用户名: 密码: 验证码:
修饰电极检测植物油过氧化值的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题以植物油过氧化值为检测指标,采用生物及化学修饰法分别制备两类电极,研究它们在有机相介质中的电化学行为,探讨反应机理及电极反应过程,确定最佳的技术参数,以构建良好的催化反应微环境及获得较高的电子传递速率,使其能够满足植物油检测的实际需要。同时将研究确定的方法应用到微小电极上,开发能够快速、准确定性、定量的植物油过氧化值检测技术及设备。主要研究内容如下:
     1.采用溶胶-凝胶法构建的双层膜结构HRP酶电极,在有机相介质中能够对过氧化月桂酰产生显著地还原电流响应,作为电子介体的亚铁氰化钾能够有效的在HRP酶与电极表面传递电子,增强还原电流响应;随着过氧化月桂酰添加量的增加,HRP酶电极产生的还原电流逐渐增强,氧化电流逐渐减弱:通过对还原峰电流与扫描速度间的关系研究,证明当扫描速度较低时HRP酶电极以传质过程控制为主,即通过HRP酶传递到电极表面发生还原反应产生还原电流。当扫描速度较高时,电极的传质过程控制转弱,逐渐转为表面过程控制,此时HRP酶电极的氧化还原反应与电子介体——亚铁氰化钾在电极表面的氧化还原有关;采用计时电流法根据不同浓度的过氧化月桂酰在HRP酶电极上的催化还原电流,建立其与过氧化物浓度间的校正曲线,并根据Lineweaver-Burk方程,确定该体系下HRP酶的表观米氏常数Km。
     2.考察了碘离子与壳聚糖在石墨电极表面的电极反应过程属吸附溶出伏安过程,即碘离子与质子化的壳聚糖结合,生成的新物质在电极表面得到富集,通过由负向正的电位扫描,电极表面的碘离子失去电子,被氧化成游离的碘单质,无法被壳聚糖吸附,进而从电极表面脱附出来,同时产生氧化峰电流;最佳的碘离子测定条件为:以0.1mol/L柠檬酸-柠檬酸钠缓冲液(pH5.0)为底液,壳聚糖浓度200μg/mL;吸附溶出参数:富集电位OV,富集时间180s,而静止时间、静止电位对峰电流的影响较小,这里采用的是静止电位OV,静止时间25s;微分脉冲伏安法扫描参数:开始电位0.1V,终止电位1.5V,电位增量0.004V,振幅0.05V,脉冲宽度0.1s,脉冲周期0.2s;在此条件下,石墨电极产生的氧化峰电流与碘离子浓度在0.07-0.49g/L内,呈良好的线性相关关系(R=0.9990)。该方法具有一定的抗干扰能力,表现出良好的重现性及稳定性。使用后的电极经过一定的再生活化步骤即可重复使用。
     3.阐述了壳聚糖修饰丝网印刷电极催化反应机理,确定了采用微分脉冲溶出伏安法测定植物油过氧化值的条件。由于质子化的壳聚糖只能吸附碘离子,因此壳聚糖修饰电极可以用来确定碘离子的氧化过程。结果表明,峰电流值随植物油过氧化值的升高而降低,且在0.01-3.21μg/mL范围内呈良好的相关关系(R=0.9914)。此外,将采用壳聚糖修饰电极测定得到的过氧化值与标准碘量法的测定结果进行初步比对,结果基本一致。
     4.课题组研究设计一种检测过氧化值的新方法,即采用壳聚糖修饰丝网印刷电极经微分脉冲溶出伏安法扫描,来取代碘量法中人工滴定确定碘离子浓度变化的步骤。本研究采用上述方法对40种市售植物油的过氧化值进行测定,并与国标法(GB/T5538-2005)的测定结果进行比对,综合偏离度与En数两项指标进行评价,结果表明:两种方法在定性判定方面结果一致,而在定量判断方面有33个结果满意,整体满意率为82.5%,其中0.031~0.090meq/kg及0.096~0.150meq/kg区间内的结果更为准确,满意率分别为82.35%及93.33%。研究表明,与国标法相比,新方法在操作性、安全性等方面存在一定优势,在一定过氧化值范围内,结果准确性得到认可。
This research choosed peroxide value of vegetable oil as detection index, used the biologic al and chemical modification method to make two kinds of electrodes respectively, studied their electrochemical behavior in organic phase medium, discussed the reaction mechanism and the electrod e reaction process, and determined the best technical parameters. By these parameters, a good catalytic r eaction micro environment was built to meet the practical requirement of vegetable oil testing. In the me antime. this method was applied to the micro-electrodes (screen-printed electrodes), and detection tech nology and equipment which can quantify the vegetable oil quickly and accurately were developed. It s main contents are as follows:
     1. The HRP enzyme electrode with a double-film structure constructed by using the Sol-Gel method can generate a significant reduction current response to lauroyl peroxide in an organic phase medium, and potassium ferrocyanide as the electron mediator can effectively transfer electrons between the HRP enzyme and the electrode surface, and enhance reduction current responses. As the added amount of lauroyl peroxide increased, the reduction current generated by the HRP enzyme electrode gradually increased, and the oxidation current gradually weakened; Through exploration of the relationship between the reduction peak current and the scanning speed, it is demonstrated that when the scanning speed is low, the HRP enzyme electrode mainly involves the mass transfer process control, that is, the reduction reaction is carried out by transfer of the HRP enzyme onto the electrode surface to generate reduction current. When the scanning speed is high, the mass transfer process control of the electrode weakens and is gradually turned into the surface process control, in which the oxidation-reduction reaction of the HRP enzyme electrode is relevant to the oxidation-reduction of the electron mediator potassium ferrocyanide on the electrode surface. The catalytic reduction current of lauroyl peroxide of different concentrations on the HRP enzyme electrode was measured by chronoamperometry, a calibration curve between the catalytic reduction current and the concentration of peroxide was established accordingly, and the apparent Michaelis constant Km of the HRP enzyme in this system is determined according to Lineweaver-Burk equation.
     2. The research examined that the electrode reaction process of iodine ion and chitosan on the surface of the graphite electrode belongs to the adsorptive stripping voltammetric process. For detailed process, the new material from iodine ions combine with protonized chitosan enriched on the electrode surface. Through the potential scan from negative to positive, due to lose electrons on the surface of the electrode, iodine ions is oxidized to the free iodine elemental which cannot be chitosan adsorption, and then stripping out from the electrode surface, at the same time produce the oxidation peak current. The best determination of iodine ion conditions are:0.1mol/L-citric acid sodium citrate buffer (pH5.0) as the base solution, chitosan concentration is200mu g/mL; Adsorptive stripping parameters:the enriched potential0v, the enriched time180s, the static potential0v,the static time25s; The scanning parameters of differential pulse voltammetry:beginning potential0.1V, terminate potential1.5V, potential increment0.004V, amplitude0.05V, pulse width0.1s, pulse cycle0.2s; In this condition, the iodine ion concentration producing by the oxidation peak current of graphite electrode is in range of0.07~0.49g/L, and show good linear correlation (R=0.9990). This method has a certain anti-interference ability, and show good reproducibility and stability. The used electrodes can be repeated use by some renewable activation steps.
     3. In the present study, mechanism of the chitosan modified screen-printed electrode catalytic reac tion was described and experimental conditions were defined for the determination of peroxide value i n vegetable oil using differential pulse stripping voltammetry. Due to the fact that protonated chitosan c an absorb only iodide ion, chitosan modified electrode was applied to determine the oxidation process o f iodide. Results showed that the peak current value decreased with increasing peroxide value in the veg etable oil and reveled a good correlation (R=0.9914) with the peroxide in the concentration range of0.01~3.2μg/mL. Moreover, the peroxide value measured in the vegetable oil using chitosan modified elect rode was in agreement with the results obtained using standard iodometric method.
     4. A New method in the determination of peroxide value was developed, namely by differential pulse anodic stripping voltammetry and using chitosan modified screen printing electrode scan vegetable oil samples, instead of titration to determine changes of the iodine ion concentration. In this research, the proposed method determine peroxide value of40saled vegetable oil samples, and compare with the national standard method (GB/T5538-2005). Through evaluate comprehensive deviation degree and En value to show that in the qualitative evaluation the results all satisfied. In respect of quantitative judgment have33satisfied result, the overall satisfaction rate was82.5%.Especially in the range of0.031~0.090meq/kg and0.096-0.150meq/kg the result is more accurate and satisfaction rate can reach82.35%and93.33%. This research showed that compared with the national standard method, the new method in operational, security, etc. has a certain advantage, the result accuracy was recognized within the limits of certain peroxide value range.
引文
[1]国家粮油信息中心.油脂油料市场供需状况月报.2010年3月10日,第120期.
    [2]周振亚,李建平,张晴,等.中国植物油产业发展现状、问题及对策研究[J].中国农学通报,2011,27(32):92~97.
    [3]中华人民共和国国家统计局.中国统计年鉴2010.北京:中国统计出版社,2010.
    [4]国家质量监督检验检疫总局.食用植物油产品质量国家监督抽查结果.2010年第168号.
    [5]国家质量监督检验检疫总局.2009年第四批产品质量国家监督抽查公告.2010年第10号.
    [6]李书国.我国食用油质量安全现状、存在问题及对策研究[J].粮食与油脂,2005(12):3-6.
    [7]日本石油学会.油化学辞典脂質·界面活性剂,日本:丸善,2004(94):209.
    [8]市川和昭.縂说油脂劣化とその分析抨俩[J].名古屋文理大学纪要,2009(9):101-108.
    [9]Li H., Voort F R., Ismail A A., et al. Determination of Peroxide Value by Fourier Transform Near-Infrared Spectroscopy[J]. Journal of the American Oil Chemists'Society,2000(77):137-142.
    [10]卢艳杰,龚院生,张连富.油脂检测技术.北京:化学工业出版社,2004(01):134-154.
    [13]李书国,陈辉,李雪梅,等Nafion/MB/HRP酶电极的制备及其在测定植物油过氧化值中的应用[J].中国粮油学报,2009(2):106~112.
    [14]孙亚真,巩卫东,张淑霞,等.自动电位滴定法测定食用植物油的过氧化值.农业机械[J],2011(20):75-78.
    [15]韩玉莲.油脂氧化常用检测方法及其评价[J].中国食品卫生,1994(1):57-60.
    [16]Dobermans M C., Velasco J. Analysis of lipid hydroperoxides[J]. European Journal of Lipid Science and Technology,2002 (104):420-428.
    [17]鲍丹青,毕艳兰,邓德文,等.利用近红外光谱技术快速测定大豆油的过氧化值[J].中国粮油学报,2008(6):206-209.
    [18]于修烛,张静亚,李清华,等.基于近红外光谱的食用油酸价和过氧化值自动化检测[J].农业机械学报,2012(9):150-154.
    [19]周令国,肖琳,祝义伟,等.近红外光谱技术快速检测腊肉酸价和过氧化值[J].肉类研究,2012(3):30~33.
    [20]Li S G., Zhang H., Xue W T. A novel method for the determination of acid value of vegetable oils[J]. European Journal of Lipid Science and Technology,2007,109(11):1088-1094.
    [21]Li S G., Zhang H., Xue W T. Voltammetric behavior and determination of tocopherol in vegetable oils at a polypyrrole modified electrode[J]. Electro analysis,2006,18(23):2337-2342.
    [22]李书国,薛文通,陈辉,等.电分析法测定植物油中抗氧化剂研究[J].粮食与油脂,2009(06):39~43.
    [23]尹淑涛.修饰电极的制备及其在检测植物油抗氧化剂中的应用[硕士学位论文].中国农业大学,2009.
    [24]张春娥,薛文通,王玮,等.采用聚毗咯膜修饰电极检测植物油中亚油酸[J].食品科技,2011,36(2):273-279.
    [25]邓鹏,薛文通,宋康,等.循环伏安法测定油脂中过氧化物含量的研究[J].中国食物与营养,2008(04):26~29.
    [26]Saad B., Wai W T., Lim B P. Flow injection determination of peroxide value in edible oils using triiodide detector[J]. Analytica Chemistry,2006(565):261-270.
    [27]Zaks A., Klibanov A M. Enzymatic catalysis in organic mediaat 100 degrees C[J]. Science, 1984(224):1249-1251.
    [28]Fitzpatrick P A., Steinmetz A C U., Ringe D., et al. Enzyme crystal structure in a neat organic solvent[J]. Proceedings of the National Academy of Sciences of the USA,1993(90):8653-8657.
    [29]Schmitke J L., Wescott C R., Klibanov A M. The mechanistic dissection of the plunge in enzymatic activity upon transition from water to anhydrous solvents [J]. Journal of the American Chemical Society, 1996(118):3360-3365.
    [30]Burke P A., Griffin R G., Klibanov A M. Solid-state NMR assessment of enzyme active center structure under non-aqueous condition[J]. Journal of Biological Chemistry,1992(267):20057-20064.
    [31]Affleck R., Haynes C A., Clark D S. Solvent dielectric effects on protein dynamics[J]. Proceedings of the National Academy of Sciences,1992(89):5167-5170.
    [32]Schmitke J L., Wescott C R., Klibanov A M. The mechanistic dissection of the plunge in enzymatic activity upontransition from water to anhydrous solvents[J]. Journal ofthe American Chemical Society, 1996(118):3360-3365.
    [33]Wang Y., Guo Y Z., Zhu G Y., et al. Cryoimmobilized enzyme for biosensor construction[J]. Sensors and Actuators B,1996(31):193-196.
    [34]Burke P A., Griffin R G., Klibanov A M. Solid-State nuclear magnetic resonance investigation of solvent dependence of tyrosyl ring motion in an enzyme[J]. Biotechnology and Bioengineering, 1993(42):87-94.
    [35]Cao S G., Feng Y., Liu Z B., et al. Lipase catalysis in organic solvents[J]. Applied Biochemistry and Biotechnology,1992(32):7-13.
    [36]Mannino S., Cosio M S. Determination of peroxidevalue in vegetable oils by an organic-phase enzyme electrode[J]. Analytical Letters,1994,27(2):299-308.
    [37]Garcia-Moreno E., Ruiz M A., Barbas C., et al. Determination of organic peroxide in reversed micelles with a poly-N -methylpyrrole horseradish peroxidase amperometric biosensor[J]. nalytica Chemica Acta,2001(448):9-17.
    [38]刘慧宏,万永清,陈显堂,等.固定化辣根过氧化物酶在有机溶剂/水混合溶液中的电化学.物理化学学报[J],2006(22):868-872.
    [39]彭月敏,王启会,刘慧宏.固定化肌红蛋白的类酶活性电化学研究[J].化学研究与应用,2008(20):740-744.
    [40]Dong S J.; Gu Y. Organic phase enzyme electrode operated in water-free solvents[J]. Analytica Chemistry,1994(66):3895-3899.
    [41]Dong S J., Gu Y. An organic -phase enzyme electrode based on an apparent direct elevtron transfer between agraphite electrode and immobilized horseradish peroxide[J]. Journal of the Chemical Society, Chemical Communications,1995(4):483-484.
    [42]Dong S J., Gu Y. Orangic phase enzyme electrodes based on organhydrogel[J]. Analytical Chemistry,1997(69):1904-1908.
    [43]Zhang J Z., Wang B Q., Cheng G. J., et al. Amperometric quantification of polar organic solvents based on a tyrosinase biosensor[J]. Analytical Chemistry,2000(72):3455-3460.
    [44]Li J., Tan S N., Oh J T. Silica sol-gel immobilized amperometric enzyme electrode for peroxide de termination in the organic phase[J]. Journal of Electroanalytical Chemistry,1998(448):69-77.
    [45]Chut S L., Tan S N. Reagent less amperometric determination of hydrogen peroxide by silica sol-gel modified biosensor[J]. Analyst,1997(122):1431-1434.
    [46]Li T., Yao Z H., Ding L. Development of an amperometric biosensor based on glucose oxidase immobilized through silica sol-gel film onto Prussian Blue modified electrode[J]. Sensors and Actuators B; 2004(101):155-160.
    [47]Chen X., Jia J., Dong S J. Organically modified sol -gel/chitosan composite based glucose biosensor[J]. Electroanalysis,2003(15):608-612.
    [50]Zeng B., Ding X., Pan D., et al. Accumulation and stripping behavior of silver ions at DL-dithiothreitol self-assembled monolayer modified gold electrodes[J]. Talanta,2003(59):501-507.
    [51]杨柳.几种新型电容生物传感器及复杂样品溶出伏安分析技术的研究与应用[博士学位论文].湖南大学,2005.
    [52]张海丽,叶永康,徐斌.酸性铬蓝K固体石蜡碳糊修饰电极溶出伏安法测定痕量铅[J].分析化学,2000(2):194-196.
    [53]Verma N., Behera B C., Sonone A., et al. Lipid peroxidation and tyrosinase inhibition by lichen symbionts grown in vitro[J]. African Journal Biochemistry Research,2008(2):225-231.
    [54]Blair I. A. Lipid hydroperoxide-mediated DNA damage[J]. Experimental Gerontology,2001(36): 1473-1481.
    [55]Kawai Y., Fujii H., Kato Y, et al. Esterified lipid hydroperoxide-derived modification of protein: formation of a carboxyalkylamide-type lysine adduct in human atherosclerotic lesions [J]. Biochemical and Biophysical Research Communications,2004,313,271-276.
    [56]应太林,王朝瑾,刘海鹰Nafion膜固定的亚甲基蓝为介体的生物传感器[J].生物化学与生物物理进展,J997(3):254~258.
    [57J马洁,武海,朱亚琦.以新亚甲基蓝为介体的过氧化氢传感器的电化学行为[J].化学通报, 2006(12):916-920.
    [58]邢克礼,刘延范,尹立志.LOD酶电极的临床应用研究[J].化学传感器,2004(4):48~51.
    [59]阳明辉,杨云慧,沈国励,等.基于尼古丁对胆碱氧化酶的抑制作用测定尼古丁的研究[J].分析化学,2005(4):479-482.
    [60]Dai H., Wu X., Xu H., et al. Chen. A highly performing electrochemiluminesce-nt biosensor for glucose based on a polyelectrolyte-chitosan modified electrode[J]. Electrochimica Acta,2009(19): 4582-4586.
    [61]刘梦琴,蒋健晖,冯泳兰,等.基于镀铂碳糊电极电聚酪胺和过氧化聚吡咯的葡萄糖传感器研究[J].分析化学,2007(10):1435~1438.
    [62]黄剑锋.溶胶-凝胶原理与技术.北京:化学工业出版社,2005.
    [63]刘俊女,崔莉凤.溶胶-凝胶固定酪氨酸酶电极的研究[J].化学传感器,2003(4):53~60.
    [64]李彤,姚子华.普鲁士蓝修饰电极结合硅溶胶-凝胶技术制备高灵敏葡萄糖传感器[J].分析化学,2004(2):237~240.
    [65]Bard A J电化学方法原理和应用.北京:化学工业出版社,2008.
    [66]高颖,邬冰.电化学基础.北京:化学工业出版社,2004.
    [67]石淑娟.基于两类新型复合材料的电化学传感器研究[硕士学位论文].西北大学,2010.
    [68]中华人民共和国国家技术监督局.GB/T 5538-2005.中华人民共和国国家标准——动植物油脂过氧化物测定.
    [69]方正法,邓文芳,孟越,等.非汞电极溶出伏安法及其生物分析应用新进展[J].化学传感器,2009(4):18~24.
    [71]牛凌梅.自组装膜电极的研究及应用[硕士学位论文].西南大学,2006.
    [72]Economou A. Bismuth-film electrodes:recent developments and potentialities for electro analysis[J]. Trends in Analytical Chemistry,2005(24):334-340.
    [73]Herzog G, Arrigan D W M. Determination of trace metals by underpotential deposition- stripping voltammetry at solid electrodes[J]. Trends in Analytical Chemistry,2005(24):208-217.
    [74]唐平,王娟,曾百肇.核黄素的微分脉冲溶出伏安分析[J].分析科学学报,2003(4):309-312.
    [75]张雁宏,郭子英,樊月琴.铋膜电极阳极溶出伏安法测定血样中的锌[J].化学分析计量,2007(4):44-46.
    [76]王国顺等译著.电化学分析——溶出伏安法.北京:中国计量出版社,1988.
    [77]李启隆.有机药物分析与吸附伏安法[J].化学通报,1994(10):13-17.
    [78]姜宪尘,杜晓燕.吸附溶出伏安法在环境检测和药物分析中的应用与进展[J].化学传感器,2007(4):16-20.
    [79]Borowski A., Nowak K., Zarebski J. Application of a bismuth film electrode to the voltammetric determination of trace iron using a Fe(Ⅲ)-TEA-BrO3-catalytic systern[J]. Analytical and Bioanalytical Chemistry,2005(7):1691-1697.
    [80]Korolczuk M., Moroziewicz A., Grabarczyk M. Determination of subnanomolar concentrations of cobalt by adsorptive stripping vohammetryat a bismuth film electrode[J]. Analytical and Bioanalytical Chemistry,2005(382):1678-1682.
    [81]Cha K W., Park C H., Park S H. Simultaneous Determination of Trace Uranium(VI) and Zinc(II) by Adsorptive Cathodic Stripping Voltammetry with Aluminon Ligand[J]. Talanta,2000(6):983-989.
    [82]刘宁,宋俊峰.碳糊电极吸附溶出伏安法测定游离钙[J].分析化学,2005(9):1261-1264.
    [83]张海民,任守信.吸附溶出伏安法同时测定水中痕量Zn和Mn[J].内蒙古大学学报(自然科学版),2002(2):161-166.
    [84]Bourquer C L., Doguay M M., Gautreau Z M. The Determination of Reducible Pesticides by Adsorptive Stripping Voltammetry[J]. International Journal of Environmental Analytical Chemistry, 1987(3):187-197.
    [85]Guiberteau A., Galeana Diaz T., Salinas F. Indirectvoltammetric determination of carbaryl and carbofuranusing paaial least squares calibration[J]. Analytica Chimica Acta,1995(1):219-226.
    [86]邱萍,倪永年.杀菌剂福美双的电化学性质及线性扫描溶出伏安法测定[J].南昌大学学报(理科版),2007(2):171~173.
    [87]邱萍,倪永年.微分脉冲溶出伏安法结合化学计量学测定3种农药[J].南昌大学学报(理科版),2011(2):175~177.
    [88]El-Desoky H S., Ghoneim M M. Vohammetric behaviorand assay of the antibiotic drug cefazolin sodium in bulkform and pharmaceutical formulation at a mercury electrode[J]. Journal of pharmaceutical and biomedical analysis,2005(3):543-550.
    [89]Hammam E., Tawfik A., Ghoneim M M. Adsorptive stripping voltammetric quantification of the antipsychotic drugclozapine in bulk form pharmaceutical formulation and human serum at amercury electrode[J]. Journal of pharmaceutical and biomedical analysis,2004(1):145-156.
    [90]李淑贞.微分脉冲溶出伏安法结合化学计量学测定某些药物混合物[硕士学位论文].南昌大学,2008.
    [91]青木幸一,森田雅夫,崛内勉,等.微小電極を用ぃゐ電気化学测定法.日本:電子情辍通信学会,1998.
    [93]Zhou Z., Misler S. Amperometric detection of stimulus-induced quantal release of catecholamines from cultured superior cervical ganglion neurons[J]. Proceedings of the National Academy of Sciences of the USA,1995(92):6938-6942.
    [94]Cooper B R., Wightman R M., Jorgenson J W J. Chromatogr. B, Biomed. Appl.,1994(653):25-33.
    [95]X. Huang, W.T. Kok. Determination of sugars by capillary electrophoresis with electrochemical detection using cuprous oxide modified electrodes[J]. Journal of Chromatography A,1995(707):335.
    [96]Ye J., Baldwin R P. Determination of amino acids and peptides by capillary electrophoresis and electrochemical detection at a copper electrode[J]. Analytical Chemistry,1994(66):2669-2674.
    [97]Siddiqui A., Shelly D C. Amperostatic-potentiometric detection for micro high-performance liquid chromatography[J]. Journal of Chromatography A,1995(691):55.
    [98]刘韩凤,郭春景,叶永康,等.脂肪酶修饰丝网印刷电极测定三油酸甘油酯[J].分析测试学报,2012(6):680-685.
    [99]徐肖邢.亚甲基蓝为介体的丝网印刷双酶修饰电极测定葡萄糖[J].食品科学,2007(4):249-251.
    [100]李书国.修饰电极的制备及其在植物油品质分析检测中的应用[博士学位论文].中国农业大学,2007.
    [101]李荻.电化学原理.北京:航空航天大学出版社,2008,10.
    [102]袁玉亮.低密度脂蛋白胆固醇检测试剂盒方法学比对研究[J].检验医学与临床,2010(3):221-223.
    [103]王钦德,杨坚.食品试验设计与统计分析.北京:中国农业大学出版社.
    [104]汤绯,黄绣娟.测量不确定度评定及实例分析[J].环境科学与管理,2012(5):276-277.
    [105]中华人民共和国国家技术监督局.GB/T 15483-1999.中华人民共和国国家标准——试验室能力比对检验的开发与运作.
    [106]中华人民共和国国家技术监督局.GB/T 2716-2005.中华人民共和国国家标准——食用植物油卫生标准.
    [107]国家质量技术监督局.JJF1059-1999测量不确定度评定与表示.北京:中国计量出版社,2004.
    [108]国家计量局.JJF12-87刻度离心管、刻度试管、血糖管、消化管.
    [109]国家质量技术监督局.JJG196-1990常用玻璃量器检定规程.
    [110]刘立.量化分析测量不确定度指南.中国计最出版社,2003.
    [111]姚俊英,任守信,何会军.微分脉冲伏安法测定2,4-二硝基苯酚及其机理研究[J].内蒙古大学学报(自然科学版),2003(2):156-159.
    [112]黄中华,孙秀云,李燕,等.壳聚糖的吸附行为及其FTIR光谱研究[J].光谱学与光谱分析,2005(5):698-700.
    [113]宋伟,施文健,钟晓永,等.壳聚糖对持久性有机污染物吸附研究[J]功能材料,2005:1197-1201.
    [114]郭敏杰,刘振,李梅.壳聚糖吸附重金属离子的研究进展[J].化工环保,2004(4):262-265.
    [115]王爱勤,李洪启,俞贤达.甲壳胺与Zn(Ⅱ)的配位作用及其红外光谱[J].应用化学,1999(1):77.
    [116]陈盛,林曦,郑彬华.锌与甲壳胺络合物的制备[J].应用化学,1998(4):65.
    [117]丁纯梅,岳文瑾,苏云,等.壳聚糖与Cd(Ⅱ), Pb(Ⅱ), Ce(Ⅲ), Zr(Ⅳ)配合物的制备及光谱分析[J].光谱学与光谱分析,2007(6):1185~1187.
    [118]中华人民共和国国家技术监督局.GB/T 5538-1995.国家标准——油脂过氧化值测定.
    [119]王国顺,施清照,吕荣山.电化学分析——溶出伏安法.中国计最出版社,1988.
    [120]曾艳,王丽荣,李雅岚,等.壳聚糖修饰电极对溴、碘离子的测定[J].武汉化工学院学报,2005(3):7-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700