踪试验可对地表水渗漏段进行验证,可详细查明地表水系的渗漏情况。溪马河在2号、3号、4号流量监测站间存在渗漏,示踪试验证实该段渗漏发生在溪马河与F2断层交汇段,沿F2断层向ZK614方向集中径流;根据溪马河与F1断层交汇段河床扰动时,附近ZK557孔水位波动情况,说明溪马河在与F1断层交汇段存在渗漏。
     (10)利用岩溶含水系统及流动系统非均质性,有的放矢的进行矿区岩溶水防治,可使防治工作更合理、有效。对马坑矿区岩溶水系统进行分期、分区疏干,针对断层、岩溶等岩溶水含水系统结构布置疏干放水孔及探水孔;对已查明的大气降水、上部砂岩裂隙水、下部花岗岩裂及溪马河水进行堵截,可有效提高矿区岩溶水疏干效率。
     本文的特色体现在:(1)提出了以地下水系统理论为指导,进行南方岩溶金属矿区水文地质条件研究的思路与方法;(2)重视矿区基础水文地质资料的积累与分析,探索了从多源信息中提取矿区岩溶水含水系统、流动系统特征、岩溶水系统补给条件的方法;(3)探索了遥感、物探、自动监测技术、水化学分析、高精度示踪试验等新技术、新方法在矿山防治水中的综合应用;(4)为南方岩溶金属矿区水文地质勘察及防治水工作提供了一种新思路、新方法。
Metal ores is the backbone of the national economy's development, more than half the metal ores distribute in the south of the Yangtze River in China, where karst development. Karst water is called "water tiger", in karst development mining area, because the huge amount of karst water; karst water dewatering damages groundwater resources, leaving endless troubles to geological environment. Metal ores generally has smaller distribution range, due to the control of the genesis of ore bodies. The investigation of metal mine are mostly in the seventies and eighties of the last century, in China. the depth of investigation is limited because of the survey and technical limitations at that time. Metal deposits mined expanding, with the increase of the needs of national economic development. Some mining areas, which were recognized not suited to mining before, for the karst water, are mining now; and some mining areas, that had been mined, are extending to the deep, to expand the scale of mining. The mining water prevention and control work become harder. Identification of the hydrogeological conditions is the critical to karst water prevention and control. The study of hydrogeological conditions in mining area almost stopped, because the large costly. Therefore, how to use of the hydrogeological data accumulated in the mining production process, to identify the hydrogeological condition in mining areas with karst water, with simple and practical theories and methods, becomes the critical work in karst water prevention and control work, in metal mining area with karst water, in China.
     Makeng Iron Mine locates in Longyan, Fujian province, is the largest one in East China, with an identified iron ore reserves of420million tons. Makeng IronMine covers an aera of4.5km2, and the buried depth of the ore body is from400m to800m. The main ore body is distributed from-200to200m above the mean sea level. Currently, the production of the Makeng Iron Mine is around1million tons per year. The mining level now extends to the level of+250m, and the infrastructure facilities reach to the level of+100m. According to the proved report in2010, it designed that the production will be increased to300million tons per year in 2017, and finally reach600million tons per year. The mining level is also planned to reach the levels of+200m,0m, and-200m, gradually. Because of the complicated geological structure in the Makeng Iron mining area, the average karst rate as discovered in the boreholes is as high as6.02%, and accidents due to groundwater flow into the tunnel during construction are encountered with high frequency. These are the typical characteristics of the Metal Mine areas in the karst area in South China. Therefore, it is necessary to carry out the research on the hydrogeological conditions of the area and guarantee the safety in production of mine. The research results can also play an important role in underground mine water prevention and control in the southern metal mine area.
     The author has been studied the hydrogeological conditions and the prevention methods in Makeng Mining area, since2006, and visited some iron mines like:Fankou Lead mine in Guangdong, White Xiangshan iron mine in Anhui, and Wushan Copper Mine in Jiangxi. This paper based on the experience gained in the process of collection and practice.
     The theory of groundwater system was used as a guide in this paper, analyzed the karst water system as a whole. Mining the information of karst water system from investigation data, mining and excavation expose data, water level, water temperature, water chemistry and groundwater tracer test, mining and excavation expose data. The boundaries of karst aquifer system were delineated in Makeng mining area; analyzed the structural characteristics of karst aquifer system; revealed the relationship between the karst aquifer system and karst flow system; identified the evolution of the karst flow system during mining period; found out the role in recharge and the concentrate recharge channel quantitative or semi-quantitative. Proposed measures of karst water prevention and control.
     Conclusions were got in in this paper are as follows:
     (1)The delineation of the groundwater system in Mining Area should be based on the groundwater system. It should be for the purpose that has a direct significance to the groundwater system of the pit. Making use of the accumulated hydrogeological data in the phase of exploration and drawing a hydrogeological profile which traverse the possible boundary is an effective method to determine the boundary of the karst water aquifer system. The boundaries of MaKeng Mine Area are the fault of XiMa River, F1, TianShanAo, Nameless, ChenKeng-QiLai.
     (2) The lithology outside the fault of the boundaries and the situation of its fracture development decide the boundaries' properties. The upper boundary of MaKeng Mine Area is relative water insulation, and other boundaries are weakly permeable.
     (3)Internal faults and karst water-bearing in karst system are important factors causing karst aquifer heterogeneity. The use of remote sensing interpretation, surface structure investigation, track roadway fault investigation and surface geophysical exploration makes us have further understanding of the fault structure's development in MaKeng Mine Area.we counted the karst rate in different working level during50meters, and we drew maps of the karst development in level+420, level+300, level+200and level+100meters. Besides, we found that the karst in the Mine Area mainly distributes along the fracture zone of F1, F2, F10and F15; Vertical karst development from the shallow and deep, developed from strong to weak, most of them are above level+200meters, and below+200meters, it merely develops around the fracture zone of high angle fault.
     (4)The flow field and cross-sectional view of the karst water system is an importantmanifestation of the karst water flow system.Karst water aquifer system and the relationship of the flow system have a great significance to the prevention and control of underground mine water.Using maps and cross-sectional view of the flow field of karst water system under natural conditions,Ma Hang mine karst water flow system is layered,Spring1spring3should be the upper part of the mine karst water system the local stream excretion point,Qilai spring is karst water system areas excretion.
     (5) The flow field diagram of Karst water system Under different unwatering state illustrates Ma Hang mine karst water system is evolving. With the underground water points are emerging and karst water level dropped,The original level of the karst water flow system has been disrupted, The plane gradually showing a strong non-uniformity.
     (6) Karst water flow system is under control of the structure of the aquifer system, he flow field diagram, hydrogeological cross-sectional maps and leaking water points dynamic indicate, faults, karst, local impermeable belt control the strong runoff controls the flow system, espcially fault F15, F10fault; However, the blocking effect of the part impermeable belt fault F3,western igneous strength the non-uniformity of the karst water flow system and control the evolution of the karst water flow system. The part impermeable belt can be used as the basis for prevention and treatment of different stages of the mining area of karst water.
     (7)The condition of groundwater recharge in karst area is the main factor to decide whether or not karst water drainage in advance, while the boundary condition of karst system determines the characteristics of karst water supplies。The characteristic of water level dynamic in karst water system shows that groundwater recharge increased from the rainy season in2010, which mostly concentrated in the eastern mining area. Precipitation is the main replenishment source of groundwater in Makeng mining area. Surface caves exposed by excavation, fracture collapsed by mining, surface disturbance because of mining limonite and the plugs in the valley are the main reasons for the increase of precipitation infiltration recharge.
     (8)Water chemistry, water level and water temperature characteristics of water discharge point in Karst water system shows the features of replenishment source to some extent. The change of the karst aquifer system caused by mining engineering brought about karst water system replenishment conditions change, the characteristics of water chemistry, water level and water temperature shows:the upper jiafu group (Pj1) sandstone fissure water supplies karst water system through the fault fracture zone.Water chemistry simulation results shows that the mixed water point W100-1is made up with sandstone fissure water and karst water,its mixed ratio is1:2.W-40-2water point is mixed by the deep granite fissure water and karst water According to temperature characteristics, tracer test results reveal atmospheric rainfall near Tian Shan Ao fault concentrated into the exposed surface of the karst cave, then flow to W-40-2rapidly.
     (9)Karst water system flow chart displays that the Xima river supplied karst water system under mining conditions.Automatic monitoring system of surface water discharge reveals:river leakage existed among stations2,3,4.Tracer tests confirmed this leakage occurred in the intersection between Xima river and F2fault, it flew along F2fault and concentrated into ZK614direction.when the intersection between Xima river and F2fault disturbed, water level fluctuations nearby ZK557indicate leakage existed in the intersection between Xima river and F1fault.
     (10)Use the heterogeneity of karst water system and flow system, we need to drain the Makeng mining by stages and partition, for the fault,karst and any other karst water system structure, put the drainage hole and the ground hole; For the Identified atmospheric precipitation, upper sandstone fissure water, lower granite fissure and Xima river,to block them, which can effectively improve the efficiency of drainage of the karst water in mining area.
     The characteristic of this article is featured in:(1) the instruction is the Groundwater system theory, on the whole analyzing Makeng mining area of karst water system, and selecting the boundaries of the karst aquifer system.(2) Extracting the characteristics of water system and flow system of the mining area from the multi-source information,which has revealed the relation of karst water system and the flow system.(3) Comprehensive utilizating new technology, new methods, such as the underground water level, water temperature automatic monitoring technology, the surface water automatic monitoring technology, water chemistry and high-precision tracer test to find out the supply condition of karst water system that from the external water.(4) Design the project of karst water control and prevention, based on the structural features of karst water system and recharge condition of the karst water system, made the project much effective.
引文
[1]白海波,缪协兴,冯梅梅.潞安矿区新构造及其控水作用的研究[J].采矿与安全工程学报,2006(12)
    [2]白恒恒.隧道地质超前预报方法的探讨和研究.铁道工程学报,2006.08
    [3]陈葆仁、洪再吉、汪福祈。地下水动态及其预测。北京:科学出版社,1988.
    [4]成春奇,张朱亚。临涣矿区地下水系统水质特征及环境同位素研究。矿井地质(1993)3:28-41
    [5]陈爱光,徐恒力。地下水系统与地下水系统分析讲义。1987
    [6]陈梦熊.环境水文地质学的最新发展与今后趋势[J].地质科技管理,1995(3)
    [7]曹剑锋,迟宝明,王文科等.专门水文地质学[M]。北京:科学出版社,2006
    [8]陈奇.矿山环境治理技术与治理模式研究[M].北京:中国矿业大学(北京),2009.
    [9]陈毓川,陶维屏.我国金属、非金属矿产资源及成矿规律[J].
    [10]长沙有色冶金设计院。凡口铅锌矿疏干介绍[J]。7-12
    [11]陈文俊,黄显强,宋怀则,董炳维。中国南方岩溶地下水[J]。地质学报。1981,1(2),149-160
    [12]曹新元,吕古贤,朱裕生.我国主要金属矿产资源及区域分布特点[J].资源.产业.2004(8).
    [13]陈彦美,陈植华,王涛。福建省某铁矿岩溶水疏干试验方案优化设计[J]。.金属矿山。2008,382:27-30
    [14]车用太,鱼金子.试论地下水位微动态信息及其开发前景[J]
    [15]陈植华.岩溶水系统泉流量系统分析—以山西郭庄泉为例[J].地球科学,1991(1)
    [16]柴之芳,祝汉民.微量元素化学概论[M].北京:原子能出版社.1994.
    [17]地质矿产部矿山水文地质工程地质回访组[M].岩溶充水矿山回访报告选集[M].北京:地质出版社,1986.
    [18]邓振平,周小红,邹胜章.在线监测仪在岩溶地下水示踪实验中的应用——广西临桂县罗锦地下水示踪试验[J].中国岩溶。2009,25(2):75-78
    [19]范高功。岩溶地下水系统研究—以渭北东部地下水为例[D]。西安科技大学高等学校教师在职攻读硕士学位论文。2007
    [20]福建省地质八队。福建省龙岩市马坑铁矿区西矿段详细勘探地质报告。1983年6月
    [21]樊京周,李化玉,谢拂晓,潘国营.模糊概率法在识别矿井突水水源中的应用[J].煤矿科技,2000(06)
    [22]方佩贤等.专门水文地质学[M].北京:地质出版社,1987
    [23]葛纯朴,康志强,赖树等.钦可控源音频大地电磁法(CSAMT)在复杂岩溶矿山水文地质勘探中的应用——以福建马坑铁矿为例[J].中国水运2007(10):83-85
    [24]郭纯青,方荣杰,于映华.中国南方岩溶地下河系形成演变的链式规律[J].桂林理工大学学报。2001,30(4):508-512
    [25]官恩太.河南省煤矿开采水害综合控制技术研究[M].北京:地质出版社,2006.
    [26]管恩太.郑州煤矿区水害防治规划研究[M].北京:地质出版社,2008.
    [27]郭芳,姜光辉,袁道先.南方岩溶区地下河主要离子浓度变化趋势分析[J].水资源保护,2008,24(1):16-19
    [28]郭广君,苗强,苏建勋.浅谈矿床地质条件对疏干井结构设计的影响[J].黑龙江水利科技。2002(3):83-85
    [29]巩浩波。地下水微动态对应力的响应关系研究[D]。吉林大学硕士学位论文。2009
    [30]桂和荣,孙本魁。“深部开采底板突水控制论”研究意义及核心内容[J].淮南工业学院学报。2008,
    [31]桂和荣,许光泉,宋晓梅.桃园煤矿矿井充水条件及充水水源识别[J].淮南职业技术学院学报,2003,(04)
    [32]桂和荣,陈陆望,彭子成.皖北矿区深层岩溶水微量元素主成分分析[J].煤田地质与勘探,2004,(06).
    [33]桂和荣,陈陆望.淮北煤田地下水微量元素贝叶斯多类线性判别分析[J].中国煤炭,2005,(05)
    [34]桂和荣.皖北矿区地下水水文地球化学特征及判别模式研究[D].中国科学技术大学,2005.
    [35]国家安全监察总局.煤矿防治水规定.2009年12月.
    [36]高建军,祝瑞勤,徐大宽。岩溶充水矿床帷幕注浆堵水技术研究[J].水文地质工程地质.2007(5).123-127.
    [37]郝爱兵,李亚民,郑跃军,徐旭.利用地下水位监测资料分析水文地质条件的实例研究——新疆奎屯河流域南洼地[J].水文地质工程地质,2008(4)
    [38]郝建鑫。马坑矿区溪马河渗漏研究[M].武汉:中国地质大学(武汉),2011
    [39]黄春鹏,黄树峰等.福建省金属矿床的构造空间分布模式[J].福建地质。2001,1](1),10-19
    [40]韩宝平,郑世书.煤矿开采诱发的水文地质效应研究.中国矿业大学学报.1994,23(3):70-76
    [41]韩冬梅,徐恒力,梁杏.北方岩溶大泉地下水系统的圈划:以太原盆地东西山地区为例[J].地球科学—中国地质大学学报.2006,31(6)
    [42韩行瑞,鲁荣安、李庆松等.岩溶水系统——山西岩溶大泉研究[M].北京:地质出版社,1993.
    [43]胡戈.综放开采断层活化导水机理研究[D].徐州:中国矿业大学,2008.
    [44]何师意,Michele L,章程.高精度地下水示踪技术及其应用——以毛村地下河流域为例.地球学报[J]。30(5):673-678
    [45]虎维岳.矿山水害防治理论与方法[M].北京:煤炭工业出版社,2005
    [46]姜本,刘明智。我国南方典型岩溶煤矿床涌水规律和防治水方向的探讨[J].煤炭学报。1982,1(2):70-76
    [47]吉淑华.大同矿区口泉沟南氢氧同位素研究在分析奥灰岩溶水补径排条件中的应用[J].中国煤田地质,2007,(01)
    [48]吕保民.矿井导水通道类型及其突水防治[J].山东煤炭科技.2008,10(2):8-9
    [49]刘白宙。焦作矿区地下水位动态变化特征研究[J]。
    [50]李栋臣.白庙煤矿主要含水层水化学特征及突水水源的识别[J].中溶.1995,14(4),295-304
    [51]李德荣,杨书安。试论不同力学性质的断裂构造的富水部位及富水性[J]。地质科学。1975,1(3):220-229
    [52]刘峰.矿井水害水源的水化学探测技术.煤田地质与勘探[J].2007,35(4),62-64
    [53]李金凯,周万芳.我国岩溶煤矿床的突水及防治[J].1988年10月,7(4),340-343
    [54]李世峰,金瞰昆,刘素娟。矿井地质与矿井水文地质[M]。徐州:中国矿业大学出版社,2009。
    [55]林岚,迟宝明,施枫芝,王鹏.大水矿床疏干排水对区域水资源的影响研究[J].灌溉排水学报,2006(12)
    [56]黎良杰,殷有泉.评价矿井突水危险性的关键层方法[J].力学与实践,1998(20)
    [57]刘启仁,林蓬琪,余霈.全国岩溶充水矿山水文地质回访调查述评[M].水文地质工程地质,1979(3).
    [58]李术才,李树忱,张庆松等.岩溶裂隙水与不良地质情况超前预报研究[J]。2007.02.
    [59]兰善敏,吴明华.当前煤矿安全监察中存在问题的探讨[J].《煤矿安全》2004第12期
    [60]赖树钦.微量元素在福建马坑铁矿崎濑泉形成条件识别中的应用[J].中国岩溶.2008
    [61]梁杏.盆地地下水流系统模式分析及其应用[D].中国地质大学博士学位论文.2011
    [62]刘小松,基于GIS的东滩煤矿顶板突水预测预报[J].河北建筑科技报.2002,19(3),66-68
    [63]缪协兴,浦海,白海波等.隔水关键层原理及其在保水采煤中的应用研究[J].中国矿业大学学报,2008(1)
    [64]李铎等.华北煤田排水供水环保结合优化管理[M].北京:地质出版社,2005
    [65]刘志刚.概论岩溶或地质复杂隧道隧洞地质灾害超前预报技术[J].隧道/地下工程,2003.02
    [66]毛景文,谢桂青等.华南地区中生代主要金属矿床时空分布规律和成矿规律。高校地质学报.2008,14(4),510-526
    [67]孟良义.金属矿床带状分布形成的主要因素[J]..科学通报,1994(9)
    [68]卢耀如.中国南方喀斯特发育基本规律的初步研究.地质学报.1965,45(1):108-129
    [69]南晋武,郝美钧.北沼河铁矿床前期疏干放水状况[J].。金属矿山。2002,311:25-27
    [70]欧阳仕元。凡口矿区岩溶塌陷作用的危害及防治[J].。广东地质。2000,15(2):45-52
    [71]沈继方,陈植华.矿床水文地质学[M].北京:中国地质大学出版社,1988
    [72]沈继方,于青春,胡章喜.矿床水文地质学[M].中国地质大学出版社。1992(10).
    [73]宋叔和.中国一些主要金属矿床类型及其时空分布规律问题.矿床地质[J]..1991,10(1)
    [74]孙文斌.断层对底板突水的作用影响研究[D].泰安:山东科技大学硕士学位论文.2006
    [75]隋志龙,李德威,黄春霞。断裂构造的遥感研究方法综述[J]。地理学与国土研究。2002(3):34-37
    [76]唐依民。矿区地下水系统及其特征分析[J].湖南地质。1996,15(2):93-97
    [77]唐依民。地下水系统稳定性判断研究[J].湘潭矿业学院学报。1993,8(3):31-36
    [78]田竹君,谷圆珠.地下水位微动态资料的分析与处理[J].地震地质.1985,7(1):51-59
    [79]汀成民,贾化周,殷积涛等。地下水微动态研究在我国的进展.[J].
    [80]王成绪,王红梅.煤矿防治水理论与实践的思考[J].煤田地质与勘探,2001(8)
    [81]王大纯,张人权,史毅虹等。水文地质学基础[M].北京:地质出版社,1995
    [82]王大纯,张人权,史毅虹等。水文地质学基础[M].北京:地质出版社,1986
    [83]王辉等.断层富水性的结构分析[J].水文地质与工程地质,2000(3):12-15
    [84]王宏斌,刘伯主矿井水害防治技术[J].。北京:煤炭工业出版社,2007
    [85]王洪勇,张继奎,李志辉。大隧道红外辐射测温超前预报含水体方法研究与应用实例分析[J].物探化探计算技术,2003(2)。
    [86]王经明,董书宁等.采矿对断层的扰动及水文地质效应[J].煤炭学报,1997(8)
    [87]武强,黄晓玲等.评价煤层顶板涌(突)水条件的“三图-双预测法”[J].煤炭学报,2000(12)
    [88]王心义,李世峰,许光泉等。专门水文地质学[M]。徐州:中国矿业大学出版社,2011。
    [89]王心义,单智勇等.岩溶裂隙型矿区水害防治技术及水资源综合利用[M]..北京:煤炭工业出版社,2008
    [90]魏永强,梁化强,任印国,刘伟.神经网络在判别煤矿突水水源中的应用[J].江苏地质,2004,(01)
    [91]仵彦卿,李俊亭。地下水动态研究现状与展望[J].西安地质学院学报.1992,14(4):58-64
    [92]王若,王妙月.可控源音频大地电磁数据的反演方法[J].地球物理学进展.2003,18(2):197-202
    [93]王永余,邓秀芬。对凡口矿矿床疏干工程的评价[J].。勘察科学技术。1986(3):10-14
    [94]吴章棍。对矿区地下水动态观测工作的一些认识[J]。水文地质工程地质,1981(3)。
    [95]吴振岭,白喜庆。峰峰煤矿区岩溶地下水流场演化规律[J].地下水.2009,31(1):23-27
    [96]薛虎,梁士奎.福建马坑铁矿床的构造研究[J].中国地质科学南京地质矿产研究所所刊,1982,3(2):30-49
    [97]肖江,唐依民,张焕英。矿区地下水系统演化混沌特性的Lyapunov指数判别[J].。煤炭科学技术。2005,
    [98]徐恒力。地下水系统的进化。水文地质工程地质。1992,19(1):58-60
    [99]徐恒力、高云福、陈植华等。山西介休县岩溶水系统及孔隙水系统研究报告。1989.
    [100]徐建国,冯增强。矿井防治水综合技术[M].。徐州:中国矿业大学出版社,2007
    [101]徐京苑,周贵斌。赞比亚谦比西铜矿水文地质条件和疏干方案研究[J].工程地质学报.2000,8(2):180-185
    [102]余国光.水文地质概念模型及其流场分析方法[J]..长春地质学院学报(水文地质工程地质专辑),1986.16:196~205.
    [103]余霈.矿区水文地质工程地质工作要更好地为矿产资源开发服务[J]..中国地质,1986(11)
    [104]杨立铮。中国南方岩溶水化学的某些特征[J].。成都地质学院院报。1989,16(1):93-101
    [105]杨立铮。中国南方地下河分布特征[J].。中国岩溶。1985(1):18-26
    [106]杨平恒,罗鉴银,彭稳等。在线技术在岩溶地下水示踪试验中的应用——以青木关地下河系统岩口落水洞至姜家泉段为例[J].。中国岩溶。2008,27(3):215-220
    [107]杨武洋,王文祥,智建水等.华北煤矿地下导水通道性质的研究[J]..煤炭学报2002(2)
    [108]袁真秀,王洪勇。在圆梁山隧道高压富水区应用的地质超前预报技术[J].。现代隧道技术,2003.10。
    [109]邹成杰。岩溶地区地下水位动态分析[J]。中国岩溶,1995年9月。
    [110]郑纲,门玉明.庞西岐东庞矿9103.工作面底板突水前兆实时监测技术[J].煤炭科学技 术.2004,32(3),4-8
    [111]张慧,郑金龙.福建马坑铁矿主要含水层水化学特征与突水水源的识别[J].有色金属,2010(3)
    [112]郑金龙.马坑矿区地下水供排结合方案研究[M].武汉:中国地质大学(武汉),2011,
    [112]张立海,张业成.中国煤矿突水灾害特点与发生条件[J].中国矿业.2008,17(2),44-46
    [113]周瑞光,成彬芳,叶贵钧,武强。断层破碎带突水的时效特性研究[J]。工程地质学报。2000,8(4):411415
    [114]张人权,梁杏,靳孟贵,周爱国,孙蓉琳.当代水文地质学发展趋势与对策[J]..水文地质与工程地质,2005(5)
    [115]张人权,梁杏,靳孟贵等。水文地质学基础[J].北京:地质出版社,2011
    [116]张人权,梁杏.构造定量分析在岩溶水研究中的应用[J].地质科技情报,1998(12)
    [117]张人权,王恒纯,许绍倬.水文地质研究中信息的提取与组织[J].水文地质工程地质,1979(2).
    [118]张人权,王恒纯,徐恒力,陈植华等。山西龙子祠泉及郭庄泉岩溶水系统研究报告。1988
    [119]赵铁锤主编.华北地区奥灰水综合防治技术[M].北京:煤炭工业出版社,2006.
    [120]张文泉.矿井(底板)突水灾害的动态机理及综合判测和预报软件开发研究[D].山东科技大学博士学位论文,2004
    [121]周笑绿,杨国勇,郑世书.东滩3煤顶板突水的影响因素[J].采矿与安全工程学报,2006(9)
    [122]张许良,张子戌,.彭苏萍.数量化理论在矿井突(涌)水水源判别中的应用[J].中国矿业大学学报,2003,(03)
    [123]张云峰,燕和平:《煤矿安全实践中遇到问题的思考》[J].《内蒙古煤炭经济》2003增刊
    [124]郑玉辉.裂隙岩体注浆液与注浆技术研究[D]。吉林:吉林大学博士学位论文,2005
    [125]张艳,祖树正,郭东欣。流场分析法在矿区水文地质工作中的应用[J]。世界地质,1999年12月。
    [126]周彦章.山东夏甸金矿床矿井涌水机理构造控制模式研究[D].长春:吉林大学,2007年.
    [127]周彦章,迟宝明,刘中培.山东夏甸金矿床充水机理构造控制模式[J].吉林大学学报(地球科学版)。2008,38(2):255-260
    [128]赵永贵,国内外隧道超前预报技术评析与推介[J]。地球物理学进展,2007.08。
    [129]赵振华.微量元素地球化学原理[M].北京:科学出版社.1997.
    [131]Andy Davis, Danied Ashenberg,徐家英.美国蒙大拿州Butte、Berkeley矿坑的水文地球化学[J].世界地质,1990,(01).
    [132]A.Mosleh and R.A Bari.Probailistic Safety Assessment and Managenment. Springer-Verlag London and Limited 1988 Printed in Great Britain[C].A.R.Green New Techniques in Assessment Mine Risk,26Th Interational conferenceof Safety in Mine Resarch Institute, Vol3,1995.
    [133]Custodio E.2002.Aquifer overexpoitation:what does it mean[J]?Hydrogeology Journal, 10(2):254-277
    [134]Degan G.1986.Statistical theory of groundwater and transport:pore to laboratory, laboratory to formation, and formation to regional scale[J]. Water resource research,22(9):120-134
    [135]De Vries J,simmers I.2002.groundwater recharge:an overvie, f rocesses and challenges. [136]Hydrogeology journal.10(1):5-17 ed.).New Jersey:prentice Hall
    [137]Engelen G B,Kloosterman F H.1996.Hydrological systems analysis:methods and application.dordrecht:Kluwer AcademicPubulisher
    [138]Eric E.Hiatta,*,Kurt Kyserb,l,Robert W.Dalrympleb,2. Relationships among sedimentology, stratigraphy, and diagenesis in the Proterozoic Thelon Basin, Nunavut Canada implications for paleoaquifers and sedimentary-hosted mineral deposits [J] Journal of Geochemical Exploration,2003,80:221-240.
    [139]Fitter c w.2001.applied hydrogeology(4th ed.). upper saddle river, new Jersey: prentice-Hall Inc.
    [139]Gelhar L W.1986. Stochastic subsurface hydrology from theory to application[J]. Water Resource Research,22(9):135-145.
    [140]Goldscheider N., M eiman J., P ronk M., et al. T racer tests in karst hydrogeo logy and speleology [J]. International Journal ofSpeleo logy,2008,37 (1):27-40.
    [141]Jiang X W, Wan L, Wang X S et al.2009. Effect of exponebtial decay in hydraulic conductivity with depth on regional groundwater flow[J]. Geophysical research letters, 36(24):124402
    [142]Kalf F R P, woodly D R.2005. Applicability and methodology of determining sustainable yield in ground water systems. Hydrogeology Journal,13(l):295-312.
    [143]Matsumoto, N. regression analysis for anomalous changes of groundwater level due to earthquarkes [J].geophys,1996,37:135-195
    [144]M.C.Moncura,C.J.Ptaceka,b,*,D.W.Blowesa,J.L.Jambor,ca. Spatial variations in water composition at a northern Canadian lake impacketed by mine drainige [J].Applied Geochemistry,2006,21:1799-1817.
    [145]M.Hobzova,P.Jakes,M.Mihaljvi.Major element geochemistry of recent sediments from the Flaje basin (Czech Republic) [J].Applied Geochemistry.2001,16:271-279
    [146]NICO G.2007. Methods in karst hydrogeology[M], London:Taylor& Francis Group.
    [147]R. Malservisi, C. Gans, K. P. Furlong. Numerical modeling of strike-slip creeping faults and implications for the Hayward fault, California [J]. Teconophysics,2003,361:121-137
    [148]Roger B.Herbert Jr.*.Seasonal variations in the composition of mine drainage-contaminated groundwater in Dalarna, Sweden [J] Journal of Geochemical Exploration,2006,90:197-214.
    [149]Roeloffs, E.A.,S.S.Burford.hydrologic effects on water level changes associated episodic fault
    [150]Roeloffs, E.A.Poroelastic techniques in the study of earthquake-related hydrologic phenomena[J].Adv.geophys,1996,37:135-195
    [151]Telix Redmil and Tom Anderson.Towards System Safety Proceedings of theSeventh safety Critical Sysetm Symposium,Huntingdon,UK.1999 creep near parkfield, California[J] Journal of Geophysical research,1989,94(B9):12387-12402
    [152]Toth j.2009. Gravitational system of groundwater:theory, evaluation, utilization[M]. New york:Cambridge University press,297.
    [153]Wang Y X et al. Proceedings of the International symposium on Hydrogeology and Environment, Wuhan[M]. Beijing:China Environmental Science Press,372-377.
    [154]Sophoclenous M.2000. from safe yeiled to sustainable development of water resources-the Kansas experience[J].journal of hydrology,235:27-43
    [155]Zekai Zen. Aquifer test analysis in fractured rocks with linear flow pattern[J]. Groundwater, 1986,24 (1):72-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700