用户名: 密码: 验证码:
基于水化学和同位素的高寒山区雨季径流过程示踪
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
径流补给来源与汇流路径为核心的径流机制研究是河道径流研究的关键内容。只有了解河道径流的形成机制,才能预测气候变化和人类活动可能对其产生的影响,实现降雨水资源的科学管理。只有查明径流的形成过程,才能分析植被对其汇流路径的影响,以及河道径流各补给来源在子流域内的再分配对植被格局的控制作用。
     雨季河道径流的形成涉及到子流域内的各种产、汇流过程。这些过程呈具有时空差异性,存在着复杂的相互作用。传统的水文学研究径流形成机制是基于降雨量与河道流量的观测和统计规律的黑箱式研究,其结果存在不准确性,而且无法对降雨降落地面后其活动路径等许多科学问题进行解答。边坡或子流域内密集的物理观测可提供更为直观和翔实的数据,但因成本昂贵,只能在少数设备较好的试验性小流域中实现。此外,同一物理参数(如地下水位、土壤含水量等)可能对不同的产、汇流过程产生相似的响应格局,两者间不具有唯一对应关系,导致研究结果具多解性。同位素水文学随着质谱仪的诞生和测试技术的不断完善,使精确测定水稳定同位素变化成为可能,从而使稳定同位素技术被广泛应用于现代水文学中。同位素技术在水文学方面的应用主要有天然降水同位素分布,水体蒸发过程中同位素的变化,地下水年龄、补给来源的测定,流域产流机制的研究,流量过程线划分等,但水同位素无法指示自身经过的路径。而水中溶解的化学物质可以很好的揭开这道面纱。因此综合运用同位素和化学示踪剂研究河道径流过程成为研究的热点。
     大量研究集中在发达国家气候温和湿润的森林小流域,大多是以洪水预测为目的的暴雨径流研究。后来逐渐有人对高寒山区径流研究,其中针对春季融雪径流和气候变化的较多,但针对寒区有冰川补给来源的雨季径流过程、高山区完整水文循环规律和不同高度带各种水文下垫面的对比研究比较少,得出的一些结论还存在争议。诸如各高度带水文单元的水分来源的贡献率分别是多少,映射出雨季不同水文下垫面下径流过程有什么不同等。随着对高山寒区雨季径流重要性认识的提高,基于高山寒区特殊下垫面河道径流的研究也纳入了科学研究日程。
     黑河流域是西北地区典型的内陆河流域,其上游山区也是我国高寒区的典型代表,源于该区的径流是黑河的重要补给来源,在区域乃至全流域水循环中起着重要作用。高山区气候寒冷,植被垂直分带明显,子流域内广泛分布弱透水的冻土层、强导水的松散覆盖层和腐殖质含量丰富的栗钙土,下垫面条件比较复杂。前人在黑河上游开展了大量的水文学和生态水文学研究。因此,雨季黑河上游山区为河道径流过程的同位素和水化学示踪研究提供了理想的场所和相应基础。
     综合上述背景,结合学科前沿和实际需要,本研究选取黑河上游葫芦沟小流域为研究区,基于稳定同位素和水文化学数据,以不同高度带各种水体为研究对象,定量识别雨季各高度带河道径流的水分补给来源、降雨汇流路径及其动态变化,揭示雨季不同高度带水文下垫面的差异对径流过程的影响机制。
     1.环境示踪剂特征
     结合景观分带和海拔高度,把研究区分为高山寒漠带、高山草甸带、高山灌丛带、高山草原带。在研究区四个高度带采集周降雨样品70组,冰雪融雪水10组,河水样品55组,地下(泉水)样品25组,进行了氘氧同位素、水化学常量元素、微量元素、溶解无机碳(DIC)等指标的测试。通过对同位素和水化学测试数据的综合分析,发现:
     1)氘氧同位素特征
     葫芦沟流域地处西北内陆,观测期间,研究区降水中稳定同位素6D和6180值偏负,表现出明显的大陆效应。根据降水的同位素6D和δ18O值,通过回归分析求得葫芦沟流域雨季氘氧关系方程为6D=9.396180+22.36(R2=0.93,n=68),降水方程中6D和δ18之间有很好的相关性。与搜集的就近台站-野牛沟降水线相比,斜率截距均偏大,这说明雨季降水云团形成过程中气、液两相同位素不平衡分馏的程度偏大。研究区雨季气温升高,蒸发量增大使得地面水汽富集重同位素,δ值较大的地面蒸汽与δ值较小的降雨发生交换强烈,表现出明显的局地水汽内循环效应。
     葫芦沟流域降雨同位素组成随着海拔升高,δ D值逐渐降低,即降雨同位素海拔效应;与降雨量存在负相关性,降雨量效应明显。降雨同位素时空异质性比较大,这往往是被用于径流分割时导致结果不确定性的因素之一。
     研究区降雨、冰雪融水、地下水和河水同位素6值具有明显的差异,冰雪融水氘同位素贫化,δ D值最负,降雨次之,地下水氘同位素最富集,δ D值相对偏正,河水氘同位素6D值比冰雪融水和降雨偏正,比地下水偏负。
     2)水化学示踪剂特征
     对雨季研究区冰雪融水、降雨、地下水、河水中Cl-、可溶解固体(TDS)、溶解Si和DIC水化学示踪剂测试数据分析发现:
     a.水中Cl-特征
     水中Cl-浓度降雨最低,冰雪融水经过短时间水岩作用较降雨高,地下水最高,河水低于地下水。河水中Cl-沿流程逐渐增大,即流程效应。除河水流动过程中的蒸发浓缩和地表岩石冲刷溶虑作用外(上述因素影响比较小),更主要的原因是可能是地下水贡献率在随流程增大,表现出地下水作为基流补给的河流水化学特征。
     b.其它水化学示踪剂特征
     可溶解固体(TDS)、溶解si和DIC水化学示踪剂表现出与C1-相似的特征,它们在冰雪融水、降雨、地下水、河水中都具有明显的区别,表现出沿流程增大,即流程效应。
     2.各高度带河流补给来源
     上述环境示踪剂的分析表明,河水应是多源混合补给的结果。河道径流是降雨、冰雪融水、地下水共同补给的结果。基于6D/Cl-对四个高度带雨季径流进行分割,结果表明:雨季,高山寒漠带冰雪融水贡献率在0-79%之间,降雨贡献率在11~76%之间,地下水贡献在7-23%之间。高山草甸带冰雪融水贡献率在0~-77%之间,降雨贡献率在9~76%之间,地下水贡献率在4-24%之间;高山灌丛带冰雪融水贡献率在0-55%之间,降雨贡献率在18~67%之间,地下水贡献率在11~44%之间;高山草原带冰雪融水贡献率在0~48%之间,降雨贡献率在0-58%之间,地下水贡献率在33~58%之间。各高度带冰雪融水贡献率先下降后上升,雨季初期和晚期最高,晚期暂时性积雪融水贡献率较大;降雨贡献率在雨季中期最高;地下水贡献率随时间波动幅度较小,随过程变化比较明显,高山寒漠带和高山草甸带比较低,高山草原带最高。
     3.不同高度带降雨汇流路径
     溶解Si和DIC具有反应示踪剂“活性”特征,在降雨径流中的浓度,只有流经无机层的部分发生变化,基于这种特性对雨季降雨汇流路径示踪发现:
     1)无机层上流
     结合溶解Si和DIC的降雨汇流路径示踪研究发现,不同高度带降雨汇流路径时空变化不同。高山草原带有机层较厚,利于降雨下渗,很难产生传统意义上的坡面流。降雨发生在有机层与无机层交界面上常产生无机层上流。
     2)冻土对汇流路径的作用
     雨季高山草原带冻土基本已全部消融,与较高海拔带冻土未消融下径流对比分析发现:高山草原带降雨入渗率高,是该地带径流地下水贡献率最高的主要原因之一;高山灌丛带冻土弱透水性对降雨汇流径流有一定的限制作用,一是限制降雨入渗补给深层地下水,二是限制深层地下水向地表水转化。冻土融失后,降雨入渗率增大,坡面流很少发生,地下水在基岩收窄处水位抬升,转化为地表径流,常见泉水初露地表。高山草甸带冻土消融后,渗透系数明显增大,河道径流出现渗漏现象。高山寒漠带降雨入渗冰碛物,一部分转化为裂隙孔隙水,一部分汇入冰碛物堆积形成的地下暗河,最终补给地表径流。
Runoff mechanism that focuses on recharge sources of runoff and confluence pathways is a key problem of studies on surface runoff. A good understanding of formation mechanism of surface runoff adds to prediction of the influence by climate change and human activities, and scientific management of rainwater. A well knowledge of runoff formation is necessary to understand the impact of vegetation on its confluence pathways, as well as the control of redistribution of runoff recharge sources within a watershed on vegetation pattern.
     The formation of surface runoff during rainy season includes a variety of runoff generation and confluence processes within a watershed, which are different in temporal and special patterns. Traditional hydrological studies on formation mechanism of runoff were based on observation of rainfall, runoff and their statistical analysis. The black-box studies usually obtain inaccurate results that can not answer many important questions such as pathway after rainwater falling down the ground surface. Concentrated physical observation within a small watershed can provide more intuitive and detailed data, but it can only be carried out in the small-scale test fields due to high cost.Moreover, the same one physical parameter, such as groundwater table and soil moisture content, may produce similar responses in different runoff generation and confluence processes. They have no uniqueness and lead to multiple results. However, a combination of stable isotopic and chemical tracers can provide an important tool to trace surface runoff processes.
     Most previous studies focused on small-scale forested watersheds under mild climate in the developed countries, and on rainstorm runoff that serve flood prediction. As for runoff researches in the high-altitude and cold mountain areas, most studies were snowmelt runoff process in spring or runoff process under climate change, but studies on runoff process in rainy season that is partly recharged by glacier, hydrological cycle in the high-altitude mountain, and hydrological underlying surface located in different altitude areas are scarce. How much contribution from each water source in a hydrological unit at different height and how much difference of runoff process at different hydrological underlying surface in rainy season are controversial. Since the runoff in rainy season in high-altitude and cold mountain areas has important significance, the runoff process at hydrological underlying surface is beginning to be concerned.
     The Heihe River watershed is a typical inland river watershed in northwestern China. The Heihe river is originated from the high-altitude and cold Qilian Mountains that play an important role in water cycle in the regional and whole watershed as a vital recharge source of the river. The high-altitude mountain area has a cold climate and vertical vegetation zonation as well as complex underlying surface conditions, where widely distribute permafrost of low water permeability, loose covering of high water permeability, and chestnut soil that is rich in humus. A lot of work about hydrology and ecological hydrology were carried out in the upper reaches of the Heihe River and accumulated valuable data. Therefore, the mountain areas of the upper reaches of the Heihe River is an ideal site to carry out surface runoff processes in rainy season in high-altitude and cold mountain areas based on stable isotopic and chemical tracers.This study was conducted in a small watershed of Hulugou in the upper stream of the Heihe River using stable isotopic and chemical data, and aimed to identify water recharge sources of surface runoff in the rainy season at different landscape, to trace confluence pathway of rainwater and its dynamic changes, and to reveal the impact mechanism of the difference among hydrological underlying surface at the different landscape on runoff processes. It can be concluded from the following three aspects.
     1. Characteristic of water Environmental tracers
     Combining the landscape zoning with altitude, the study area can be divided into four zones. The four zones are alpine cold desert, alpine meadow, alpine shrubland, and alpine grasslands. Water samples for hydrochemical analysis were collected in four landscape belts in the study area, including70sets of rain samples,10sets of meltwater samples,55sets of river water samples, and25sets of spring samples. The deuterium and oxygen isotope, hydrochemical major elements, trace elements, and the dissolved inorganic carbon of different samples were tested and analyzed. Through the composite analysis of isotopic and water chemical test data, this article ascertained the following key conclusions.
     1) Characteristics of the deuterium and oxygen isotope
     The Hulugou watershed is located in the Northwest Inland. Stable isotopes δD and δ18O in rainfall show more negative than the standard atmospheric precipitation line on the basis of observation during the observation period. Based on the value of stable isotopes δ D and δ18O in rainfall, we obtained the deuterium oxygen relationship equation(δ D=9.395δ8O+22.36(R2=0.93)) of Hulugou watershed in rainy season. By regression analysis, the δ D and δ18O have good correlation in the equation. Compared with precipitation line collected from the nearest station, the slope intercept is larger. This indicates that gas-liquid two-phase isotopic disequilibrium fractionation degree is large during the formation of precipitation clouds in rainy season. High temperature in rainy season makes evaporation increases, this lead to ground water vapor enriched in heavy isotopes. Ground water vapor which is rich in heavy isotopes and rainfall that contains less heavy isotopes generating a strong exchange, showing apparent local moisture circulation effect.
     The stable isotopes8D and δ18O in rainfall in Hulugou watershed reduced as the elevation rise, namely precipitation isotope altitude effect. It also has negative correlation with rainfall, and rainfall effect is obvious. Rainfall isotope temporal and spatial heterogeneity is large,which is one of the factors of uncertain results when used for runoff divided.
     2) Characteristics of hydrochemical tracers
     We analysis the hydrochemical tracers about snowmelt, rainfall, groundwater, Cl-in the water, total dissolved solids (TDS), dissolved Si and DIC in the study area during the rainy season, and found some regularity,
     a. Characteristics of Cl-in the water
     Concentration of Cl-in the water is the minimum, through a short period of water-rock interaction, the snowmelt's concentration is higher than rainfall, groundwater's concentration is the maximum, and the river is lower than groundwater. Concentration of Cl-in the water is increased gradually along the process, which is called the process effect. In addition to the evaporation, concentration, scour and solution with the rock on the surface(the impact of the above factors is small),the more important reason may be the contribution rate of groundwater is increased along the process, showing the river's characteristics of hydrochemica, that the groundwater is regarded as the supply of base flow.
     b.Characteristics of other hydrochemical tracers
     The characteristics of total dissolved solids (TDS), dissolved Si and DIC is similar with Cl, and they have significant differences in the snowmelt, rainfall, groundwater and river, showing the characteristics that increase along the process.
     2. Identify water recharge sources of surface runoff in the rainy season at different Landscape belt
     In the rainy season, the temperature is very high, the speed of ice and snow's melting reached the peak of the year, rainfall runoff is actually the outcome of combined action of rainfall, snow's melting water, groundwater, as a result, the time of ice resupply river in rainy season runoff is the biggest annual runoff. Based on the δD/Cl-segmenting the rainy season runoff with our height, the results show:during the study period, the contribution rate of ice and snow's melting water that on alpine cold desert is between0-79%, the contribution of rainfall is between11-76%, the contribution of groundwater is between7-23%. The contribution of ice and snow's melting water on alpine meadow is between0-77%, the rate of rainfall's contribution between9-76%, the contribution rate of groundwater is between4-24%; on alpine shrubland, ice and snow melting water's contribution rate is between0-56%, rainfall's contribution rate is between18-67%, groundwater's contribution rate is between11-44%; on alpine grasslands, ice and snow melting water's contribution rate is between0-48%, rainfall's contribution rate is between0-58%, groundwater's contribution rate is between33-58%. Ice and snow melting water's contribution on all landscape belts are the first falling and after rising, early and late rainy season is highest, in the late temporary snow melting water's contribution is larger; Rainfall's contribution rate is highest in the middle of the rainy season; Groundwater's contribution rate volatiles smaller over time, the change along the process is obvious. In alpine cold desert and alpine meadow shrubland,the change is lower, and in alpine grasslands is the highest.
     3. The impact mechanism of the difference among hydrological underlying surface at the different landscape on runoff processes.
     Combined the study on convergence pathways tracer of rainfall dissolving Si and DIC, we found that the temporal and spatial variation of the convergence path tracer of rainfall is different at different heights area. It's difficult to produce overland flow in the traditional sense because of the thick organic layer in alpine grasslands, which is conducive to rainfall infiltration. Rainfall occurred in the junction surface of an organic layer and an inorganic layer often produce inorganic layer upflow. There are certain restrictions on rainfall convergence and runoff caused by the frozen soil's weak permeable in alpine shrub area:one is to limit the rainfall infiltrate and recharge deep groundwater,the other is to limit deep groundwater to transform into surface water. Springs appear because the rainfall infiltration rate increase, overland flow decrease and groundwater rise in the narrow bedrock after the melt of frozen soil. The permeability coefficient increased significantly and river runoff began to leak after the melt of frozen soil in alpine meadow shrub area. Snow meltwater in the upstream may recharge the area from non-normal river. The rainfall, part of which into fractured pore water and another import underground river, infiltrate into moraine, recharge surface runoff at last.
引文
[1]刘昌明.二十一世纪中国水资源若干问题的研究[J].水利水电技术,2002,23(1):15-19.
    [2]苏菊.基流分割的简便计算法[J].地下水,2003,25(2):110-112.
    [3]Arnold J G, Allen P M. Automated methods for estimating base flow and groundwater recharge from stream flow [J]. Journal of American Water Resources,1999,35:411-424.
    [4]Nathan R J, McMahon T A. Evaluation of automated techniques for base flow and recess ion analyses [J]. Water Resources Research,1990,26:1465-1473.
    [5]Ronald A S, Michele Y C. H YSEP:A computer program stream flow hydrograph separation and analysis [R]. U SGS Water resources Investigations Report 96-4040, Lemoyne, Pennsylvania:USGS,1996.
    [6]杨远东.加里宁-阿巴里扬地下水估算方法的改进[C].平原地区水资源研究.上海:学林出版社,1985:1-214.
    [7]杨桂莲,郝芳华,刘昌明,等.基于SWAT模型的基流估算及评价——以洛河流域为例[J].地理科学进展,2003,22(5):463-471.
    [8]陈利群,刘昌明,李发东.基流研究综述[J].地理科学进展,2006,25(1):1-15.
    [9]Burns D A. Storm flow hydrograph separation based on isotopes:the thrill is gone what's next? [J]. Hydrological Process,2002,16:1515-1517.
    [10]Marloes L, Mul, Robert K. Mutiibwa, Stefan Uhlenbrook,et al. Hydrograph separation using hydrochemical tracers in the Makanya catchment, Tanzania [J]. Physics and Chemistry of the Earth,2008,33:151-156.
    [11]Fritz P, Cherry J A, Weyer K U, etal. Storm runoff analyses using environmental isotopes and major ions [C] Interpretation of Environmental Isotope and Hydrochemical Data in Groundwater Hydrology, Vienna (Austria), IAEA,1976:111-130.
    [12]Sklash M G, Farvolden R N, Fritz P. A Conceptual Model of Watershed Response to Rainfall Developed Through the Use of Oxygen 18 as a Natural T racer [J]. Journal of Earth Science,1976,13:271-283.
    [13]Rodhe A. Groundwater contribution to stream flow in Swedish forest edtill soil as estimated by oxygen18[C]. Isotope Hydrology 1983. Vienna:IAE A,1984:55-56.
    [14]Turner J V, Br add J M, Wait e T D. Conjunctive use of isotopic techniques to elucidate solute concentration and f low processes in dry land salinized catchments [C]. Isotope Techniques in Water Resources Development 1991, Vienna:IAEA,1992:33-60.
    [15]Crouzet, E., Hubert, P. Olive, Ph. and Siweritz, E. Le tritium dansles mesuresd'hydrologie de surface. Determination experimental edu coefficient deruissellement [J]. Jour. of Hydrol.,1970,11:217-219.
    [16]Mook, W.G, Groeneveld, D.I., Bouwn, A.E. and Van Gansurjk, A.I.. Analysis of a runoff hydrograph by means of natural oxygen-18 [J]. Proceedings of the Symposium on Isotope Techniques in Groundwater Hydrology, I, IAEA, Vienna, Austria,,1974,23:145-153.
    [17]Freeze, R.A. Role of subsurface flow in generating surface runoff,2. Upstream source areas [J]. Water Resources,1972,8:1272-1283.
    [18]Troendle, C.A and J.W. Homeyer. Stormflow related to measured physical parameters on small forested watersheds in West Virginia [J]. Transactions of the American Geophysical Union,1971,52:204.
    [19]M.G. and Farvolden, R.N. The role of groundwater in storm runoff [J]. Jour. of Hydrol,1979,43:45-65.
    [20]Sklash, M., Stewar, M. K. and Pearce, AJ. Storm runoff generation in humid headwater catchments,2.A case study of hillslope and low-order stream response [J]. Water Resources. Res.,1986,22(8):1273-1282.
    [21]Turer, J., Macpherson, D.K. and Stokes, RA. The mechanisms of catchment flow processes using natural variations in deuterium and oxygen-18 [J]. jour of Hydrol,1987,94:143-162.
    [22]Turner, J. and Macpherson, D.K.. Mechanisms affecting streamow and stream water quality:An approach via stable isotope, hydrogeochemical, and time series analysis [J]. Water Resour. Res,1990,26(12): 3005-3019.
    [23]Horton, R. E. The role of infiltration in the hydrological cycle [J], EOS, Transactions AGU. American Geophysical Union.1933,23:446-460.
    [24]Dunne, T. and R. D. Black.. Partial area contributions to storm runoff in a small New England watershed [J].Water Resources Research,1970,6(5):1296-1313.
    [25]Freeze, R. A. Streamflow generation [J]. Reviews of Geophysics,1974,12(4):627-647.
    [26]Burns, D. A. Stormflow-hydrograph separation based on isotopes:the thrill is gone-what's next? [J].Hydrological Processes,2002,16(7):1515-1517.
    [27]Ogunkoya, O. O. and A. Jenkins. Analysis of storm hydrograph and flow pathways using a 3-component hydrograph separation model [J]. Journal of Hydrology,.1993,142(1-4):71-88.
    [28]Sueker, J. K. Chemical hydrograph separation during snowmelt for three headwater basins in Rocky Mountain National Park, Colorado [M]. K. A. Tonnessen, M. W. Williams, and T. M. (Eds.), Biogeochemistry of Seasonally Snow-Covered Catchments. IAHS Press, Boulder,.1995,23:271-281.
    [29]Hayashi, M., G. van der Kamp, and D. L. Rudolph.. Water and solute transfer between a prairie wetland and adjacent uplands,2. Chloride cycle [J]. Journal of Hydrology,1998,207(1-2):56-67.
    [301 Sklash, M. G. and R. N. Farvolden. The use of environmental isotopes in the study of high-runoff episodes in streams. In:J. E. C. Perry and C. W. Montgomery (Eds.) [J], Isotope Studies of Hydrologic Processes. Northern Illinois University Press, DeKalb.1982.
    [311 Clark, I. D. and P. Fritz Environmental Isotopes in Hydrogeology [J]. Lewis Publishers, Boca Raton, 1997,352
    [32]Genereux, D. Quantifying uncertainty in tracer-based hydrograph separations [J]. Water Resources Research, 1998,34(4):915-919.
    [331 Rodhe, A. The origin of streamwater traced by oxygen-18, Department of Physical Geography [J]. Uppsala University, Uppsala.1987,73:290.
    [34]Hooper R P,Christophersen N, Peters N. E. Modelling streamwater chemistry as a mixture of soil water end-members:an application to the Panola Mountain Catchment, Georgia, U. S. A [J]. Journal of Hydrology, 1990,116:321-343.
    [35]Laudon, H., et al. Oxygen 18 fractionation during snowmelt:Implications for spring flood hydrograph separation[J]. Water Resources Research,2002,38(11):10-12.
    [36]Harris, D. M., J. J. Mcdonnell, and A. Rodhe. Hydrograph separation using continuous open system isotope mixing [J]. Water Resources Research,1995,31(1):157-171.
    [37]Mast, A. M., et al. Determination of hydrologic pathways in an alpine-subalpine basin using isotopic and chemical tracers [J], Loch Vale Watershed, Colorado, USA. J K. A. Tennessen, M. W. Williams, and M. 1995.
    [38]Liu, Y. H., et al. Characteristics of water isotopes and hydrograph separation during the wet season in the Heishui River, China [J]. Journal of Hydrology,2008,353(3-4):314-321.
    [39]Wels, C, R. J. Cornett, and B. D. Lazerte Hydrograph separation-A comparison of geochemical and isotopic tracers [J]. Journal of Hydrology,1991,122(1-4):253-274.
    [40]Hooper, R. P. and C. A. Shoemaker. A comparison of chemical and isotopic hydrograph separation [J]. Water Resources Research,.1986,22(10):1444-1454.
    [41]Shanley, J. B., et al. Controls on old and new water contributions to stream flow at some nested catchments in Vermont [Jl, USA. Hydrological Processes,2002,16(3):589-609.
    [42]Kendall, C., J. J. McDonnell, and W. Z. Gu. A look inside'black box'hydrograph separation models:a study at the Hydrohill catchment [Jl. Hydrological Processes,20011,5(10):1877-1902.
    [43]McDonnell, J. J., et al. Deuterium variations in storm rainfall:Implications for stream hydrograph separations [J]. Water Resources Research,1990,26(3):455-458.
    [44]Vitvar, T., P. K. Aggarwal, and J. J. Mcdonnell. A review of isotope applications in catchment hydrology [J]. P. K. Aggarwal, J. R. Gat, and K. F. O. Froehlich (Eds.), Isotopes in the Water Cycle:Past, Present and Future of a Developing Science. Springer, Dordrecht,.2005,23:151-170.
    [45]Laudon, H., et al. The role of catchment scale and landscape characteristics for runoff generation of boreal streams[J]. Journal of Hydrology,.2007,344(3-4):198-209.
    [46]Kendall, C. and D. H. Doctor. Stable isotope applications in hydrologic studies [J]. J. I. Drever (Ed.), Surface and Groundwater, Weathering, and Soils. Treatise on Geochemistry. Elsevier-Pergamon, Oxford, 2003,.319-364.
    [47]顾慰祖,谢民.同位素示踪划分藤桥流域流量过程线的试验研究[J].水文,]997(1):29-32.
    [48]Uhlenbrook S, Hoeg S. Quantifying uncertainties in tracer based hydrograph separations:a case study for two, three and five component hydrograph separations in a mountainous catchment [J]. Hydrological Process,2003,17:431-453.
    [49]McGlynn, B., et al. On the relationships between catchment scale and streamwater mean residence time [J]. Hydrological Processes,2003,17(1):175-181.
    [50]McGlynn, B. L, et al. Riparian zone flowpath dynamics during snowmelt in a small headwater catchment [J]. Journal of Hydrology,1999,222(1-4):75-92.
    [51]Kendall C. Impact of isotopic heterogeneity in shallow systems on modeling of stormflow generation [D]. PhD thesis, University of Maryland, USA,1993.
    [52]Stefan U, Simon H. Quantifying uncertainties in tracerbased hydrograph separations:a case study for two-, three-and five-component hydrograph separations in a mountainous catchment[J]. Hydrological Processes. 2003,17:431-453.
    [53]Marc, V., Didon-Lescot, J.-F., Michael, C.. Investigation of the hydrological processes using chemical and isotopic tracers in a small Mediterranean forested catchment during autumn recharge[J]. Journal of Hydrology,2001.247 (3-4):215-229.
    [54]Rodhe, A. The origin of streamwater traced by oxygen-18, Department of Physical Geography [J]. Uppsala University, Uppsala, pp.290+Appendix 73,1987.
    [55]Bishop, K., et al. Methylmercury Output from the Svartberget Catchment in Northern Sweden during Spring Flood[J]. Water Air and Soil Pollution,.1995,80(1-4):445-454.
    [56]Bums, D. A. and J. J. McDonnell. Effects of a beaver pond on runoff processes:comparison of two headwater catchments[J]. Journal of Hydrology,.1998,205(3-4):248-264.
    [57]Tamm T, Noges T, Jarvet A, Bouraoui F. Contributions of DOC from surface and ground flow into Lake Vort sjarv (Estonia) [J]. Hydrobiologia,2008,599:213-220.
    [58]Wagner LE, Vidon P, T edesco L P, et al. St ream nit rate and DOC dynamics during three spring storms cross 1 and uses in glaciated landscapes of the Midwest [J]. Journal of Hydrology,2008,362:177-190
    [59]Blume T, Zehe E, Bronstert A. Inves igation of runoff generation in a pristine, poorly gauged catchment inthe Chilean Andes Ⅱ:Qualitative and quant it ative use of t racers at three spatial scales [J]. Hydrological Process,2008,22:3676-3688.
    [60]Trcek B, Veselic M, Pezdic J. The vulnerabilit y of karstsprings a case study of the Hubelj spring (SWS lovenia)[J]. Environment Geology,2006,49:865-874.
    [61]Buttle, J. M. and K. Sami. Recharge processes during snowmelt-an isotopic and hydrometric investigation[J]. Hydrological Processes,1990,4(4):343-360.
    [62]Murray, C. D. and J. M. Buttle. Infiltration and soil water mixing on forested and harvested slopes during spring snowmelt, Turkey Lakes Watershed, central OntarioJ [J]. Journal of Hydrology,2005,306(1-4):1-20.
    [63]Dewalle, D. R., B. R. Swistock, and W. E. Sharpe. Three-component tracer model for stormflow on a small Appalachian forested catchment[J]. Journal of Hydrology,1988,104(1-4):301-310.
    [64]Land, M., et al. Ba/Sr, Ca/Sr and Sr-87/Sr-86 ratios in soil water and groundwater:implications for relative contributions to stream water discharge[J]. Applied Geochemistry,.2000,15(3):311-325.
    [65]Gazis, C. and X. H. Feng. A stable isotope study of soil water:evidence for mixing and preferential flow paths[J]. Geoderma,2004,119(1-2):97-111.
    [66]Boucher, J. L. and S. K. Carey..Exploring runoff processes using chemical, isotopic and hydrometric data in a discontinuous permafrost catchment[J]. Hydrology Research,2010,41(6):508-519.
    [67]Virginia A. Brown, Jeffrey J. McDonnell, etc. The role of event water, a rapid shallow flow component, and catchment size in summer stormflow[J]. Journal of Hydrology,1998,217:171-290
    [68]Hooper, R. P. and C. A. Shoemaker. A comparison of chemical and isotopic hydrograph separationfJ], Water Resources Research,1986,22(10):1444-1454.
    [69]Rodhe, A.1987. The origin of stream water traced by oxygen-18. Department of Physical GeographyfJ]. Uppsala University, Uppsala, pp.290+Appendix 73
    [70]Mcdonnell, J. J., M. K. Stewart, and I. F. Owens. Effect of catchment-scale subsurface mixing on stream isotopic response. Water Resources Research,1991,27(12):3065-3073.
    [71]Gat, J. R. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annual Review of Earth and Planetary Sciences,1996,24:225-262.
    [72]Buttle, J. M., A. M. Vonk, and C. H. Taylor. Applicability of isotopic hydrograph separation in a suburban basin during snowmelt[J]. Hydrological Processes,.1995,9(2):197-211.
    [73]Huth, A. K., et al. A two-component hydrograph separation for three high-elevation catchments in the Sierra Nevada, California[J]. Hydrological Processes,2004,18(9):1721-1733.
    [74]McLean, R., et al. The effect of permafrost on stream biogeochemistry:A case study of two streams in the Alaskan (USA) taiga. Biogeochemistry,1999,47(3):239-267.
    [75]James, A. L. and N. T. Roulet. Antecedent moisture conditions and catchment morphology as controls on spatial patterns of runoff generation in small forest catchments[J]. Journal of Hydrology,2009,377(3-4): 351-366.
    [76]Buttle, J. M. Isotope hydrograph separations and rapid delivery of pre-event water from drainage basinsfj]. Progress in Physical Geography,1994,18(1):16-41.
    [77]Bullen, T. D. and C. Kendall. Tracing of weathering reactions and water flow paths:A multi-isotope approach[J]. In:C. Kendall and J. J. McDonnel (Eds), Isotope Tracers in Catchment Hydrology. Elsevier, Amsterdam,1998,23:611-646.
    [78]McGuire, K. and J. McDonnell Stable isotope tracers in watershed hydrology[M]. R. Michener and K. Lajtha (Eds.), Stable Isotopes in Ecology and Environmental Science. Blackwell Publishing, Maiden,.2007, 23; 334-474.
    [79]Molotch, N. P., T. Meixner, and M. W. Williams. Estimating stream chemistry during the snowmelt pulse using a spatially distributed, coupled snowmelt and hydrochemical modeling approach[J]. Water Resources Research,2008,44(11):20-32.
    [80]Obradovic MM.,Sklash MG. An isotopic and geochemical study of snowmelt runoff in a small arctic watershed [J]. Hydrological Processes,1986,1:15-30.
    [81]Cey EE, Rudolph DL, Parkin GW. Quantifying groundwater discharge to a small perennial stream in southern Ontario, Canada[J]. Journal of Hydrology,1998,210:21-37.
    [821 Norman E., Peters, Elizabeth B. Ratcliffe.Tracing hydrologic pathways using chloride at the Panola Mountain Research Watershed, Georgia, USA [J]. Water, Air & Soil Pollution,1998,105:263-275.
    [831 Ribolzi, O., Andieux, P., Valles, V., et al.Contribution of groundwater and overland flows to storm flow generation in a cultivated mediterranean catchment. Quantification by natural chemical tracing[J]. Journal of Hydrology,2000,233(1-4):241-257.
    [84]Tardy, Y., Bustillo, V., Boeglin, J. L.Geochemistry applied to the watershed survey hydrograph separation erosion and soil dynamics:a case study in the basin of the Niger River, Africa [J]. Applied Geochemistry, 2004,19(4):469-518.
    [851 Kaushal SS, Groffman PM, Likens GE, et al. Increased salinization of fresh water in the northeastern United States [Jl. Proceedings of the National Academy of Science,2005,102(38):13517-13520.
    [86]Analysis of a two-component hydrograph separation model to predict herbicide runoff in drained soils[J]. Agricultural Water Management,2006,79 (2):177-207.
    [87]Heppell CM, Chapman AS. Analysis of a two-component hydrograph separation model to predict herbicide runoff in drained soils[J]. Agricultural Water Management,2006,79 (2):177-207.
    [88J Brian A. Pellerin, Wilfred M. Wollheim. The application of electrical conductivity as a tracer for hydrograph separation in urban catchments [J]. Hydrological Processes,2007,10 (102):67-86.
    [89]Yang Yong-Gang,Xiao Hong-Lang, etc. Hydrological processes in different landscapes on Mafengou River basin [J]. Advances in Water Science,2011,22:.624-630.
    [90]Maule, C. P. and J. Stein Hydrologic flow path definition and partitioning of spring meltwater [J]. Water Resources Research,1990,26(12):2959-2970.
    [91]De Walle D R, Swi stock B R, Sharpe W E. There component tracer model for storm flow on a small Appalachian forested catchment [J]. Journal of Hydrology,1988,104:301-310.
    [92]Hinton M J, Schiff, S L, English M C. Examining the contribution of glacial till water to storm runoff using two and three component hydrograph separations [J]. Water Resource Management,1994,30:983-993.
    [93]Laudon H, Siaymaker O. Hydrograph separation using stable isotopes, silica and electrical conductivity:an alpine example[J]. Journal of Hydrology,1997,201:82-101.
    [94]Kennedy, V. C, et al. Determinations of the components of stormflow using water chemistry and environmental isotopes, Mattole River basin, California[Jl. Journal of Hydrology,1986,84(1-2):107-140.
    [95]Elsenbeer, H., D. Lorieri, and M. Bonell. Mixing Model Approaches to Estimate Storm Flow Sources in an Overland Flow-Dominated Tropical Rain Forest Catchment [J].Water Resources Research,1995, 31 (9):2267-2278.
    [96]Helmut Elsenbeer. Andreas Lack. Hydrome trie and hydrochemicai evidence for fast flowpaths at La Cuenca, Western Amazonia[J]. Journal of Hydrology,1996,180:237-250.
    [97]Rice KC, Hornberger GM. Comparison of hydrochemical tracers to estimate source contributions to peak flow in a small, forested, headwater catchment [J]. Water Resources Research,1998,34:1755-1766.
    [98]Boyer, E. W., et al. Response characteristics of DOC flushing in an alpine catchment [J]. Hydrological Processes,1997,11(12):1635-1647.
    [99]Gibson J J, Edwards T W D, Birks S J, e t al. Progress in isotope t racer hydrology in Canada [Jl. Hydrological Process,2005,19:303-327.
    [100]Gi son J J, Price J S, Aravena R, et al. Runoff generation in a hyper maritime bog forest upland [J]. Hydrological Process,2000,14:2711-2730.
    [101]Carey, S. K. and M. Woo. Spatial variability of hillslope water balance, wolf creek basin, subarctic Yukon [J]. Hydrological Processes,2001,15(16):3113-3132.
    [102]Boucher, J. L. and S. K. Carey. Exploring runoff processes using chemical, isotopic and hydrometric data in a discontinuous permafrost catchment [J]. Hydrology Research,2010,41(6):508-519.
    [103]James, A. L. and N. T. Roulet. Antecedent moisture conditions and catchment morphology as controls on spatial patterns of runoff generation in small forest catchments [J]. Journal of Hydrology,2009,377(3-4): 351-366.
    [104]Petrone, K. C, L. D. Hinzman, and R. D. Boone.. Nitrogen and carbon dynamics of storm runoff in three sub-arctic streams[M]. D. L. Kane (Ed.), Water Resources in Extreme Environments. American Water Resource Association, Middleberg,2000, pp.167-172.
    [105]Petrone, K. C., et al. Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost [J]. Journal of Geophysical Research-Biogeosciences,2006,111(G02020):1-13.
    [106]Carey, S. K. Dissolved organic carbon fluxes in a discontinuous permafrost subarctic alpine catchment. Permafrost and Periglacial Processes,2003,14(2):161-171.
    [107]Carey, S. K. and W. L. Quinton. Evaluating runoff generation during summer using hydrometric, stable isotope and hydrochemical methods in a discontinuous permafrost alpine catchment [J]. Hydrological Processes,2005,19(1):95-114.
    [108]Land, M., et al. Ba/Sr, Ca/Sr and Sr-87/Sr-86 ratios in soil water and groundwater:implications for relative contributions to stream water discharge [J]. Applied Geochemistry,2000,15(3):311-325.
    [109]Blum, J. D. and Y. Erel.. Radiogenic isotopes in weathering and hydrology. In:J. I. Drever (Ed.), Surface and Groundwater, Weathering, and Soils [J]. Treatise on Geochemistry. Elsevier-Pergamon, Oxford,2003, 23:365-392.
    [110]Aubert, D., et al. Evidence of hydrological control of Sr behavior in stream water (Strengbach catchment, Vosges mountains, France) [J]. Applied Geochemistry,2002,17(3):285-300.
    [111]Hogan, J. F. and J. D. Blum. Tracing hydrologic flow paths in a small forested watershed using variations in 87Sr/86Sr, [Ca]/[Sr], [Ba]/[Sr] and delta 0-18 [J]. Water Resources Research,2003,39(10):6-21.
    [112]Keller, K., J. D. Blum, and G. W. Kling. Stream geochemistry as an indicator of increasing permafrost thaw depth in an arctic watershed [J]. Chemical Geology,2010,273(1-2):76-81.
    [113]Metcalfe, R. A. and J. M. Buttle. Soil partitioning and surface store controls on spring runoff from a boreal forest peatland basin in north-central Manitoba, Canada. Hydrological Processes,2001,15(12):2305-2324.
    [114]Carey, S. K. and W. L. Quinton. Evaluating snowmelt runoff generation in a discontinuous permafrost catchment using stable isotope, hydrochemical and hydrometric data [J]. Nordic Hydrology,2004,35(4-5): 309-324.
    [115]McNamara, J. P., D. L. Kane, and L. D. Hinzman. Hydrograph separations in an arctic watershed using mixing model and graphical techniques [J]. Water Resour. Res,1997,33(7):1707-1719.
    [116]Gibson, J. J., T. W. D. Edwards, and T. D. Prowse. Runoff generation in a high boreal wetland in northern Canada. Nordic Hydrology,1993,24(2-3):213-224.
    [117]Kane, D. L., S. R. Bredthauer, and J. Stein (Eds.). Subarctic snowmelt runoff generation [J]. Specialty Conference on the Northern Community. American Society of Civil Engineers, Seattle,1981,23:91-601.
    [118]Roulet, N. T. and M. K. Woo. Runoff generation in a low arctic drainage-basin [J]. Journal of Hydrology, 1988,101(1-4):213-226.
    [119]Hinzman, L. D., D. L. Kane, and K. R. Everett (Eds.). Hillslope hydrology in an Arctic setting. Sixth International Conference on Permafrost and Periglacial Processes [J]. South China Press, Beijing,1993, 23:257-271
    [120]McNamara, J. P., D. L. Kane, and L. D. Hinzman. An analysis of streamflow hydrology in the Kuparuk River basin, Arctic Alaska:A nested watershed approach [J]. Journal of Hydrology,1998,206(1-2):39-57.
    [121]Quinton, W. L., D. M. Gray, and P. Marsh Subsurface drainage from hummock-covered hillslopes in the Arctic tundra [J]. Journal of Hydrology,2000,237(1-2):113-125.
    [1221 Quinton, W. L. and P. Marsh. The influence of mineral earth hummocks on subsurface drainage in the continuous permafrost zone [J]. Permafrost and Periglacial Processes,1998,9(3):213-228.
    [123]Cooper, L. W., et al. Application of 0-18 tracer techniques to arctic hydrological processes [J]. Arctic and Alpine Research,1993,25(3):247-255.
    [124]Cooper, L. W., et al. Stable isotopes of oxygen and natural and fallout radionuclides used for tracing runoff during snowmelt in an arctic watershed [J]. Water Resources Research,1991,27(9):2171-2179.
    [125]Gu, W. and A. Longinelli. A case study on the hydrological significance of stable isotope data on alpine catchment s with snow cover and glaciers, Xinjian g, China [M]. IAHS (Ed.), Snow and Glacier Hydrology. IAHS Press, Kathmandu,1993,23:371-383
    [126]何元庆,等.中国西部不同类型冰川区积雪及其融水径流中稳定同位素比率的时空变化及其气候效应[J].冰川冻土,.2006,28(1):22-28.
    [127]王铁生.关于河西走廊地区地下水补绐来源的初步分析[J].水利水电技术,1965,4:20-21.
    [128]孙继东.青海祁连县黑河一祁连河流域1:5万地球化学土壤测量数据处理与解释[J].长安大学学报(地球科学版),1980,00:36-45.
    [129]王燕来,周兴华,高前兆.黑河干流水系水资源优化分配的多目标规划模型[J].中国沙漠,1987,7(4):22-33.
    [130]徐兆祥.黑河流域水资源开发对生态的影响[J].干旱区研究,1992,9(3):45-46.
    [131]王根绪,程国栋.近50a来黑河流域水文及生态环境的变化[J].中国沙漠,1998,18(3):233-238.
    [132]杨针娘,杨志怀,梁凤仙,等.祁连山冰沟流域冻土水文过程[J].冰川冻土,1993,15(2):235—-241.
    [133]仵彦卿,慕富强,贺益贤,等.河西走廊黑河鼎新至哨马营段河水与地下水转化途径分析J].冰川冻土,2000,22(1):73-77.
    [134]钱云平, Andrew L H,张春岚,等.应用222Rn研究黑河流域地表水与地下水转换关系[J].人民黄河,2005,27(12):58-59.
    [135]聂振龙,陈宗宇,程旭学,等.黑河于流浅层地下水与地表水相互转化的水化学特征[J].吉林大学学报(地球科学版),2005,35(1):48-53.
    [136]陈宗宇,万力,聂振龙,等.利用稳定同位素识别黑河流域地下水的补给来源.水文地质工程地质,2006.6:9-14.
    [1 37]胡立堂,陈崇希.数值模型在黑河干流中游水资源管理中的应用[J].地质科技情报,2006,25(2):93-98.
    [138]贾仰文,王浩,严登华.黑河流域水循环系统的分布式模拟[J].水利学报,2006,37(5):534-542.
    [139]甘义群,李小倩,周爱国,等.黑河流域地下水氘过量参数特征[J].地质科技情报,2008,27(2):85-90.
    [140]康尔泗,陈仁升,张智慧.内陆河流域山区水文与生态研究[J].地球科学进展,2008,23(7):675-681.
    [141]Zhang, Y. H., X. F. Song, and Y. Q. Wu. Use of oxygen-18 isotope to quantify flows in the upriver and middle reaches of the Heihe River [J], Northwestern China. Environmental Geology,2009,58(3):645-653.
    [142]Wang, N. L, et al. Tracing the major source area of the mountainous runoff generation of the Heihe River in northwest China using stable isotope technique [J]. Chinese Science Bulletin,2009,54(16):2751-2757.
    [143]王宁练,等.祁连山中段黑河上游山区地表径流水资源主要形成区域的同位素示踪研究[J].科学通报,2009,54(15):2148-2152.
    [144]张学成,杨针娘.祁连山冰沟流域水量平衡分析[J].冰川冻土,1991,13(1):35-42.
    [145]陈仁升,康尔泗,吉喜斌,等.黑河源区高寒草甸的冻土及水文过程初步研究[J].冰川冻土,2007,29(3):387-396.
    [146]瞿思敏,等.同位素流量过程线分割研究进展与展望[J].水电能源科学,2006,24(1):80-83.
    [147]吴锦奎,等.同位素技术在流域水文研究中的重要进展[J].冰川冻土,.2008,30(6):1024-1032.
    [148]孔彦龙和庞忠和.高寒流域]同位素径流分割研究进展[J].冰川冻土,2010,32(3):619-625.
    [149]王介民,刘晓虎,马耀明.HEIFE戈壁地区近地层大气的湍流结构和输送特征[J].气象学报,1993,5 1(3):343-350.
    [150]张天昌.黑河上游水文特性及区间水量分析[J].甘肃水利水电技术,2005,41(3):220-222.
    [15 1]刘少玉,张光辉,张翠云.黑河流域水资源系统演变和人类活动影响[J].吉林大学学报(地球科学版),2008,38(5):806-812.
    [152]叶守泽,詹道江.工程水文学[M].北京:中国水利水电出版社.
    [153]倪雅茜,张文华,郭生练.流量过程线分割方法的分析探讨[J].水文,2005,25(3):10-19.
    [154]尹慧.贡嘎山海螺沟冰川径流的同位素示踪研究[D].成都理工大学.2008
    [155]Clark ID, Fritz Peter, (张慧,张新基译).水文地质学中的环境同位素[M].黄河水利出版社,2006.
    [156]丁悌平.稳定同位素地球化学研究新况[J].地学前沿,1994,1(34):191-198.
    [157]王宁练,张世彪,贺建桥,等.祁连山中段黑河上游山区地表径流水资源主要形成区域的同位素示踪研究.科学通报,2009,54:2148-2152.
    [158]Kendall C, Coplen T. Distribution of oxygen18 and deuterium in river waters across the United StatesfJ]. Hydrological Progress,2001,15:1363-1393.
    [159]Pearce A J, St ewart M K, Sklash M G. Storm runoff generat ion in humid headwat er catchments,1: Where does the wat er come from [J]. Water Resour ces Research,1986,22:1263-1271.
    [160]Turner J, Barnes C J. Modeling of isotope and hydrogeochemical responses in catchment hydrology [M]// McDon nell J J, Kendall C. Isotope Tracers in Catchment Hydrology. Amsterdam:Elsevier,1998:723-760.
    [161]Stueber A M, Pushk ar P, H etherington E A. A strontium isotopic study of formation waters from the Illinois basin, USA [J]. Appl. Geoch em,1987,2:477-494.
    [162]Frederickson G C, Criss R E. Isotope hydrology and time constants of the unimpounded Meramec river basin, Missouri. Chem Geol,1999,157:303—317
    [163]Kendall C, Coplen T B. Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol Proc,2001,15:1363—1393
    [164]Frits P. River waters. In:Stable Isotope Hydrology, Deuterium and Oxygen-18 in the Water Cycle. Tech Rep Ser No.210, IAEA. Vienna:International Atomic Energy Agency,1981.
    [165]Winston W E, Criss R E. Oxygen isotope and geochemical variations in the Missouri River. Environ Geol, 2003,43:546—556
    [166]沈照理,等.水文地球化学[M].北京:地质出版社,1993.
    [167]李学礼.水文地球化学[M].北京:原子能出版社,1988.
    [168]Gehrels J C.Physical and Chemical Methods for Estimation of Natural groundwater Recharge through the Unsaturated Zone in a Humid Climate. Faulty of Earth Science.Free University.The Netherlands,1994.7-15.
    [169]申献辰.天然水化学[M].北京:中国环境科学出版社.1994.
    [170]Zimmermann U, Munnich K 0, Roether W. Downward movement of soil moisture traced by means of hydrogen isotopes[J]. Geophysical Monograph Series,1967,11:28-36.
    [171]Scanlon B R. Evaluation of liquid and vapor water flow in desert soils based on chlorine 36 and tritium tracers and nonisothermal flow simulations[J]. Water Resour. Res,1992,28(1):285-297.
    [172]宋献方,夏军,于静洁,等.应用环境同位素技术研究华北典型流域水循环机理的展望[J].地理科学进展,2002,21(6):527-537.
    [173]Christophersen, N. and R. P. Hooper.1992. Multivariate-analysis of stream water chemical-data-the use of principal components-analysis for the end-member mixing problem. Water Resources Research,28(1): 99-107.
    [174]赵良菊,尹力,肖洪浪,等.黑河源区水汽来源及地表径流组成的稳定同位素证据[J].科学通报.201 1(56).1:58-67.
    [175]Rozanski K, Araguas-Araguas L, Gonfiantini R. Isotopic patterns in modern global precipitation[J]. Geophysical Monograph Series,1993,78:1-36.
    [176]Craig H. Isotopic variations in meteoric waters[J]. Science (New York, NY),1961,133(3465):1702.
    [177]Longinelli A, Selmo E. Isotopic composition of precipitation in Italy:a first overall map[J]. Journal of Hydrology,2003,270(1-2):75-88.
    [178]陈中笑,程军,郭品文,等.中国降水稳定同位素的分布特点及其影响因素[J].大气科学学报,2010,33(6):667-679.
    [179]Douglas, M. Mixing and temporal variations of groundwater inflow at the Con Mine, Yellowknife, Canada; An analogue for a radioactive waste repository. Unpublished M. Sc. Thesis, Department of Geology, University of Ottawa, Canada,1987:101.
    [180]Hamid S, Dray M, Ferhi A, et al. Etude des transferts d'eau a l'intdrieur d'une formation morainique dans le bassin du Leman-Transferts d'eau dans la zone non saturee[J]. Journal of Hydrology,1989,109(3): 369-385.
    [181]Rank D, Volkl G, Maloszewski P, et al. Flow dynamics in an alpine karst massif studied by means of environmental isotopes[J]. Isotope Techniques in Water Resources Developement,1991:327-343.
    [182]郭范,上官志冠,夏进.稳定同位素和元素组成判定潜水河雨后地表径流水的构成[J].地球化学,1194,23(1):42-49.
    [183]Maule, C. P. and J. Stein Hydrologic flow path definition and partitioning of spring meltwater [J]. Water Resources Research,1990,26(12):2959-2970.
    [184]温小虎,仵彦卿,常娟等.黑河流域水化学空间分异特征分析[J].干旱区研究,2004,21(1):1-6.
    [185]Meybeck M. Atmospheric inputs and river transport of dissolved substances. Dissolved Loads of Rivers and Surface Water Quantity/Quality Relationships. Proceedings of the Humburg Symposium:IAHS Publ, 1983,173-191.
    [186]Meybeck M. Atmospheric inputs and river transport of dissolved substances. Dissolved Loads of Rivers and SurfaceWater Quantity/Quality Relationships. Proceedings of the Humburg Symposium:IAHS Publ, 1983,173-191.
    [187]PinderGF, Jones JF.Determination of the groundwatercomponents of peak discharge from chemistry of total runoff water [J].Water Resources Research,1969,5:438-445.
    [188]刘丛强.生物地球化学过程与地表物质循环:西南喀斯特流域侵蚀与生源要素循环[M].北京:科学出版社,2007:32-42,190-192.
    [189]Li SL, Liu CQ, Li J, et al. Geochemisry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southewest China:Isotopic and chemical constraints [J]. Chemical Geology, 2010,277(3/4):301-309.
    [190]丁虎,刘丛强,郎赟超.桂西北典型峰丛洼地降雨过程中地表水溶解性碳和δ13C(DIC)变化特征[J].地学前缘,2011,18(6):182-189.
    [19|]高诞源,叶寿征,张君友,等.水文下垫面分析与分类初探[J].水文,1999,4:13-18.
    [192]梁天刚,张胜雷,戴若兰等.基于GIS栅格系统的集水农业地表产流模拟分析[J].水利学报, 1998(7):26-29.
    [193]Zeman L J, Slaymaker H O. Hydrochemical analysis to discriminate variable runoff source areas in an alpine basin[J]. Arctic and Alpine Research,1975:341-351.
    [194]McGuire, K. and J. McDonnell Stable isotope tracers in watershed hydrology[M]. R. Michener and K. Lajtha (Eds.), Stable Isotopes in Ecology and Environmental Science. Blackwell Publishing, Maiden,.2007, 23:334-474.
    [195]Molotch, N. P., T. Meixner, and M. W. Williams. Estimating stream chemistry during the snowmelt pulse using a spatially distributed, coupled snowmelt and hydrochemical modeling approach[J]. Water Resources Research,2008,44(11):20-32.
    [196]Kurtz A C, Lugolobi F, Salvucci G. Germanium-silicon as a flow path tracer. Application to the Rio Icacos watershed[J]. Water Resources Research,2011,47(6):W06516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700