用户名: 密码: 验证码:
SERS活性底物的制备及在分析检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面增强拉曼光谱是一个强大的非破坏性和超灵敏的表征手段。由于在电化学、分析化学、生物物理学和医学等诸多领域潜在的应用,SERS底物的研究已引起越来越多的科学兴趣。然而,表面增强拉曼散射信号的稳定性、可重复性以及灵敏度容易受周围环境影响而发生改变。本论文主要探索制备高活性SERS底物,以及在有机化合物的定量分析和反应中间体的快速检测中的应用。此外,我们还认真研究了衬底和磁场对表面增强拉曼光谱的影响。具体内容如下:
     1.通过一个简单的原位氧化还原-金属置换反应,Au纳米粒子包覆在Ni微球的表面形成Au壳层结构,获得Ni/Au核壳微米粒子。然后,在1mol/L的HCl溶液腐蚀下,金属镍被溶解,形成Au空壳。我们用Au空壳作为SERS底物检测罗丹明6G,结果显示在浓度10-8mol/L时SERS峰仍然很强。我们还尝试用这种底物去检测四环素,当四环素的浓度低至0.1μg/L时,仍然有峰能被观察到;并在1595和1320cm-1这两峰处,有较好的峰强随浓度的线性响应。有可能用于聚酮化合物中的广谱抗生素,以及食品中的四环素的检测。
     2.苏丹Ⅳ是一种工业染料,其对人体有害却一直被使用。鉴于此,发展高灵敏度和快速检测苏丹Ⅳ的方法越来越重要。Au空壳/Cu片由于具有粒子间耦合和粒子与基底耦合两种协同作用,具有优于单独Au空壳的SERS效果。这种活性底物能被用于检测苏丹红Ⅳ。结果表明,苏丹红Ⅳ的浓度和SERS信号的强度在10-10-10-7g/L范围之间显示出三段线性区域,分别是:10-10-5*10-10,10-9-10-8和10-8-10-7g/L。在这个线性分析基础上,我们继续使用这个底物检测了辣椒样品中的苏丹红Ⅳ。结果显示,这份样品中苏丹红Ⅳ的浓度水平在~10-5g/kg。为了验证这个结果,采用液相色谱-质谱联用仪去检测样品,结果表明苏丹Ⅳ辣椒样品中的浓度是0.95*10-5g/kg,接近于由SERS方法计算的值。虽然SERS技术和气相-质谱联用技术所获得的结果接近,但单独的SERS技术进行定量分析的仍然有困难。这是由于“热点”效应的影响,SERS信号的可重复性一直难以控制,这是SERS技术用作定量分析的很大瓶颈。
     3.在室温条件下,以锌盐和氢氧化钾为原料制备似海胆状的ZnO纳米结构,然后通过光化学反应,将Ag纳米粒子沉积在上述的ZnO纳米结构上形成ZnO/Ag纳米复合结构。研究发现随着光化学反应时间从0.5h,2h到8h,Ag纳米粒子的大小从11nm,19nm增大至29nm。由于较高的比表面积和表面针尖结构,开放的形态,ZnO/Ag似海胆纳米复合结构被看成是一个良好的SERS底物。在灵敏度和重现性的检测中都获得了很好的结果。经过计算,ZnO/Ag纳米复合结构的增强因子分别是3*106(1360cm-1)和2.98*106(1575cm-1)。并且其相对标准偏差的最大值也在0.15以下。对于这种底物所表现出的好的SERS效果,我们认为是由ZnO和Ag之间的电子转移引起的局域电场,海胆状结构引起的“回波效应”,以及在ZnO枝和Ag纳米粒子之间高的纵横比所共同引起的。它是各种大分子检测和鉴定的理想平台。在这种底物的基础上,我们进一步构建了ZnO/Ag-Pd复合纳米结构,并让它同时作为SERS底物和铃木反应催化剂,在反应过程中用SERS技术检测铃木反应过程中的中间体。初步的实验数据表明铃木反应确实有中间体存在,对中间体的确定还需要理论计算的进一步表征和分析。
     4.磁性/金属复合材料在SERS领域有着广泛的应用,然而磁场因素对SERS可能带来的影响却一直被忽视。为了更好的制备SERS底物,磁场对SERS的影响有必要进行深入的研究。我们以Ni/Au磁性-贵金属核壳结构微米粒子开展了这项研究,随着Ni核磁性的增大,SERS信号出现了明显的减弱现象,并且磁性增强幅度和SERS信号减弱的强度之间存在一个良好的线性响应。为进一步验证该现象,Au空壳在不同磁场和非磁场的环境下进行了SERS效应检测,发现与在Ni/Au核壳粒子中观察到的现象一致。由于粒子之间可能存在的影响,也对单个粒子在磁场下进行了类似研究,发现磁场环境下SERS信号确实减弱了。这些研究确定磁场能减弱SERS效应。这个特殊现象的原因有两方面:一是磁场减弱了表面等离子体共振的强度,进而减弱了SERS效应。另一方面,理论计算的结果表明,磁场的存在会使得Au表面的电子被禁锢而不向探针分子转移,导致了SERS的减弱。
Surface enhanced-Raman scattering (SERS) as a powerful spectroscopy technique provides non-destructive and ultrasensitive characterization. Because of many potential applications in electrochemistry, analytical chemistry, biophysics and medicine and so on, the study of SERS substrates have elicited increasingly scientific and technological interests. Yet, the stability, repeatability and sensitivity of SERS signals are easily affected by surrounding environments. This dissertation presented here is focused on the fabrication of various active-SERS substrates, the application of quantitative detection of harmful compounds and rapid detection of intermediate compounds, and effect of magnetic fields on SERS. The main parts of the results are summarized below:
     1. Au nanoparticles (NPs) forming Au shell are coated on the surfaces of Ni microparticles (MPs) through a simple redox-transmetalation reaction, forming Ni/Au core-shell MPs. Then Au hollow spheres (HSs) are prepared by etching the Ni core in1mol/L HC1solution. Surface-enhanced Raman Scattering (SERS) spectroscopy signals of typical analytes such as rhodamine6G (R6G) are observed on micro-scale Au HSs, even though the concentration of the analyte is as low as10-8mol/L (R6G). The Au HSs are also applied to detect tetracycline (TC), and strong SERS signal is observed with the TC concentration of0.1μg/L. The quantitative analysis can be performed at1595and1320cm-1, and a good linear response is also obtained. This work provides a potential and unique technique to detect broad-spectrum polyketide antibiotic in future, and the detection of TC in foods and milk can also be performed using this SERS-based Au HSs substrate, which will benefit human health.
     2. The development of ultrasensitive and rapid methods for the detection of Sudan Ⅳ, a coloring agent for commercial applications including foodstuffs, is becoming increasingly important. This paper reports the result of an investigation on surface-enhanced Raman spectroscopy (SERS) based ultrasensitive detection of Sudan IV using Au hollow spheres (HSs) immobilized Cu foil substrates. The strong SERS effect resulting from the particle-particle and particle-substrate plasmonic coupling is optimized by manipulating the process of preparation and forming a stable arrangement. The correlation between the intensity of SERS diagnostic band and Sudan Ⅳ concentrations is shown to exhibit three linear regions, which are applied to the determination of Sudan Ⅳ in chili samples. The SERS analysis reveals the existence of Sudan Ⅳ in chili samples at the magnitude level of10-5g/kg, while the result from liquid chromatography-mass spectrometer (LC-MS) shows that the concentration of Sudan Ⅳ in chili samples is0.95*10-5g/kg, close to the value calculated by SERS. However, although the two results are close, the problems placed at the quantitative study of SERS technique still exist. Sensitivity is still in need of improvement. For now, it can be seen that single SERS method as a direct detection technique has the potential to develop the detection of Sudan Ⅳ.
     3. ZnO/Ag seaurchin-like hybrids were prepared through the reaction of zinc salts with KOH to form ZnO particles, followed by deposition of Ag nanoparticles (NPs) on the surface of the particles. With the time of this photochemical deposition reaction extended from0.5h,2h to8h, the size of Ag NPs is from11nm,19nm to29nm. Due to high surface-to-volume ratio, rich surface tips, and open morphology, ZnO/Ag seaurchin-like hybrids are expected as effective Raman substrates. It is shown that the materials have high sensitivity, and well reproducibility. After calculation, the enhancement factor values for R6G molecules on ZnO/Ag are3*106in peak1360cm-1and2.98*106in peak1575cm-1, respectively. And the maximal value of relative standard deviation is to be below0.15. It is suggested that local electric fields caused by the electron transfer between ZnO and Ag,"echo effect" and a high aspect ratio between ZnO branches and Ag NPs co-contribute to SERS enhancement. This distinct morphology of ZnO/Ag seaurchin-like hybrids should also make them ideal substrates to load various large molecules for SERS-based sensing and characterization. Based on ZnO/Ag seaurchin-like hybrids, we fabricate ZnO/Ag-Pd seaurchin-like hybrids and use it as SERS substrates and catalyst to detect the possible intermediates of Suzuki reaction. The initial result shows the existence of intermediates.
     4. Currently, because of the wide use of magnetic/metal hybrid materials in the field of surface-enhanced Raman scattering (SERS), magnetic fields (MFs) as a kind of surrounding environments of SERS substrates have been not ignored. And enormous attentions for the effect of MFs on SERS are very necessary. Our analysis from previous reports shows SERS signals are closely associated with MFs; yet the study of the exact effect of MFs on SERS is still in need of detail and broadening. In this work, we demonstrate that the use of Ni/Au microparticles (MPs) and Au hollow spheres (HSs) to study the effect of MFs on SERS signals. The experiments are preformed from three aspects, including the comparison of SERS signals of Ni/Au MPs with different Ms values, the comparison of SERS signals of Au HSs and Ni/Au MPs under different external MFs, and the comparison of SERS signals of single Au HS particle and single Ni/Au particle in the absence and presence of an external MF. Thereinto, under different external MFs from0,0.01,0.02,0.04to0.08T, SERS signals of Au HSs and Ni/Au MPs are gradually weaker. According to the experiments, the weakening effect of MFs on SERS is confirmed and it is suggested that the weakening effect is originated from the blue-shift of surface plasmon resonance. Theoretical calculation shows that the locking of charge-transfer from Au to probe molecules leads to the weakening effect of MFs on SERS.
引文
[1]Raman, C. V.; Krishnan, K. S. Nature 1928,121,50.
    [2]Tu, A. T. Raman spectroscopy in biology:principles and applications[M]. John Willy&Sons, New York 1982.
    [3]许以明.光谱仪器[M],科学出版社,1987.
    [4]Fleischmann, M.; Hendra, P. J.; Mcquillan, A. J. Chem. Phys. Lett.1974,26,163.
    [5]Jeanmaire, D. L.; Van Duyne, R. P. J. Electroanal.Chem.1977,84,1.
    [6]Tian, Z. Q.J. Raman Spectrosc.2005,36,465.
    [7]Brown, R.; Milton, M. J. T.; Smith, W. E. Faraday Discuss.2006,132,1.
    [8]Graham, D.; Goodcare, R. Chem. Soc. Rev.2008,37,873.
    [9]Chourpa, I.; Lei, F. H.; Dubois, P.; Manfait, M.; Sockalingum, G. D. Chem. Soc. Rev.2008,37,993.
    [10]Porter, M. D.; Lipert, R. J.; Siperko, L. M.; Wang, G. F.; Narayanana, R. Chem. Soc. Rev.2008,37,1001.
    [11]Bell, S. E. J.; Sirimuthu, N. M. S. Chem. Soc. Rev.2008,37,1012.
    [12]Graham, D.; Faulds, K. Chem. Soc. Rev.2008,37,1042.
    [13]Kneipp, J.; Kneippa, H.; Kneippa, K. Chem. Soc. Rev.2008,37,1052.
    [14]Qian, X. M.; Nie, S. M. Chem. Soc. Rev.2008,37,912.
    [15]Pieczonka, N. P. W.; Aroca, R. F. Chem. Soc. Rev.2008,37,946.
    [16]Albrecht, M. G.; Creighton, J. A. J. Am. Chem. Soc.1977,99,5215.
    [17]Chang, R. K.; Futak, T. E. Surface enhanced Raman scattering[M]. Plenum, 1982.
    [18]Tian, Z. Q.; Ren, B.; Wu, D. Y. J. Phys. Chem. B 2002,106,9463.
    [19]Birke, R. L.; Lu, T.; Lombardi, J. R. Surface-enhanced Raman spectroscopy in techniques for characterization of electrochemical process[M]. John Wiley&Sons,1991.
    [20]Schatz, G. C. Acc. Chem. Res.1984,17,370.
    [21]Tian, Z. Q.; Ren, B.; Wu, D. Y. J. Phys. Chem. B 2002,106,9463.
    [22]Jensen, L.; Aikens, C. M.; Schatz, G. C. Chem. Soc. Rev.2008,37,1061.
    [23]Moskovits, M. J. Chem. Phys.1978,69,4159.
    [24]King, F. W.; Van Duyne, R. P.; Schatz, G.C.J. Chem. Phys.1978,69,4472.
    [25]Gersten, J. I. J. Chem. Phys.1980,73,3023.
    [26]Moskovits, M. Rev. Mod. Phys.1985,57,783.
    [27]Hulteen, J. C.; Van Duyne, R. P. J. Vac. Sci. Technol. A 1995,13,1553.
    [28]Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem.2007,55,267.
    [29]Otto, A.; Bornemann, T.; Pettenkofer, C., et al. Surf. Sci.1989,210,363.
    [30]Otto, A.; Mrozek, I.; Grabhorn, H., et al.J. Phys:Condens. Matter.1992,4, 1143.
    [31]Otto, A. J. Raman Spectrosc.2005,36,497.
    [32]Otto, A. Phys. Stat. Sol. (a) 2001,188,1455.
    [33]Natan, M. J. Faraday Discuss.2006,132,321.
    [34]Kuncicky, D. M.; Prevo, B. G.; Velev, O. D. J. Mater. Chem.2006,16,1207.
    [35]Liu, G. L.; Lu, Y.; Kim, J.; Doll, J. C.; Lee, L. P. Adv. Mater.2005,17,2683.
    [36]Qin, L.; Zou, S.; Xue, C.; Atkinson, A.; Schatz G.C.; Mirkin, C. A. Proc. Natl. Acad. Sci. U. S. A 2006,103,13300.
    [37]Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S. MRS Bull.2005,30,368.
    [38]Ward, D. R.; Grady, N. K.; Levin, C. S.; Halas, N. J.; Wu, Y.; Nordlander, P.; Natelson, D. Nano Lett.2007,7,1396.
    [39]Jarvis, R. M.; Johnson, H. E.; Olembe, E., et al. Analyst 2008,133,1449.
    [40]Shanmukh, S.; Jones, L.; Driskell, J., et al. Nano Lett.2006,6,2630.
    [41]Jarvis, R. M.; Law, N.; Sham, L. T., et al. Anal. Chem.2008,80,6741.
    [42]Qian, X. M.; Zhou, X.; Nie, S. M. J. Am. Chem. Soc.2008,130,14934.
    [43]Gao, P.; Weaver, M. J. J. Phys. Chem.1985,89,5040.
    [44]Ren, B.; Liu, G K.; Lian, X. B., et al. Anal. BioAnal Chem.2007,388,29.
    [45]Pileni, M. P. J. Phys. Chem. C 2007,111,9019.
    [46]Nie, S. M.; Emery, S. R. Science 1997,275,1102.
    [47]Kneipp, K.; Wang, Y.; Kneipp, H., et al. Phys. Rev. Lett.1997,78,1667.
    [48]Creighton, J. A.; Blatchford, C. G.; Albrecht, M. G. J. Chem. Soc., Faraday Trans. 21979,75,790.
    [49]Wang, D. S.; Chew, H.; Kerker, M. Appl. Opt.1980,19,2256.
    [50]Kerker, M. J. Colloid Interface Sci.1987,118,1.
    [51]Emery, S. R.; Haskins, W. E.; Nie, S. M. J. Am. Chem. Soc.1998,120,8009.
    [52]Krug, J. T.; Wang, Q. D.; Emory, S. R., et al. J. Am. Chem. Soc.1999,121,9208.
    [53]Mahmoud, M. A.; El-Sayed, M. A. Nano Lett.2009,9,3025.
    [54]Mahmoud, M. A.; El-Sayed, M. A. Nano Lett.2011,11,946.
    [55]Mahmoud, M. A.; Saira, F.; El-Sayed, M. A. Nano Lett.2010,10,3764.
    [56]Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Noredlander, P.; Halas, N. J. Nano lett.2005,5,1569.
    [57]Wang, Y. Q.; Gao, T.; Wang, K.; Wu, X. P.; Shi, X. J.; Liu, Y. B.; Lou, S. Y.; Zhou, S. M. Nanoscale 2012,4,7121.
    [58]Yang, M.; Alvarez-Puebla, R.; Kim, H. S.; Aldeanueva-Potel, P.; Liz-Marzan, L. M.; Kotov, N. A. Nano Lett.2010,10,4013.
    [59]Fang, J. X.; Lebedkin, S.; Yang, S. C.; Hahn, H. Chem. Commun.2011,47,5157.
    [60]Wang, X. T.; Shi, W. S.; She, G. W.; Mu, L. X. Phys. Chem. Chem. Phys.2012, 14,5891.
    [61]Tang, H. B.; Meng, G. W.; Huang, Q.; Zhang, Z.; Huang, Z. L.; Zhu, C. H. Adv. Funct. Mater.2012,22,218.
    [62]Yin, J.; Zang, Y. S.; Yue, C.; Wu, Z. M.; Wu, S. T.; Li, J.; Wu, Z. H. J. Mater. Chem.2012,22,7902.
    [63]Zou, X. X.; Silva, R.; Huang, X. X.; Al-Sharab, J. R.; Asefa, T. Chem. Commun. 2013,49,382.
    [64]Lin, X. D.; Uzayisenga, V.; Li, J. F.; Fang, P. P.; Wu, D. Y.; Ren, B.; Tian, Z. Q. J. Raman Spectrosc.2012,43,40.
    [65]Wu, D. Y.; Li, J. F.; Ren, B., et al. Chem. Soc. Rev.2008,37,1025.
    [66]Freeman, R. G.; Grabar, K. C.; Ailison, K. J., et al. Science 1995,267,1627.
    [67]Grabar, K. C.; Freeman, R. G.; Hommer, M. B., et al. Anal. Chem.1995,67,735.
    [68]Grabar, K. C.; Smith, P. C.; Musick, M. D., et al. J. Am. Chem. Soc.1996,118, 1148.
    [69]Brown, K. R.; Natan, M. J. Langmuir 1998,14,726.
    [70]Gao,M.X.;Lin,X.M.;Ren,B.Chem.J.Chin.Univ-Chin.2008,29,959.
    [71]Wang,H.;Levin,C.S.;Halas,N.J.J.Am.Chem.Soc.2005,127,14992.
    [72]Ayars,E.J.;Hallen,H.D.E.Phys.Rev.Lett.2000,85,4180.
    [73]Mulvaney,S.P.;He,L.;Natan,M.J.S.Abstr.Pap.Am.Chem.Soc.1999,217, U742.
    [74]Moskovits,M.;Suh,J.S.J.Am.Chem.Soc.1985,107,6826.
    [75]Hu,G.S.;Feng,Z.C.;Li,J.;Jia,G.Q.;Han,D.F.;Liu,Z.M.;Li,C.J.Phys. Chem.C 2007,111,11267.
    [76]Kudelski,A.J.Raman Spectrosc.2003,34,853.
    [77]Kelly,K.L.;Coronado,E.;Zhao,L.L.;Schatz,G.C.J.Phys.Chem.B 2003,103, 668.
    [78]Kneipp,J.;Kneipp,H.;Wittig,B.;Kneipp,K.Nano Lett.2007,103,17149.
    [79]Neugebauer,U.;Rosch,P.;Schmitt,M.;Popp,J.;Budich,C.;Deckert,V. ChemPhysChem 2006,7,1428.
    [80]Driskell,J.D.;Kwarta,K.M.;Lipert,R.J.;Porter,M.D.;Neill,J.D.;Ridpath,J. F.Anal.Chem.2005,77,6147.
    [81]Cheng,W.H.;Chen,Y.Y.;Lin,X.X.;Huan,S.Y.;Wu,H.L.;Shen,G.L.;Yu,R. Q.Anal.Chim.Acta 2011,707,155.
    [82]Liu,X.J.;Knauer,M.;Ivleva,N.P.;Niessner,R.;Haisch,C.Anal.Chem.2010, 82,441.
    [83]Qian,X.M.;Peng,X.H.;Ansari,D.O.;Yin-Goen,Q.Q.;Chen,G.Z.;Shin,D. M.;Yang,L.;Young,A.N.;Wang,M.D.;Nie,S.M.Nat.Biotechn.2008,6,83.
    [84]Li,D.W.;Qu,L.L.;Zhai,W.L.;Xue,J.Q.;Fossey,J.S.;Long,Y.T.Environ. Sci.Technol.2011,45,4046.
    [85]Carrillo-Carrion,C.;Simonet,B.M.;Valcarcel,M.;Lendl,B.J.Chromatogr.A 2012,1225,55.
    [86]Piao,L.;Park,S.;Lee,H.B.;Kim,K.;Kim,J.;Chung,T.D.Anal.Chem.2010, 82,447.
    [87]Yu, W. W.; White, I. M. Analyst 2012,137,1168.
    [88]Zhang, X. Y.; Young, M. A.; Lyandres, O.; Van Duyne, R. P. J. Am. Chem. Soc. 2005,127,4484.
    [89]Barhoumi, A.; Halas, N. J. J. Am. Chem. Soc.2010,132,12792.
    [90]Han, X. X.; Jia, H. Y.; Wang, Y F.; Lu, Z. C.; Wang, C. X.; Xu, W. Q.; Zhao, B.; Ozaki, Y Anal. Chem.2008,80,2799.
    [91]Grubisha, D. S.; Lipert, R. J.; Park, H. Y.; Driskell, J.; Porter, M. D. Anal. Chem. 2003,75,5936.
    [92]Pienpinijtham, P.; Han, X. X.; Ekgasit, S.; Ozaki, Y.Anal. Chem.2011,83,3655.
    [93]Huang, J. Y.; Zong, C.; Xu, L. J.; Cui, Y.; Ren, B. Chem. Commun.2011,47, 5738.
    [94]Strickland, A. D.; Batt, C. A. Anal. Chem.2009,81,2895.
    [95]Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Phys. Rev. Lett.1997,78,1667.
    [96]Xu, H. X.; Bjerneld, E. J.; Kall, M., et al. Phys. Rev. Lett.1999,83,4357.
    [97]Kneipp, J.; Kneipp, H.; Kneipp, K. Chem. Soc. Rev.2008,37,1052.
    [98]Pieczonka, N. P. W.; Aroca, R. F. Chem. Soc. Rev.2008,37,946.
    [99]Qian, X. M.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. M. Nat. Biotechnol.2008,26,83.
    [100]Goulet, P. J. G.; Aroca, R. F. Anal. Chem.2007,79,2728.
    [101]Doering, W. E.; Nie, S. M. J. Phys. Chem. B 2002,106,311.
    [102]Moula, G.; Aroca, R. F. Anal. Chem.2011,83,284.
    [103]Bell, S. E. J.; Sirimuthu, N. M. S. Analyst 2004,129,1032.
    [104]梁映秋.分子振动和振动光谱[M],北京大学出版社,1990.
    [105]吴国祯.分子振动光谱学原理与研究[M],清华大学出版社,2001.
    [106]Sequaris, J. M.; Fritz, J.; Lewinsky, H.; Koglin, E. J. Colloid Interf. Sci.1985, 105,417.
    [107]Otto, C.; De Grauw, C. J.; Duindam, J. J.; Sijtsema, N. M.; Greve, J. J. Raman Spectrosc.1997,25,143..
    [108]Carey, P. R. J. Raman Spectrosc.1998,29,7.
    [109]Callender, R.; Deng, H.; Gilmanshin, R. J. Raman Spectrosc.1998,29,15.
    [110]Zhao,X.;Spiro,T.G.J.Raman Spectrosc.1998,29,49.
    [111]Overman,S.A.;Thomas,G.J.Biochemistry 1999,38,4018.
    [112]Tsuboi,M.;Overman,S.A.;Thomas,G.J.Biochemistry 1996,35,10403.
    [113]Overman,S.A.;Thomas,G.J.Biochemistry 1998,37,5654.
    [114]Overman,S.A.;Thomas,G.J.J.Raman Spectrosc.1998,29,23.
    [115]Heise,H.M.;Bittner,A.J.Anal.Chem.1998,362,141.
    [116]刘国志,赵金涛,徐存英,段云彪,张鹏翔.光谱学与光谱分析[J]2002,22,248.
    [117]赵晓杰,江山,陆冬生,范永昌,李再光.生物化学杂志[J]1994,10,325.
    [118]沈鹤柏,夏静芬,张凤,杨海峰,章宗穰.光谱学与光谱分析[J]2001,21,798.
    [119]Bertoluzza,A.;Brasili,P.;Castri,L.;Facchini,F.;Fagnano,G.;Tinti,A.J. Raman Spectrosc.1997,28,185.
    [120]Li,Q.;Jiang,Y.Y.;Han,R.C.;Zhong,X.L.;Liu,S.Y.;Li,Z.Y.;Sha,Y.L.;Xu, D.S.Small 2013,9,927.
    [121]Bianco,G.V.;Giangregorio,M.M.;Losurdo,M.;Capezzuto,P.;Bruno,G.Adv. Fuct.Mater.2012,22,5081.
    [122]Chen,A.Q.;DePrince Ⅲ,A.E.;Demortiere,A.;Joshi-Imre,A.;Shevchenko,E. V.;Gray,S.K.;Welp,U.;Vlasko-Vlasov,V.K.Small 2011,7,2365.
    [123]Kleinman,S.L.;Sharma,B.;Blaber,M.G.;Henry,A.I.;Valley,N.;Freeman,R. G.;Natan,M.J.;Schatz,G.C.;Van Duyne,R.P.J.Am.Chem.Soc.2013,135, 301.
    [124]Rycenga,M.;Langille,M.R.;Personick,M.L.;Ozel,T.;Mirkin,C.A.Nano Lett.2012,12,6218.
    [125]Tian,C.F.;Ding,C.H.;Liu,S.Y;Yang,S.C.;Song,X.P.;Ding,B.J.;Li,Z. Y.;Fang,J.X.ACS Nano 2011,5,9442.
    [126]Lee,K.;Irudayaraj,J.Small,2013,9,1106.
    [127]Lee,S.Y.;Hung,L.;Lang,G.S.;Comett,J.E.;Mayergoyz,I.D.;Rabin,O. ACS Nano 2010,4,5763.
    [128]Alexander,K.D.;Skinner,K.;Zhang,S.P.;Wei,H.;Lopez,R.Nano Lett.2010, 10,4488.
    [129]Osberg, K.; Rycenga, M.; Harris, N.; Schmucker, A. L.; Langille, M. R.; Schatz, G. C.; Mirkin, C. A. Nano Lett.2012,11,3828.
    [130]Jeon, H. C.; Heo, C.J.; Lee, S. Y.; Yang, S. M. Adv. Funct. Mater.2012,22, 4268.
    [131]Forestiere, C.; Pasquale, A. J.; Capretti, A.; Miano, G.; Tamburrino, A.; Lee, S. Y.; Reinhard, B. M.; Dal Negro, L. Nano Lett.2012,12,2037.
    [132]Duan, H. G.; Hu, H. L.; Kumar, K.; Shen, Z. X.; Yang, J. K. W. ACS Nano 2011, 5,7593.
    [133]Wang, Y. L.; Lee, K.; Irudayaraj, J. Chem. Commun.2010,46,613.
    [134]Sun, C.; Su, K. H.; Valentine, J.; Rosa-Bauza, Y. T.; Ellman, J. A.; Elboudwarej, O.; Mukherjee, B.; Craik, C. S.; Shuman, M. A.; Chen, F. F.; Zhang, X. ACS Nano 2010,4,978.
    [135]Yin, P. G.; Jiang, L.; Lang, X. F.; Guo, L.; Yang, S. H. Biosens. Bioelectron. 2011,26,4828.
    [136]Yazgan, N. N.; Boyaci,I.H.; Topcu, A.; Tamer, U. Anal. Bioanal. Chem.2012, 403,2009.
    [137]Yaghobian, F.; Weimann, T.; G Cuttler, B.; Stosch, R. Lab Chip 2011,11,2955.
    [138]Tsoutsi, D.; Montenegro, J. M.; Dommershausen, F.; Koert, U.; Liz-Marza'n, L. M.; Parak, W. J.; Alvarez-Puebla, R. A. ACS Nano 2011,5,7539.
    [139]Kasera, S.; Biedermann, F.; Baumberg, J. J.; Scherman, O. A.; Mahajan, S. Nano Lett.2012,12,5924.
    [140]Bodoki, E.; Oltean, M.; Bodoki, A.; Stiufiuc, R. Talanta 2012,101,53.
    [141]Mamian-Lopez, M. B.; Poppi, R. J. Anal. Chim. Acta 2013,760,53.
    [142]Strehle, K. R.; Cialla, D.; Rosch, P.; Henkel, T.; Kohler, M.; Popp, J. Anal. Chem.2007,79,1542.
    [143]Li, D.; Li, D. W.; Fossey, J. S.; Long, Y. T. Anal. Chem.2010,82,9299.
    [144]Du, Y. X.; Liu, R. Y.; Liu, B. H.; Wang, S. H.; Han, M. Y.; Zhang, Z. P. Anal. Chem.2013,85,3160.
    [1]Tajik, H.; Malekinejad, H.; Razavi-Rouhani, S. M.; Pajouhi, M. R.; Mahmoudi, R.; Haghnazari, A. Food Chem. Toxicol.2010,48,2464.
    [2]Zhu, J.; Snow, D. D.; Cassada, D. A.; Monson, S. J.; Spalding, R. F. J. Chromatogr. A 2001,928,177.
    [3]Niessen, W. M. A. J. Chromatogr. A,1998,812,53.
    [4]Kaufmann, T. B.; Westermann, S.; Drillich, M.; Plontzke, J.; Heuwieser, W. Anim. Reprod. Sci.2010,121,55.
    [5]Zago, M.; Huys, G.; Giraffa, G. Int. J. Food Microbiol.2010,142,234.
    [6]Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Chem. Phys. Lett.1974,26, 163.
    [7]Jeanmaire, D. L.; Van Duyne, R. P. J. Electroanal. Chem. Interfacial Electrochem.1977,84,1.
    [8]Lai, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J. Chem. Soc. Rev.2008,37,898.
    [9]Li, Q.; Jiang, Y. Y.; Han, R. C.; Zhong, X. L.; Liu, S. Y.; Li, Z. Y.; Sha, Y. L.; Xu, D. S. Small 2013,9,927.
    [10]Kleinman, S. L.; Sharma, B.; Blaber, M. G.; Henry, A. I.; Valley, N.; Freeman, R. G; Natan, M. J.; Schatz, G. C.; Van Duyne, R. P. J. Am. Chem. Soc.2013,135, 301.
    [11]Lee, K.; Irudayaraj, J. Small 2013,9,1106.
    [12]Jeon, H. C.; Heo, C. J.; Lee, S. Y.; Yang, S. M. Adv. Funct. Mater.2012,22, 4268.
    [13]Forestiere, C.; Pasquale, A. J.; Capretti, A.; Miano, G.; Tamburrino, A.; Lee, S. Y.; Reinhard, B. M.; Dal Negro, L. Nano Lett.2012,12,2037.
    [14]Wustholz, K. L.; Henry, A. I.; McMahon, J. M.; Griffith Freeman, R.; Valley, N.; Piotti, M. E.; Natan, M. J.; Schatz, G. C.; Van Duyne, R. P. J. Am. Chem. Soc. 2010,132,10903.
    [15]Li, S. Z.; Pedano, M. L.; Chang, S. H.; Mirkin, C. A.; Schatz, G. C. Nano Lett. 2010,10,1722.
    [16]Banholzer, M. J.; Osberg, K. D.; Li, S. Z.; Mangelson, B. F.; Schatz, G. C.; Mirkin, C. A. ACS Nano 2010,4,5446.
    [17]Wei, W.; Li, S. Z.; Millstone, J. E.; Banholzer, M. J.; Chen, X. D.; Xu, X. Y.; Schatz, G. C.; Mirkin, C. A. Angew. Chem. Int. Ed.2009,48,4210.
    [18]Camden, J. P.; Dieringer, J. A.; Wang, Y. M.; Masiello, D. J.; Marks, L. D.; Schatz, G. C.; Van Duyne, R. P. J. Am. Chem. Soc.2008,130,12616.
    [19]Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. Science,2003,302,419.
    [20]Jackson, J. B.; Halas, N. J. J. Phys. Chem. B 2001,105,2743.
    [21]Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Noredlander, P.; Halas, N. J. Nano lett.2005,5,1569.
    [22]Litorja, M.; Haynes, C. L.; Haes, A. J.; Jensen, T. R.; Van Duyne, R. P. J. Phys. Chem. B 2001,105,6907.
    [23]Mahmoud, M. A.; Snyder, B.; El-Sayed, M. A. J. Phys. Chem. C 2010,114, 7436.
    [24]Lee, W. R.; Kim, M. G.; Choi, J. R.; Park, J. I.; Ko, S. J.; Oh, S. J.; Cheon, J. J. Am. Chem. Soc.2005,127,16090.
    [25]Chen, D.; Li, J. J.; Shi, C. S.; Du, X. W.; Zhao, N. Q.; Sheng, J.; Liu, S. Chem. Mater.2007,19,3399.
    [26]Chen, J. Y.; Wiley, B.; Li, Z. Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, J.; Li, X. D.; Xia, Y N. Adv. Mater.2005,17,2255.
    [27]Baia, M.; Baia, L.; Astilean, S. Chem. Phys. Lett.2005,404,3.
    [28]Lang, X. Y.; Chen, L. Y.; Guan, P. F.; Fujita, T.; Chen, M. W. Appl. Phys. Lett. 2009,94,213109.
    [29]Qian, L. H.; Inoue, A.; Chen, M. W. Appl. Phys. Lett.2008,92,093113.
    [30]Duan, G. T.; Cai, W. P.; Luo, Y. Y.; Li, Z. G.; Li, Y. Appl Phys. Lett.2006,89, 211905.
    [31]Levin, C. S.; Kundu, J.; Barhoumi, A.; Halas, N. J. Analyst 2009,134,1745.
    [32]Schatz, G. C.; Young, M. A.; Van Duyne, R. P. Top. Appl. Phys.2006,103,19.
    [33]Doering, W. E.; Nie, S. M. J. Phys. Chem. B 2002,106,311.
    [34]Campion, A.; Kambhampati, P. Chem. Soc. Rev.1998,27,241.
    [35]Michaels, A. M.; Nirmal, M.; Brus, L. E. J. Am. Chem. Soc.1999,121,9932.
    [36]Gordon, R.; Sinton, D.; Kavanagh, K. L.; Brolo, A. G Acc. Chem. Res.2008,41, 1049.
    [37]Cheng, Y.; Dong, Y. Y.; Wu, J. H.; Yang, X. R.; Bai, H.; Zheng, H. Y.; Ren, D. M.; Zou, Y. D.; Li, M. J. Food Compos. Anal.2010,23,199.
    [38]Han, D. H.; Lim, S. Y.; Kim, B. J.; Piao, L. L.; Chung, T. D. Chem. Commun. 2010,46,5587.
    [39]Chon, H.; Lim, C.; Ha, S. M.; Ahn, Y.; Lee, E. K.; Chang, S. I.; Seong, G. H.; J. Choo,Anal. Chem.2010,82,5290.
    [40]Du, Y.X.; Liu, R. Y.; Liu, B. H.; Wang, S. H.; Han, M. Y.; Zhang, Z. P. Anal. Chem.2013,85,3160.
    [41]Yazgan, N. N.; Boyaci, I. H.; Topcu, A.; Tamer, U. Anal. Bioanal. Chem.2012, 403,2009.
    [42]Yin, P. G.; Jiang, L.; Lang, X. F.; Guo, L.; Yang, S. H. Biosens. Bioelectron.2011, 26,4828.
    [1]Golka,K.;Kopps,S.;Myslak,Z.W.Toxicol.Lett.2004,151,203.
    [2]Calbiani,F.;Careri,M.;Elviri,L.;Mangia,A.;Pistara,L.;Zagnoni,I.J. Chromatogr.A 2004,1042,123.
    [3]Cui,X.;Chu,X.;Jerry,A.Z.;Fang,Y.;Yong,W.;Ling,Y.Chromatographia 2010,71,139.
    [4]Qiao,J.D.;Yan,H.Y.;Wang,H.;Wu,Y.P.;Pan,P.Y.;Geng,Y.R. Chromatographia 2011,73,227.
    [5]Zacharis,C.K.;Kika,F.S.;Tzanavaras,P.D.;Rigas,P.;Kyranas,E.R.Talanta 2011,84,480.
    [6]Zhao,C.D.;Zhao,T.;Liu,X.Y.;Zhang,H.X.J.Chromatogr.A 2010,1217, 6995.
    [7]Qi,P.;Zeng,T.;Wen,Z.J.;Liang,X.Y.;Zhang,X.W.Food Chem.2011,125, 1462.
    [8]Yan,H.Y.;Qiao,J.D.;Wang,H.;Yang,G.L.;Row,K.H.Analyst 2011,139, 2629.
    [9]Yan,H.Y.;Wang,H.;Qiao,J.D.;Yang,G.L.J.Chromatogr.A 2011,1218, 2182.
    [10]Bel,S.E.J.;Sirimuthu,N.M.S.Chem.Soc.Rev.2008,37,1012.
    [11]Li,D.W.;Qu,L.L.;Zhai,W.L.;Xue,J.Q.;Fossey,J.S.;Long,Y.T.Environ. Sci.Technol.2011,45,4046.
    [12]Carrillo-Carrion,C.;Simonet,B.M.;Valcarcel,M.;Lendl,B.J.Chromatogr.A 2012,1225,55.
    [13]Piao,L.;Park,S.;Lee,H.B.;Kim,K.;Kim,J.;Chung,T.D.Anal.Chem.2010, 82,447.
    [14]Pieczonka,N.P.W.;Aroca,R.F.ChemPhysChem 2005,6,2473.
    [15]Su,L.;Jia,W.Z.;Manuzzi,D.P.;Zhang,L.C.;Li,X.P.;Gu,Z.Y.;Lei,Y.RSC Advances 2012,2,1439.
    [16]Shao,Q.;Que,R.;Cheng,L.;Shao,M.W.RSC Advances 2012,2,1762.
    [17]Xia, Y.; Yang, Y. C.; Zheng, J. F.; Huang, W.; Li, Z. L. RSC Advances 2012,2, 5284.
    [18]Akil-Jradi, S.; Jradi, S.; Plain, J.; Adam, P. M.; Bijron, J. L.; Royer, P.; Bachelot, R. RSC Advances 2012,2,7837.
    [19]Wang, Y.; Irudayaraj, J. Chem. Commun.2011,47,4394.
    [20]Tsoutsi,D.; Montenegro, J. M.; Dommershausen, F.; Koert, U.; L. Liz-Marzan, M.; Parak, W. J.; Alvarez-Puebla, R. A. ACS Nano 2009,5,7539.
    [21]Li, R.; Zhang, H.; Chen, Q. W.; Yan, N.; Wang, H. Analyst 2011,136,2527.
    [22]Chen, A. Q.; Eugene DePrine, A.; Demortiere, A.; Joshi-Imre, A.; Shevchenko, E. V.; Gray, S. K.; Welp, U.; Vlasko-Vlasov, V. K. Small 2011,7,2365.
    [23]Que, R. H.; Shao, M. W.; Zhao, S. J.; Wen, C. Y.; Wang, S. D.; Lee, S. T. Adv. Funct. Mater.2011,21,3337.
    [24]Zhang, B. H.; Wang, H. H.; Lu, L. H.; Ai, K. L.; Zhang, G.; Cheng, X. L. Adv. Funct. Mater.2008,18,2348.
    [25]Bell, S. E. J.; Sirimuthu, N. M. S. Analyst 2004,129,1032.
    [26]Huang, G.G.; Han, X. X.; Hossain, M. K.; Ozaki, Y. Anal. Chem.2009,81,5881.
    [27]Cheng, H. W.; Huan, S. Y.; Wu, H. L.; Shen, G.L.; Yu, R. Q. Anal. Chem.2009, 81,9902.
    [1]Dai, Z. R.; Pan, Z. W.; Wang, Z. L. Adv. Fund. Mater.2003,13,9.
    [2]Djurisic, A. B.; Chen, X. Y.; Leung, Y. H.; Ng, A. M. C. J. Mater. Chem.2012,22, 6526.
    [3]Wang, D.; Lieber, C. M. Nat. Mater.2003,2,355.
    [4]Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J.; Wang, L. W.; Alivisatos, A. P. Nature 2004,430,190.
    [5]Joshi, R. K.; Schneider, J. J. Chem. Soc. Rev.2012,41,5285.
    [6]Wong, Y. H.; Li, Q. J. Mater. Chem.2004,14,1413.
    [7]Shi, L. Q.; He, C.; Zhu, D. F.; He, Q. G.; Li, Y.; Chen, Y.; Sun, Y X.; Fu, Y.Y.; Wen, D.; Cao, H. M.; Cheng, J. G J. Mater. Chem.2012,22,11629.
    [8]Wu, C. T.; Liao, W.P.; Wu, J. J. J. Mater. Chem.2011,21,2871.
    [9]Pan, Z. W.; Budai, J. D.; Dai, Z. R.; Liu, W. J.; Parans Paranthaman, M.; Dai, S. Adv. Mater.2009,21,890.
    [10]Li, L.; Koshizaki, N. J. Mater. Chem.2010,20,2972.
    [11]Villani, M.; Calestani, D.; Lazzarini, L.; Zanotti, L.; Mosca, R.; Zappettini, A. J. Mater. Chem.2012,22,5694.
    [12]Joo, J.; Kwon, S. G.; Yu, J. H.; Hyeon, T. Adv. Mater.2005,17,1873.
    [13]Yang, Z.; Zong, X. L.; Ye, Z. Z.; Zhao, B. H.; Wang, Q. L.; Wang, P. Biomaterials 2010,31,7534.
    [14]McCune, M.; Zhang, W.; Deng, Y L. Nano Lett.2012,12,3656.
    [15]Zhu, J.; Peng, H. L.; Marshall, A. F.; Barnett, D. M.; Nix, W. D.; Cui, Y Nat. Nanotechnol.2008,3,477.
    [16]Barreca,D.;Gasparotto,A.;Tondello,E.J.Mater.Chem.2011,21,1648.
    [17]Wen,X.N.;Wu,W.Z.;Ding,Y.;Wang,Z.L.J.Mater.Chem.2012,22,9469.
    [18]Ahmad,M.;Shi,Y.Y.;Nisar,A.;Sun,H.Y.;Shen,W.C.;Wei,M.;Zhu,J.J. Mater.Chem.2011,21,7723.
    [19]Ibrahim,A.A.;Dar,G.N.;Zaidi,S.A.;Umar,A.;Abaker,M.;Bouzid,H.; Baskoutas,S.Talanta 2012,93,257.
    [20]Yin,J.;Zang,Y.S.;Yue,C.;Wu,Z.M.;Wu,S.T.;Li,J.;Wu,Z.H.J.Mater. Chem.2012,22,7902.
    [21]Xu,F.Zhang,G.;Y.;Sun,Y.J.;Shi,Y.;Wen,Z.W.;Li,Z.J.Phys.Chem.C 2011, 115,9977.
    [22]Tang,H.B.;Meng,G.W.;Huang,Q.;Zhang,Z.;Huang,Z.L.;Zhu,C.H.Adv. Funct.Mater.2012,22,218.
    [23]Deng,S.;Fan,H.M.;Zhang,X.;Loh,K.P.;Cheng,C.L.;Sow,C.H.;Foo,Y. L.Nanotechnology 2009,20,175705.
    [24]Sun,L.L.;Zhao,D.X.;Zhang,Z.Z.;Li,B.H.;Shen,D.Z.J.Mater.Chem. 2011,21,9674.
    [25]KBishop,J.M.;Wilmer,C.E.;Soh,S.;Grzybowski,B.A.Small 2009,5,1600.
    [26]Zhu,G X.;Liu,Y.J.;Xu,Z.;Jiang,T.;Zhang,C.;Li,X.;Qi,G.ChemPhysChem 2010,11,2432.
    [27]Zhu,G.X.;Xu,Z.J.Am.Chem.Soc.2011,133,148.
    [28]Zhang,J.;Tang,Y.;Lee,K.;Ouyang,M.Science 2010,327,1634.
    [29]Liu, Y. J.; He, L. B.; Xu, C. H.; Han, M. Chem. Commun.2009,43,6566
    [30]Wang, Z.; Zhao, S.; Zhu, S.; Sun, Y.; Fang, M. CrystEngComm.2011,13,2262.
    [31]Wang, G. S.; Deng, Y.; Xiang, Y; Guo, L. Adv. Funct. Mater.2008,18,1.
    [32]Zhu, G X.; Liu, Y. J.; Xu, H.; Chen, Y.; Shen, X. P.; Xu, Z. CrystEngComm.2012, 14,719.
    [33]Li, R.; Zhang, H.; Chen, Q. W.; Yan, N.; Wang, H. Analyst 2011,136,2527.
    [34]Cai, W. B.; Ren, B.; Li, X. Q.; She, C. X.; Liu, F. M.; Cai, X. W.; Tian, Z. Q. Surf. Sci.1998,406,9.
    [35]Zhang, B. H.; Wang, H. H.; Lu, L. H.; Ai, K. L.; Zhang, G.; Cheng, X. L. Adv. Funct. Mater.2008,18,2348.
    [36]Tian, Z. Q.; Ren, B.; Wu, D. Y. J. Phys. Chem. B 2002,106,9463.
    [37]Jensen, L.; Aikens, C. M.; Schatz, G C. Chem. Soc. Rev.2008,37,1061.
    [38]Li, H. B.; Liu, P.; Liang, Y.; Xiao, J.; Yang, G W. Nanoscale 2012,4,5082.
    [39]Shan, G Y.; Xu, L. H.; Wang, G R.; Liu, Y. C. J. Phys. Chem. C 2007,111, 3290.
    [40]Sanles-Sobrido, M.; Rodriguez-Lorenzo, L.; Lorenzo-Abalde, S.; Gonzalez-Fernandez, A.; Correa-Duarte, M. A.; Alvarez-Puebla, R. A.; Liz-Marzan, L. M. Nanoscale 2009,1,153.
    [41]He, D.; Hu, B.; Yao, Q. F.; Wang, K.; Yu, S. H. ACS Nano 2009,3,3993.
    [42]Liu, Y. C.; Yu, C. C.; Sheu, S. F. J. Mater. Chem.2006,16,3546.
    [43]Yang, D. P.; Chen, S. H.; Huang, P.; Wang, X. S.; Jiang, W. Q.; Pandoli, O.; Cui, D. X. Green Chem.2010,12,2038.
    [1]Li,J.F.;Huang,Y F.;Ding,Y.;Yang,Z.L.;Li,S.B.;Zhou,X.S.;Fan,F.R.; Zhang,W.;Zhou,Z.Y.;Wu,D.Y.;Ren,B.;Wang,Z.L.;Tian,Z.Q.Nature 2010,464,392.
    [2]Chourpa,I.;Lei,F.H.;Dubois,P.;Manfait,M.;Sockalingum,G.D.Chem.Soc. Rev.2008,37,993.
    [3]Smith,W.E.Chem.Soc.Rev.2008,37,955.
    [4]Qian,X.M.;Nie,S.M.Chem.Soc.Rev.2008,37,912
    [5]Wustholz,K.L.;Henry,A.I.;McMahon,J.M.;Griffith Freeman,R.;Valley,N.; Piotti,M.E.;Natan,M.J.;Schatz,G.C.;Van Duyne,R.P.;J.Am.Chem.Soc. 2010,132,10903.
    [6]Li,S.Z.;Pedano,M.L.;Chang,S.H.;Mirkin,C.A.;Schatz,G.C.Nano Lett. 2010,10,1722.
    [7]Wei,W.;Li,S.Z.;Millstone,J.E.;Banholzer,M.J.;Chen,X.D.;Xu,X.Y.; Schatz,G.C.;Mirkin,C.A.Angew.Chem.2009,121,4274.
    [8]Xu,H.X.;Bjerneld,E.J.;Kall,M.;Borjesson,L.Phys.Rev.Lett.1999,83, 4357.
    [9]Xu,H.X.;Aizpurua,J.;Kall,M.;Apell,P.Phys.Rev.E 2000,62,4318.
    [10]Park,W.H.;Kim,Z.H.Nano Lett.2010,10,4040.
    [11]Talley,C.E.;Jackson,J.B.;Oubre,C.;Grady,N.K.;Hollars,C.W.;Lane,S. M.;Huser,T.R.;Noredlander,P.;Halas,N.J.Nano Lett.2005,5,1569.
    [12]Levin,C.S.;Hofmann,C.;Ali,T.A.;Kelly,A.T.;Morosan,E.;Nordlander,P.; Whitmire,K.H.;Halas,N.J.ACS Nano 2009,3,1379.
    [13]Bardhan,R.;Grady,N.K.;Ali,T.;Halas,N.J.ACS Nano 2010,4,6169.
    [14]Xu,H.X.;Kall,M.ChemPhysChem 2003,4,1001.
    [15]X.;H.Xu,Kall,M.Phys.Rev.Lett.2002,89,246802.
    [16]Han,B.;Choi,N.;Kim,K.H.;Lim,D.W.;Choo,J.J.Phys.Chem.C 2011, 115,6290.
    [17]Sarkar,S.;Sinha,A.K.;Pradhan,M.;Basu,M.;Negishi,Y.;Pal,T.J.Phys. Chem. C 2011,115,1659.
    [18]Zhou, X.; Xu, W. L.; Wang, Y.; Kuang, Q.; Shi, Y. F.; Zhong, L. B.; Zhang, Q. Q. J. Phys. Chem. C 2010,114,19607.
    [19]Kong, X. K.; Chen, Q. W.; Li, R.; Cheng, K.; Yan, N.; Yu, B. X. Chem. Commu. 2011,47,11237.
    [20]Li, R.; Zhang, H.; Chen, Q. W.; Yan, N.; Wang, H. Analyst 2011,136,2527.
    [21]Baia, M.; Baia, L.; Astilean, S. Chem. Phys. Lett.2005,404,3.
    [22]Schatz, G. C.Acc. Chem. Res.1984,17,370.
    [23]Tian, Z. Q.; Ren, B.; Wu, D. Y. J. Phys. Chem. B 2002,106,9463.
    [24]Jensen, L.; Aikens, C. M.; Schatz, G. C. Chem. Soc. Rev.2008,37,1061.
    [25]Wang, H.; Sun, Y. B.; Chen, Q. W.; Yu, Y. F.; Cheng, K. Dalton Trans.2010,39, 9565.
    [26]Wang, M. S.; Chen, Q. W.; Ding, Q. J. Geophys. Res.2010, E05005.
    [27]Greene,R. L.; Bajaj, K. K. Phys. Rev. B 1985,31,913.
    [28]Gao, H. M.; Fa, P T. Surface Chin. Phys. Lett.2008,7,25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700