用户名: 密码: 验证码:
聚羟基乙酸支架的表面改性及在胰岛培养和移植中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚羟基乙酸(Polyglycolic acid, PGA)作为医用的生物可吸收高分子材料是目前生物降解高分子材料中最活跃的研究领域,已经获得美国食品与药品管理局(FDA)的许可。本研究为了提高PGA细胞支架的粘附性,对PGA支架材料进行了表面改性的研究,为胰岛细胞在PGA支架表面能粘附生长提供了良好的粘附条件,从而使PGA支架能更好的应用于胰岛细胞的体外培养与移植的研究中。
     通过XPS分析、拉伸性能测试和浸润性测试研究了不同功率、不同时间的等离子体处理对于PGA支架性能的影响。结果表明:处理功率240W,处理时间4min时,PGA支架的拉伸性能以及与生理盐水和血清培养液之间的浸润性较好。采用拉伸性能测试和浸润性测试分别研究了不同浓度的蔗糖、L-谷氨酸和多聚赖氨酸涂层处理对于PGA支架性能的影响,结果表明:涂覆有2mg/ml的多聚赖氨酸涂层的PGA支架的拉伸性能以及与生理盐水和血清之间的浸润性相对于其它涂层要好。最后采用处理功率240W的等离子体处理结合浓度为2mg/ml的多聚赖氨酸涂层处理PGA支架,通过对其拉伸性能以及浸润性能分析,结果表明:等离子体结合多聚赖氨酸涂层处理的PGA支架的拉伸性能和浸润性能比采用单一方法处理的PGA支架的各方面性能都要好。因此,最终采用等离子体结合多聚赖氨酸涂层对PGA支架进行处理,改进其与细胞培养液之间的浸润性,从而提高PGA细胞支架与细胞之间的粘附性。
     将大鼠胰岛细胞种植在经表面改性的PGA支架上进行体外培养(静止培养和微重力培养),实验结果显示,与无支架静止培养组胰岛相比,倒置显微镜下可见PGA支架上的胰岛细胞形态完整,生长状态良好,胰岛能与支架紧密粘附,胰岛细胞死亡少。双硫腙(DTZ)染色后PGA支架上的胰岛细胞纯度较好。吖啶橙(AO)和碘化丙啶(PI)荧光双染色法和放射免疫法检测结果显示,PGA支架上的胰岛细胞的生存率及胰岛素含量较高。噻唑蓝比色法(MTT)结果显示,PGA支架材料与胰岛细胞的生物相容性较好。扫描电镜下可见胰岛细胞在PGA支架上能粘附生长,胰岛之间的间隙较大,胰岛可充分地获取营养,PGA支架上胰岛细胞形态良好。激光共聚焦显微镜下可清楚的看到PGA支架上绿色的胰岛β细胞和红色的胰岛α细胞。
     PGA-胰岛复合物经过体外共培养5天后,移植到糖尿病大鼠的腿部肌肉内,对PGA-胰岛移植物移植治疗的效果进行比较观察。从血糖和血清胰岛素含量检测结果显示,支架微重力培养移植组的PGA-胰岛细胞移植物,移植后可使糖尿病大鼠体内的血糖值和血清胰岛素含量恢复到正常。扫描电镜、共聚焦显微镜及病理检测结果显示,PGA支架上胰岛细胞的形态良好,支架材料与胰岛细胞的生物相容性较好,胰岛细胞间可见到细胞外基质的形成,呈网状细纤维,PGA-胰岛细胞周围空间较大,胰岛细胞未受到肌肉组织的挤压,在PGA支架之间有新生的毛细血管,胰岛细胞周围可见到红细胞,说明肌肉内的血液供应较丰富,支架上的胰岛细胞能得到充分的营养供应。移植后30天左右,PGA支架开始逐渐断裂,PGA的降解及降解产物对机体没有造成损害。
     将PGA支架与猪胰岛细胞共培养,观察猪胰岛细胞体外生存的质量、生物学特征及猪胰岛细胞与PGA支架材料的生物相容性。与静止培养组胰岛相比,AO-PI荧光双染法结果显示,PGA支架可改善猪胰岛细胞的活性,可使猪胰岛生存率增高。放射免疫方法胰岛功能检测结果显示,PGA支架上猪胰岛细胞的胰岛素释放指数较高。MTT检测结果显示,PGA支架与猪胰岛细胞具有较好的生物相容性。倒置显微镜及免疫荧光显微镜观察结果显示,PGA支架上猪胰岛细胞形态良好,猪胰岛细胞在PGA支架上能粘附生长。
     实验结果表明,PGA细胞支架可作为胰岛细胞外基质,为胰岛细胞体外生存提供良好的生长环境。尤其是PGA支架微重力培养条件更适合于胰岛细胞的体外生存与体内移植。
Polyglycolic acid (PGA), as a medical biologically-adaptive polymer approvedby FDA, is one of the most studied bio-degradation materials. This research aimed toimprove the adhesion of PGA scaffold via re-modifying the surface materials of PGAscaffolds and to provide better adhesion condition for islet cells on PGA scaffoldswith implication for PGA scaffolds to be applied in the fields of islet culture in vitroand transplantation.
     The effect of treating power and time on the PGA holder performance was wasstudied with XPS analysis, mechanical analysis and wetting ability analysis. Theresults indicated that the mechanical performance and the wetting ability of PGAholder were better when the treating power was240W and treating time was4min.The effect of different concentration coatings of sucrose, L-glutaminic acid andpoly-lysine acid on the PGA holder performances were carried on throughmechanical analysis and wetting ability analysis, respectively. It is found that theperformance and wetting ability of PGA treated by poly-lysine acid (2mg/ml) werebetter than those of PGA holder treated by other coatings. In the end, the plasma andthe poly-lysine acid coating were combined to treat PGA. The mechanicalperformances and wetting ability of PGA holder was better than that of PGA holdertreated by either single. Thus, the method that plasma and the poly-lysine acidcoating method was employed in order to improve the wetting ability between PGAholder and culture fluid and further increase the adhesion of PGA scaffolds and cells..
     Islet cells on the modified PGA scaffolds were cultured in vitro (stasis andmicrogravity culture, respectively) and observed under inverted microscope. Theresult showed that the islet cells which were in good shape and well growth adheredtightly to the scaffold with less dead cells. Dithizon (DTZ) staining results indicatedthat the purity of islet cells on PGA scaffolds was quite high. Acridine Orange (AO)and Propidium Iodide (PI) fluorescence double-staining method and radioimmunitydetection results demonstrated that survival rates and insulin contents of islet cells onPGA scaffolds were relatively high. MTT detection results showed thatbio-compatibility between PGA scaffold materials and islet cells was excellent.Observations under scanning electron microscopy (SEM) exhibited that islet cellscould grow adhesively to PGA scaffolds and large interspaces between islet cellshelped islet cells acquire nutrition sufficiently and enabled islet cells to exhibit goodmorphology. Under laser confocal microscopy, green islet β and red α cells were clearly seen on PGA scaffolds.
     The islet cells were co-cultured with PGA scaffolds for five days in vitro andthen PGA-islet grafts were transplanted into the muscle of diabetic wistar rats toobserve the treatment effect of PGA-islet graft. The blood glucose and serum insulincontent results indicated that PGA-islet graft in PGA-microgravity culture group canrecover blood glucose and serum insulin content to the normal condition. Observationunder SEM and confocal microscopy, pathological detection results as well showedthat islet cells on PGA scaffolds were in good shape, the bio-compatibility betweenislet cells and PGA scaffolds was good, extracellular matrix like reticular fibers wasformed and visible between islet cells. In addition, interspaces around PGA-islet werelarge and no islet cells were crushed in muscular tissues. Nascent capillary were seenbetween PGA scaffolds and red cells were visible around islet cells, which indicatedsufficient blood supply and plenitudinous nutrition supply to islet cells in the muscles.After30days’ transplantation, PGA fiber scaffolds began to collapse, PGA pieces andits degradable products had no harm to body.
     After porcine islet cells and PGA scaffolds were co-cultured, the quality,biological characteristics of porcine islet cells survival in vitro and bio-compatibilitywere studied. Compare with the islet cells in the static condition, the AO-PIfluorescence double staining results showed that PGA scaffold can improve theviability of porcine islet cells and increase survival rates of porcine islet cells.Radioimmunity detection result demonstrated high insulin releasing index of porcineislet cells on PGA scaffolds and MTT detection result showed good bio-compatibilityPGA scaffold and porcine islet cells had. Observations under the inverted microscopyand immunofluorescence microscopy indicated that porcine islet cells on PGAscaffold exhibited good morphology and adhesive growth.
     The experimental results demonstrated that PGA scaffold was acted asextracellular matrix, providing good culture condition for islet cells in vitro.Especially, the PGA-microgravity culture condition was a better choice for islet cellsin vitro survival and transplantation in vivo.
引文
1R. Langer. Biomaterials in Drug Delivery and Tissue Engineering: OneLaboratory's Experience. Accounts of Chemical Research.2000,33:94~101
    2刘盛辉,郎美东.新一代生物医用材料.高分子通报.2005,(6):113~117
    3王文举,宋婧怡.一种新型生物降解性高分子材料(PGA)合成进展研究.通化师范学院学报.2005,26(2):55~56
    4于娟,万涛,李世普.生物可降解聚合物材料聚羟基乙酸.生物骨科材料与临床研究.2005,2(6):50~52
    5F. Wen, S. Chang, Y.C. Toh, et al. Development of poly (lactic-co-glycolic acid)-collagen scaffolds for tissue engineering. Materials Science and Engineering C.2007,27:285~292
    6X. Hu, W. Liu, L. Cui, et al. Tissue Engineering of Nearly Transparent CornealStroma. Tissue Engineering.2005,11(11-12):1710~1717
    7F. Yang, W. Cui, Z. Xiong, et al. Poly (L,L-lactide-co-glycolide)/tricalciumphosphate composite scaffold and its various changes during degradation in vitro.Polymer Degradation and Stability.2006,91:3065~3073
    8P. Perugini, I. Genta, B Conti, et al. Periodontal delivery of ipriflavone: newchitosan/PLGA film delivery system for a lipophilic drug. International Journalof Pharmaceutics.2003,252(1-2):1~9
    9J. Maria, A. Miguel, B. Kamel, et al. Importance of single or blended polymertypes for controlled in vitro release and plasma levels of a somatostatin analogueentrapped in PLGA/PLA microspheres. J. controlled Release.2004,96(3):437~448
    10M. Husmann, S. Schenderlein, M. Luck, et al. Polymer erosion in PLGAmicroparticles produced by phase separation method. International Journal ofPharmaceutics.2002,242(1-2):227~280
    11A. Hokugo, T. Takamoto, Y. Tabata. Preparation of hybrid scaffold from brin andbiodegradable polymer fiber. Biomaterials.2006,27:61~67
    12陈莉,赵保中,杜锡光.聚羟基乙酸及其共聚物的研究进展.化工新型材料.2002,30(3):11~15
    13N. Faisant, J. Siepmann, J. P. Benoit. PLGA-based microparticles: elucidation ofmechanisms and a new, simple mathematical model quantifying drug release.Eur J Pharm Sci.2002,15(4):355~366
    14K. Takahashi, I. Y. Kimura. Melt/solid polycondesation of glycolic acid to obtainhigh-molecular-weight poly (glycolic acid). Polymer.2000,41:8725
    15增田隆志.聚羟基乙酸化合物的直接合成.合成树脂与塑料.1991,39(8):34
    16Goosen, X. C. Zhang, U. P. Wyss, et al. An investigation of the synthesis andthermal stability of poly (d,1-lactide). Polymer Bulletin.1992,27:623
    17S. I. Kreiser, H. R. Kricheldorf. Polyactones39aIn lactate catalyzedcopolymerization of1-lactide with glycolide orε-caprolactone. Macromol ChemPhys.1998,199:1081
    18H. R. Kricheldorf, A. Serra. Polylactones6: influence of various metal salts onthe optical purity of poly (1-lactide). Polym Bull.1985,14:497
    19D Piotr, K.Janusz. Application of calcium acetylacetonate to the polymerizationof glycolide and copolymerization of glycolide withε-caprolactone and l-lactide. Macromolecules.1999,32:4735
    20景遐斌,陈学思,张新照,等.有机配体氨钙催化内酯开环聚合.中国专利,0012653412,2000
    21S. J. Lee, G. J. Lim, J. W. Lee, et al. In vitro evaluation of a poly(lactide-co-glycolide)–collagen composite scaffold for bone regeneration. Biomaterials.2006,27(18):3466~3472
    22F. Gao, D. Q. Wu, Y. H. Hu, et al. Extracellular matrix gel is necessary for invitro cultivation of insulin producing cells from human umbilical cord bloodderived mesenchymal stem cells. Chinese Medical Journal.2008,121(9):811~818
    23C. S. Young, H. Abukawa, R. Asrican, et al. Tissue-Engineered Hybrid Toothand Bone. Tissue Engineering.2005,11(9/10):1599~1610
    24X. F. Bruce, G. Chen. A Study Of Structure And Property Changees OfBiodegradable Polyglycolide And Poly(glycolide-co-lactide) Fibers DuringProcessing And Invitro Degradation. Chinese Journal of Polymer Science.2003,21:159~167
    25B. K. Mann, J. L. West. Cell adhesion peptides alter smooth muscle celladhesion, proliferation, migration and mat rix protein synthesis on modifiedsurfaces and in polymer scaffolds. J Biomed Mater Res.2002,60(1):86~93
    26Y. Zhu, K. S. Chian, M. B. Chan-Park, et al. Protein bonding on biodegradablepoly (L-lactide-co-caprolactone) membrane for esophageal tissue engineering.Biomaterials.2006,27(1):68~78
    27C. Calonder, H. W. Matthew, P. R. Van Tassel. Adsorbed layers of orientedfibronectin: a strategy to control cell-surface interactions. J. Biomed. Mate. ResA.2005,75(2):316~323
    28王东,冯新德.生物降解型聚酯的功能化及其亲水性的改善.高分子通报.1998,2:32~39
    29A. R. Boccaccini, J. J. Blaker, V. Maquet, et al. Preparation and characterisationof poly (lactide-co-glycolide)(PLGA) and PLGA/Bioglass composite tubularfoam scaffolds for tissue engineering applications. Materials Science andEngineering C.2005,25:23~31.
    30孙晋客,刘锋,范卫民.不同材料包埋的PGA支架对软骨细胞体外培养的影响.江苏医药.2006,32(7):642~644
    3124H. H. Lu, J. A. Cooper Jr. S. Manuel, et al. Anterior Cruciate LigamentRegeneration Using Braided Biodegradable Scaffolds: In Vitro OptimizationStudies. Biomaterials.2005,26(23):4805~4816
    32H. Kim, H. Suh, S. A. Jo, et al. In Vivo Bone Formation by Human MarrowStromal Cells in Biodegradable Scaffolds that Release Dexamethasone andAscorbate-2-phosphate. Biochem. Biophys. Res. Commun.2005,332(4):1053~1060
    33R. G. Thakar, F. Ho, N. F. Huang, et al. Regulation of Vascular Smooth MuscleCells by Micropatterning. Biochem. Biophys. Res. Commun.2003,307(4):883~890
    34X. B. Yang, D. Webb, J. Blaker, et al. Evaluation of Human Bone MarrowStromal Cell Growth on Biodegradable Polymer/Bioglass Composites. Biochem.Biophys. Res. Commun.2006,342(4):1098~1107
    35G. Chen, D. Liu, M. Tadokoro, et al. Chondrogenic Differentiation of HumanMesenchymal Stem Cells Cultured in a Cobweb-like Biodegradable Scaffold.Biochem. Biophys. Res. Commun.2004,322(1):50~55
    36D. Howard, K. Partridge, X. Yang. Immunoselection and Adenoviral GeneticModulation of Human Osteoprogenitors: In Vivo Bone Formation on PLAScaffold. Biochem Biophys Res Commun.2002,299(2):208~215
    37D. Z. Cai, C. Zeng, D. P. Quan, et al. Biodegradable chitosan scaffoldscontaining microspheres as carriers for controlled transforming growth factor-β1delivery for cartilage tissue engineering. Chinese Medical Journal.2007,120(3):197~203
    38K. Partridge, X. Yang, N. M. P. Clarke, et al. Adenoviral BMP-2Gene Transferin Mesenchymal Stem Cells: In Vitro and in Vivo Bone Formation onBiodegradable Polymer Scaffolds, Biochem. Biophys. Res. Commun.2002,292:144~152
    39A. Partridge, B. Yang, N. M. Clarke, et al. Adenoviral BMP-2Gene Transfer inMesenchymal Stem Cells: In Vitro and in Vivo Bone Formation onBiodegradable Polymer Scaffolds. Biochem. Biophys. Res. Commun.2005,292(1):147~153
    40M. Bokhari, R. J. Carnachan, N. R. Cameron, et al. Novel Cell Culture DeviceEnabling Three-dimensional Cell Growth and Improved Cell Function. Biochem.Biophys. Res. Commun.2007,354(4):1095~1100.
    41方丽茹,翁文剑,沈鸽等.骨组织工程支架及生物材料研究.生物医学工程学杂志.2003,20(1):148~152
    42R. Zhang, P.X. Ma. Porous poly (L-lactic acid)/apatite composite created bybiomimetic process. J Biomed Mater Res.1999,45(4):285
    43王得春,陈峥嵘,宋后燕等.聚乙醇酸负载同种异体软骨细胞移植修复兔关节软骨缺损.中华创伤杂志.1997,13(4):228~231
    44S. L. Ishaug-Riley, G. M. Grane, A. Gurlek, et al. Ectopic bone formation bymarrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolicacid)foams implanted into the rat mesentery. J Biomed Mater Ras.1997,36(1):1~8
    45曹军凯,王常勇,赵强等.组织工程化人工骨修复颅骨缺损的实验研究.中华实验外科杂志.2001,18(5):445~447
    46J. K. Sherwood, S. L. Riley, R. Palazzolo, et al. A Three-dimensionalosteochondral domposite scaffold for articular cartilage repair. Biomaterials.2002,23(24):4739~4751
    47任杰,贾晓真,王淑红等.三种高分子支架对骨髓基质细胞生长影响的研究.生物医学工程学杂志.2005,22(6):1185~1188
    48G. R. Evans, K. Brandt, S. Katz, et al. Bioactive poly(L lacticacid) conduitsseeded with Schwann cells for peripheral nerve regeneration. Biomaterials.2002,23(3):841~848
    49J. Mohammad, J. Shenaq, E. Rabinovsky, et al. Modulation of peripheral nerveregeneration:a tissue-engineering approach. The role of amnion tube nerveconduit across al-centimeter nerve gap. Plast Reconstr Surg.2000,105(2):660~666
    50王艳华,李曦光. PGA、PLGA及其共聚物支架在组织工程中的研究应用.锦州医学院学报.2004,25(3):60~62
    51T. Hadlock, J. Elisseeff, R. Langer, et al. A tissue engineered conduit forperipheral nerver repair. Arch Otlaryngol Head Neck Surg.1998,124(10):1081~1086
    52王晓冬,顾晓松,张沛云等.体外培养的施万细胞在平面和聚乙醇酸纤维网架上的迁移.解剖学报.2000,31(2):157~159
    53M. Gingras, I. Paradis, F. Berthod. Nerve regeneration in a collagen-chitosantissue-engineered skin transplanted on nude mice. Biomaterials.2003,24(9):1653~1661
    54Y. Yuan, P. Zhang, Y. Yang, et al. The interaction of Schwann cells with Chitosanmembranes and fibers in vitro. Biomaterials.2004,25(18):4273~4278
    5548J. Gao, L. E. Niklason, R. Langer. Surface hydrolysis of poly(glycolicacid)meshes increases the seeding density of vascular smooth muscle cells. JBiomed Mater Res.1998,42(3):417~424
    56X. S. Gu, P. Y. Zhang, X. D. Wang, et al. Dog Sciatic nerve gap repaired byartificial tissue nerve graft. Progress in Natural Science.2003,13(8):578~583
    57胡文,张天一,张沛云等.人工组织神经移植物引导大鼠再生坐骨神经通过10mm缺损早期的形态学观察.神经解剖学杂志.2006,22(2):147~152
    58J. Mayer, E. Karamuk, T. Akaike, et al. Matrices for tissue engineering-scaffoldstructure for a bioartificial liver support system. J Control Ralease.2000,64(1-3):81~90
    59Y. Nakanishi, G. Chen, H. komuro, et al. Tissue-engineered urinary bladder wallusing PLGA mash-collagen hybrid scaffolds:a comparison study of collagensponge and gel as a scaffold. J Pediatr Surg.2003,38(12):1781~1784
    60Y. Cao, J. P. Vacanti, K. T. Paige, et al. Transplantation of chondrocytes utilizinga polymer-cell construct produce tissue-engineered cartilage in the shape of ahuman of ear. Plastic and Reconstructive Surgery.1997,100(2):297~302
    61W. V. Giannobile, C. S. Lee, M. P. Tomala, et al. Platelet-deived growth factor(PDGF) gene delivery for application in periodontal tissue engineering. JPeriodontol.2001,72(6):815~823
    62K. S. Bohl, J. Shon, B. Rutherford, et al. Role of synthetic extracellular matrix indevelopment of engineered dental pulp. J Biomater Sci Polym Ed.1998,9(7):749~764
    63C. S. Young, S. Terada, J. P. Vacanti, et al. Tissue engineering of complex toothstructures on biodegradable polymer scaffolds. J Dent Res.2002,81(10):695~700
    64杨光辉,崔磊,刘伟等.利用聚羟基乙酸构建组织工程皮肤的实验研究.中华实验外科杂志.2003,20(11):984~986
    65H. Choi, B. H. Jeon, I. J. Chung. The Effect of Coupling Agent on Electrical andMechanical Properties of Carbon Fiber/Phenolic Resin Composites. Polymer.2000,41:3243~3252
    66A. S. Sarac. Nanocharacterization of Electrocoated Polymers on CarbonFibers. Microelectronic Engineering.2006,83:1534~1537
    67Marieta, E. Schulz, L. Irusta, et al. Evaluation of Fiber Surface Treatment andToughening of Thermoset Matrix on the Interfacial Behaviour of CarbonFiber-reinforced Cyanate Matrix Composites. Composites Science andTechnology.2005,65:2189~2197
    68S. Yoshio, I. Yuuji, I. Jajime. Microstructural Change of Pitch Derived CarbonMatrix in C/C Composite by Zone Treatment on Carbon Fiber. Carbon.1996,34(5):673~689
    69A. N. Sil, M. Pawlak, P. K. Mukherjee, et al. The Influence of Debye Plasma onthe Ground State Energies of Exotic Systems. Journal of QuantitativeSpectroscopy and Radiative Transfer.2008,109(5):873~880
    70V. Cech, R. Prikryl, R. Balkova, et al. Plasma Surface Treatment andModification of Glass Fibers. Composites Part A.2002,33:1367~1372
    71G. M. Wu. Oxygen Plasma Treatment of High Performance Fibers forComposites. Materials Chemistry and Physics.2004,85:81~87
    72H. C. Huang, D. Q. Ye, B. C. Huang. Nitrogen Plasma Modification ofViscose-based Activated Carbon Fibers. Surface and Coatings Technology.2007,201:9533~9540
    73S. J. Park, B. J. Kim. Influence of Oxygen Plasma Treatment on HydrogenChloride Removal of Activated Carbon Fibers. Journal of Colloid and InterfaceScience.2004,275(2):590~595
    74A. Miguel, R. J. Young. Raman Spectroscopy Study of HM Carbon Fibres:Effect of Plasma Treatment on the Interfacial Properties of Single Fibre/EpoxyComposites. Part I: Fibre characterization. Carbon.2002,40(6):845~855
    75J. I. Paredes, A. M. Alonso. Oxygen Plasma Modification of Submicron VaporGrown Carbon Fibers as Studied by Scanning Tunneling Microscopy. Carbon.2002,40(7):1101~1108
    76M. D. Garcia, F. J. Lopez-Garzon, M. Perez-Mendoza. Effect of Some OxidationTreatments on the Textural Characteristics and Surface Chemical Nature of anActivated Carbon. Journal of Colloid and Interface Science.2000,222:233~240
    77S. Kodama, H. Habaki, H. Sekiguchi, J. Kawasaki. Surface Modification ofAdsorbents by Dielectric Barrier Discharge. Thin Solid Films.2002,407:151~155
    78H. C. Wen, K. Yang, K. L. Qu, et al. Effects of Ammonia Plasma Treatment onthe Surface Characteristics of Carbon Fibers. Surface and Coatings Technology.2006,200:3166~3169
    79J. P. Boudou, J. I. Paredes, A. Cuesta, et al. Oxygen Plasma Modification ofPitch-based Isotropic Carbon Fibres. Carbon.2003,41:41~56
    80D. Lee, S. H. Hong, K. H. Paek, et al. Adsorbability Enhancement of ActivatedCarbon by Dielectric Barrier Discharge Plasma Treatment. Surface and CoatingsTechnology.2005,200:2277~2282
    81赵化侨.等离子体化学与工艺.中国科学技术大学出版社,1993:299~315
    82F. Epaillard, J. C. Brosse. Plasma Induced Polymerazation. Journal of AppliedPolymer Science.1989,38(5):889~898
    83J. P. Boudou, J. I. Paredes, A. Cuesta, et al. Oxygen Plasma Modification ofPitch-based Isotropic Carbon Fibres. Carbon.2003,41(1):41~56
    84H. Bubert, W. Brandl, S. Kittel, et al. Analytical Investigation of Plasma-treatedCarbon Fibres. Analytical and Bioanalytical Chemistry.2002,374(7):1237~1241
    85M. A. Montes-Moran, R. J. Young. Raman Spectroscopy Study of High-modulusCarbon Fibres: Effect of Plasma-treatment on the Interfacial Properties ofSingle-fibre-epoxy Composites. Part II: Characterisation of the Fibre-matrixInterface. Carbon.2002,40(6):857~875
    86C. Kaynak, O. Orgun, T. Tincer. Matrix and Interface Modification of ShortCarbon Fiber-reinforced Epoxy. Polymer Testing.2005,24:455~462
    87E. S. Pino, L. D. B. Machado, C. Giovedi. Improvement of Carbon Fiber SurfaceProperties using Electron Beam Irradiation. Nuclear Science and Techniques.2007,18:39~41
    88L. V. Galijeva, A. E. Ligachev, V. V. Sohoreva, et al. Irradiation Effects inCarbon Fibers after N+ion Irradiation. Surface and Coatings Technology.2007,201:8326~8328
    89H. Ishida, J. D. Miller. Substrate Effects on the Chemisorbed and PhysisorbedLayers of Methacryl Silane Modified Particulated Minerals. Macromolecules.1984,17:1659~1666
    90B. Pukánszky, E. Fekete. Adhesion and Surface Modification in Mineral Fillersin Thermoplastics. Raw Materials and Processing. Advance Polymer Science.1999,139:109~153
    91Z. Demjén, B. Pukánszky, E. F ldes, et al. Interaction of Silane Coupling Agentswith CaCO3. Journal of Colloid and Interface Science.1997,190:427~436
    92J. Móczó, E. Fekete, B. Pukánszky. Acide-base Interactions and InterphaseFormation in Particulate Filled Polymers. Journal of Adhesion.2002,78:861~875
    93苏继龙,郑书河.纤维增强复合材料中桥联纤维对裂纹的阻裂机理.纤维复合材料.2006,1:9~11
    94G. V r s, B. Pukánszky. Modeling of the Effect of a Soft Interlayer on the StressDistribution around Fibers: Longitudinal and Transverse Loading. MacromoluarMaterial Engineering.2002,287:139~148
    95O. Planin ek, R. Pi ek, A. Trojak. The Utilization of Surface Free-energyParameters for the Selection of a Suitable Binder in Fluidized Bed Granulation.International Journal of Pharmaceutics.2000,207:77~88
    96N. Dilsiz, N. K. Erinc, E. Bayramli, et al. Surface Energy and MechanicalProperties of Plasma-modified Carbon Fibers. Carbon.1995,33:853~858
    97X. Z. Zhang, Y. D. Huang, T. Y. Wang. Influence of Fibre SurfaceOxidation–reduction Followed by Silsesquioxane Coating Treatment onInterfacial Mechanical Properties of Carbon Fibre/polyarylacetylene Composites.Composites Part A.2007,38:936~944
    98W. M. Chen, Y. H. Yu, P. Li, et al. Effect of New Epoxy Matrix for T800CarbonFiber/Epoxy Filament Wound Composites. Composites Science and Technology.2007,67:2261~227
    99段良福,刘文鹏,李炳海.硅烷偶联剂对HDPE/木粉复合材料性能的影响.塑料科技.2006,34:36~39
    100D. M. Laura, H. Keskkula, J. W. Barlow, et al. Effect of Glass Fiber SurfaceChemistry on the Mechanical Properties of Glass Fiber Reinforced,Rubber-toughened Nylon6. Polymer.2002,43:4673~4687
    101R. E. Jensen, S. H. McKnight. Inorganic–organic Fiber Sizings for EnhancedEnergy Absorption in Glass Fiber-reinforced Composites Intended for StructuralApplications. Composites Science and Technology.2006,66:509~521
    102L. Li, X. B. Liu. Mechanical and Thermal Properties Study of Glass FiberReinforced Polyarylene Ether Nitriles. Materials Letters.2007,61:2239~2242
    103J. G. Iglesias, J. González-Benito, A. J. Aznar, et al. Effect of Glass FiberSurface Treatments on Mechanical Strength of Epoxy Based CompositeMaterials. Journal of Colloid and Interface Science.2002,250:251~260
    104S. Debnath, S. L. Wunder, J. I. McCool, et al. Silane Treatment Effects onGlass/resin Interfacial Shear Strengths. Dental Materials.2003,19:441~448
    105H. Zhang. Z. Zhang, C. Breidt. Comparison of Short Carbon Fibre SurfaceTreatments: Enhancement of the Mechanical Properties. Composites Science andTechnology.2004,64:2021~2029
    106周祝林,姚辉,孙佩琼.树脂基纤维复合材料界面理论评述.玻璃钢/复合材料.2006,1:27~31
    107A. Perry, C. Neipert, B. Space. Theoretical Modeling of Interface SpecificVibrational Spectroscopy: Methods and Applications to Aqueous Interfaces.Chemical Review.2006,106:1234~1258
    108N. Dilsiz, E. Ebert, W. Weisweiler, et al. Effect of Plasma Polymerization onCarbon Fibers Used for Fiber/Epoxy Composites. Journal of Colloid andInterface Science.1995,170:241~248
    109胡康洪,姚颖.三维细胞培养技术的研究与应用.医学分子生物学杂志.2008,5(2):185~188
    110S. L. Voytik-Harbin. Three dimensional extracellular matrix substrates for cellculture. Methods Cell Biol.2001,63:561-581
    111I. A. Alav, D. G. Stupack, Cell survival in a three-dimensional matrix. MethodsEnzymol.2007,426:85~101
    112F. Pampaloni, E. G. Reynaud, E. H. K. Stelzer. The third dimension bridges thegap between cell culture and live tissue. Nat Rev Mol Cell Biol.2007,8(10):839~845
    113Y. C. Wang, M. C. Lin, D. M. Wang, et al. Fabrication of a novel porousPGA-chitosan hybrid matrix for tissue engineering. Biomaterials.2003,24(6):1047~1057
    114G. A. Ameer, T. A. Mahmood, R. Langer. A biodegradable composite scaffoldfor cell transplantation. Journal of Orthopaedic Research.2002,20(1):16~19
    115S. L. Ishaug-Riley, L. E. Okun, G. Prado, et al. Human articular chondrocyteadhesion and proliferation on synthetic biodegradable polymer films.Biomaterials.1999,20(23-24):2245~2256
    116H. H. Lu, A. J. J. Cooper, S. Manuel, et al. Anterior cruciate ligamentregeneration using braided biodegradable scaffolds: in vitro optimization studies.Biomaterials.2005,26:4805~4816
    117C. Y. Hsieh, S.P. Tsai, D. M. Wang, et al. Preparation of γ-PGA/chitosancomposite tissue engineering matrices. Biomaterials.2005,26(28):5617~5623
    118G. E. Park, M. A. Pattison, K. Park, et al. Accelerated chondrocyte functions onNaOH-treated PLGA scaffolds. Biomaterials.2005,26(16):3075~3082
    119H. Pan, H. Jiang, W. Chen. Interaction of dermal broblasts with electrospuncomposite polymer scaffolds prepared from dextran and polylactide-co-glycolide. Biomaterials.2006,27(17):3209~3220
    120R. Calafiore, G. Basta, G. Luca, et al. Standard technical procedures formicroencapsulation of human islets for graft into nonimmunosuppressedpatients with type1diabetes mellitus. Transplantation Proceedings.2006,38(4):1156~1157
    121B. W. Tobin, S. K. Leeper-Woodford, B. B. Hashemi, et al. Altered TNF-alpha,glucose, insulin, and amino acids in islets of Langerhans cultured in amicrogravity model system.Am J Physiol Endocrinol Metab.2001,280(1):E92~102
    122吴林波,丁建东.组织工程三维多孔支架的制备方法和技术进展.功能高分子学报.2003,16:91~96
    123B. Chiu, J. Z. Wan, D. Ableyb, et al. Induction of vascular endothelial phenotypeand cellular proliferation from human cord blood stem cells cultured insimulated microgravity. Acta Astronautica.2005,56(9/12):918~922
    124V. E. Mevers, M. Zavzafoon1, J. T. Douglas, et al. RhoA and CytoskeletalDisruption Mediate Reduced Osteoblastogenesis and Enhanced Adipogenesis ofHuman Mesenchymal Stem Cells in Modeled Microgravity. Journal of bone andmineral research.2005,20(10):1858~1866
    125T. G. Hammond, J. M. Hammond. Optimized suspension culture: therotating-wall vessel. Am J Physiol Renal Physiol.2001,281(1): F12~25
    126V. I. Khaoustov, D. Risin, N. R. Pellis, et al. Microarray analysis of genesdifferentially expressed in HepG2cells cultured in simulated microgravity:preliminary report. In Vitro Cell Dev Biol Anim.2001,37(2):84~88
    127J. L. Becker, P. R. Papenhausen, R. H. Widen. Cytogenetic,morphologic andoncogene analysis of a cell line derived from a heterologous mixed mulleriantumor of the ovary. In Vitro Cell Dev Biol Anim.1997,33(5):325~331
    128B. Yoffe, G. J. Darlington, H. E. Soriano, et al. Cultures of human liver cells insimulated microgravity environment. Adv Space Res.1999,24(6):829~836
    129M. Zatzafoon, W. E. Gathings, J. M. Mcdonald. Modeled Microgravity InhibitsOsteogenic Differentiation of Human Mesenchymal Stem Cells and IncreasesAdipogenesis. Endocrinology.2004,145(5):2421~2432
    130J. M. Jessup, M. Frantz, A. E. Sonmez, et al. Microgravity culture reducesapoptosis and increases the differentiation of a human colorectal carcinoma cellline. In Vitro Cell Dev Bio Animal.2000,36(6):367~373
    131B. R. Unsworth, P. I. Lelkes. Growing tissues in microgravity. Nat Med.1998,4(8):901~907
    132L. E. Freed, N. Pellis, N. Searby, et al. Microgravity cultivation of cells andtissues. Gravit Space Biol Bull.1999,12(2):57~66
    133L. L. Licato, E. A. Grimm. Multiple interleukin-2signaling pathwaysdifferentially regulated by microgravity. Immunopharmacology.1999,44(3):273~279
    134何川,邓廉夫,朱雅萍.旋转系统下的三维培养成纤维细胞PGA复合物的实验研究.中华外科杂志.2003,41(3):214~217
    135L. P. Rutzky, S. Bilinski, M. Kloc, et al. Microgravity culture condition reducesimmunogenicity and improves function of pancreatic islets. Transplantation.2002,74(1):13~21
    136G. f. Liu, Z. J. He, D. P. Yang, et al. Decellularized aorta of fetal pigs as apotential scaffold for small diameter tissue engineered vascular graft. ChineseMedical Journal.2008,121(15):1398~1406
    137S. D. Agostino, F. Botti, A. D. Carlo, et al. Meiotic progression of isolatedmouse spermatocytes under simulated microgravity. Reproduction.2004,128(1):25~32
    138R. P. Schwarz, T. J. Goodwin, D. A. Wolf. Cell culture for three-dimensionalmodeling in rotating-wall vessels:an application of stimulated microgravity. JTiss Cult Meth.1992,14(2):51~58
    139L. Margolis, S. Hatfill, R. Chuaqui, et al. Long term organ culture of humanprostate tissue in a NASA-designed rotating wall bioreactor. J Urol.1999,161(1):290~297
    140S. Falsafi, R. J. Koch. Growth of tissue-engineered human nasoseptal cartilagein simulated microgravity. Arch Otolaryngol Head Neck Surg.2000,126(6):759~765
    141O. Kwon, M. Sartor, C. R. Tomlinson, et al. Effect of simulated microgravity onoxidation-sensitive gene expression in PC12cells. Adv. Space Res.2006,38(6):1168~1176
    142N. Mahmoudifar, P. M. Doran. Tissue Engineering of Human Cartilage inBioreactors Using Single and Composite Cell-Seeded Scaffolds. Biotechnol.Bioeng.2005,91(3):338~355
    143G. K. Gorti, J. Lo, S. Falsafi, et al. Cartilage tissue engineering using cryogenicchondrocytes. Arch Otolaryngol Head Neck Surg.2003,129(8):889~893
    144H. E. Zhau, T. J. Goodwin, S. M. Chang, et al. Establishment of athree-dimensional human prostate organoid coculture undermicrogravity-simulated conditions: evaluation of androgen-induced growth andPSA expression. In Vitro Cell Dev Biol Anim.1997,33(5):375~380
    145L. L. Licato, V. G. Prieto, E. A. Grimm. A novel preclinical model of humanmalignant melanoma utilizing bioreactor rotating-wall vessels. In Vitro Cell DevBiol Anim.2001,37(3):121~126
    146H. W. Rhee, H. E. Zhau, S. Pathak, et al. Permanent phenotypic and genotypicchanges of prostate cancer cells cultured in a three-dimensional rotating-wallvessel. In Vitro Cell Dev Biol Anim.2001,37(3):127~140
    147L. E. Freed, A. P. Hollander, I. Martin, et al. Chondrogenesis in a cell-polymer–bioreactor system. Exp Cell Res.1998,240(1):58~65
    148L. E. Freed, R. Langer, I. Martin, et al. Tissue engineering of cartilage in space.Proc Natl Acad Sci USA.1997,94(25):13885~13890
    149K. D. Song, T. Q. Liu, X. Q. Li, et al. Three-dimensional fabrication ofengineered bone in rotating wall vessel bioreactor. Progress in Biochemistry andBiophysics.2004,31(11):996~1005
    150S. Terada, H. Yoshimoto, J. R. Fuchs, et al. Hydrogel optimization for culturedelastic chondrocytes seeded onto a polyglycolic acid scaffold. J. Biomed. Mater.Res A.2005,75(4):907~916
    151M. S. Detamore, K. A. Athanasiou. Use of a Rotating Bioreactor Toward TissueEngineering the Temporomandibular Joint Disc. Tissue Engineering.2005.11(7-8):1188~1197
    152J. Riesle, A. P. Hollander, R. Langer, et al. Collagen in tissue-engineeredcartilage: Types, structure, and crosslinks. J Cell Biochem.1998,71(3):313~327
    153Q. Q. Qiu, P. Duchevne, P. S. Avvaswamv.3D bone tissue engineered withbioactive microspheres in simulated microgravity. In Vitro Cell Dev Biol Anim.2001,37(3):157~165
    154L. E. Freed, I. Martin, G. Vunjak-Novakovic. Frontiers in tissue engineering. Invitro modulation of chondrogenesis. Clin Orthop Relat Res.1999,(367Suppl):S46~58
    155B. Yoffe, G. J. Darlington, H.E. Soriano, et al. Cultures of human liver cells insimulated microgravity environment. Adv Space Res.1999,24(6):829~836
    156V. I. Khaoustov, G. J. Darlington, H. E. Soriano, et al. Induction ofthree-dimensional assembly of human liver cells by simulated microgravity. Invitro Cell Dev Biol Anim.1999,35(9):501~50
    157J. Beck, R. Angus, B. Madsen, et al. Islet Encapsulation: Strategies to EnhanceIslet Cell Functions.Tissue Engineering.2007,13(3):589~599
    158F. T. Thomas, A. Hutchings, J. Contreras, et al. Islet Transplantation in theTwenty-First Century. Immunol. Res.2002,26(1-3):289~296
    159R. P. Robertson, C. Davis, J. Latsen, et al. Pancreas and Islet TransplantationDorpatients with Diabetes. Diabetes Care.2000,23(1):112~118
    160I. Todoroy, I. Nair, K. Ferreri, et al. Multipotant progenitor cell lsolated fromadult human pancreatic tissue.Transplantation Proceeding.2005,37(8):3420~3421
    161H. Dellê, M. H. Saito, P. M. Yoshimoto, et al. The use of lodixanol for thepurification of rat pancreatic islets. Transplantation Proceedings.2007,39(2):467~469
    162J. A. Emamaullee, A. M. Shapiro. Factors Influencing the Loss of-Cell Massin Islet Transplantion.Cell Transplantation.2007,16(1):1~8
    163P. Bucher, Z. Mathe, D. Bosco, et al. Microbial Surveillance During HumanPancreatic Islet Isolation.Transplantation Proceedings.2004,36(4):1147~1148
    164M.A. Frutos, P. Ruiz, J. J. Mansilla. Pancreas Donation for Islet Transplantation.Transplantation Proceedings.2005,37(3):1560~1561
    165M. Brissova, M. J. Fowler, W. E. B. Nicholson, et al. Assessment of HumanPancreatic Islet Architecture and Composition by Laser Scanning ConfocalMicroscopy. Journal of Histochemistry&Cytochemistry Volume.2005,53(9):1087~1097
    166R. Calafiore, G. Basta, G. Luca. Standard Technical Procedures forMicroencapsulation of Human Islet for Graft into NonimmunosuppressedPatients with Type1DiabetesMellitus. Transplantation Proceedings.2006,38(4):1156~1157
    167K. Takashi, A. Takehide, J. Kazuhiko, et al. Effectiveness of HydroxyethylStarch (HES) on Puri cation of Pancreatic Islets. Journal of Surgical Research.2003,111(1):16~22
    168X.H. Tian, W.J. Xue, X.M. Ding, et al. Small Intestinal Submucosa ImprovesIslet Survival and Function in Vitro Culture. Transplantation Proceedings.2006,38(5):1552~1558
    169W.G. Tsang, T. Zheng, Y. Wang, et al. Generation of functional islet-like clustersafter monolayer culture and intracapsular aggregation of adult human pancreaticislet tissue. Transplantation.2007,83(6):685~693
    170J.A.Emamaullee, L.Stanton, C. Schur, et al. Caspase inhibitor therapy enhancesmarginal mass islet graft survival and preserves long-term function in islettransplantation. Diabetes.2007,56(5):1289~1298
    171I. Hilwig, S. Schuster, W. Heptner, et al. On the growth of the pancreatic cells ofmammals as monolayer cultures. I. Culture methods, morphology and insulincontent. Z Zellforsch Mikrosk Anat.1968,90(3):333~346
    172申哲洙,王有德.胰岛细胞移植的现况.吉林医学.2001,22(5):262~265
    173C. J. Swanson, B. J. Olack, D. Goodnight, et al. Improved Methods for theIsolation and Purification of Porcine Islets.Human Immunology.2001,62(7):739~749
    174E.A. Ryan, R.T. Lakey, B. W. Paty, et al. Successful Islet Transplantation:Continued Insulin Reserve Provides Long-Term Glycemic Control. Diabetes.2002,51(7):2148~2157
    175O. Cabrera, D. M. Berman, N. S. Kenyon, et al. The unique cytoarchitecture ofhuman pancreatic islets has implications for islet cell Function. Proc Natl AcadSci USA.2006.103(7):2334~2339
    176A. M. Shapiro,J. R. Lakey,E. A. Ryan,et al. Islet transplantation in sevenpatients with type1diabetes mellitus using a glucocorticoid-freeimmunosuppressive. N Engl J Med.2000,343(4):230~238
    177胡远峰,徐静娟,董维平等.人胎胰岛体外预处理和我国的临床胰岛移植.中华器官移植杂志.1995,16(4):149~151
    178汪锦林,朱文玉,赵雅丽等.新生大鼠胰岛细胞的体外单层培养及其胰岛素释放的研究.北京医科大学学报.1987,19(2):79~81
    179朱铁虹,畅继武,尹潍等.大鼠胰岛细胞单层培养模型的建立和应用.天津医药.1998,26(7):421~422
    180T. Berney, L. Bühler, A. Caulfield,et al. Transplantation of islets of Langerhans:new cultures. Swiss Med Wkly.2001,131(47-48):671~680
    181R. M. Smith, E. A. Gale. Survival of the Fittest? Natural Selection in IsletTransplantation. Transplantation,2005,79(10):1301~1303
    182B. Kuttler, A. Hartmann, H. Wanka. Long-term culture of islets abrogatescytokineinduced or lymphocyte-induced increase of antigen expression oncells. Transplantation.2002,74(4):440~445
    183A. Omer, V. F. Duvivier-Kali, N. Trivedi, et al. Survival and maturation ofmicroencap sulated porcine neonatal pancreatic cell clusters transplanted intoimmunocompetent diabetic mice. Diabetes.2003,52(1):69~75
    184H. Sato, T. Kobayasi, M. Murakami, et al. Improving function and survival ofporcine islet xenografts using microencapsulation and culture preconditioning.Pancreas.2002,25(3):42~49
    185K. H. Yoon, R. R. Quikel, K. Tatarkieuicz, et al. Differentiation and expans ionof beta cell mass in porcine neonatal pancreatic cell clusters transplanted intonude mice. Cell Transplant.1999,8(6):673~689
    186D. A. Mackenzie, D. A. Hullett, H. W. Sollinger. Xenogeneictransplantation ofPorcine islets: an overview. Transplantatation.2003,76(6):887~891
    187贺德詹文华蔡世荣等.三种消化酶在大鼠胰岛分离、纯化中的效果比较.中华实验外科杂志.2003,20:434~435
    188崔云莆王贵玉孙继和等.胰岛分离后中央细胞损害的研究.中华实验外科杂志.2004,21:182~183
    189R. G. Bretzel. Current status and perspectives in clinical islet tansplatation. JHepatobiliary Pancreat Sur.2000,7:370~373

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700