用户名: 密码: 验证码:
黔北地区铝土矿成矿环境分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黔北务川-正安-道真(简称务正道)地区蕴含丰富的铝土矿资源。黔北务正道铝土矿的形成环境长期存有“海相”与“陆相”的争议,铝土矿准同生期成矿环境的氧化还原条件、酸碱度等性质亦缺乏研究。笔者通过基础沉积学、矿物学、地球化学等手段,综合分析了铝土矿形成时的沉积环境及准同生期成矿环境的化学性质,阐明了沉积体系与铝土矿成矿的关系及准同生期成矿环境对高品位铝土矿形成的影响,查明了铝土矿形成的有利亚环境。
     务正道铝土矿形成于一个椭圆形盆地中,北至武隆、西至南川、东至沿河,南至绥阳-凤冈,古地貌南高北低。赋矿层下伏为晚石炭世黄龙组灰岩或早中志留世韩家店组泥页岩,上覆为中二叠世梁山组泥岩或栖霞组灰岩,赋矿层与顶底板地层均为平行不整合接触。微量元素物源示踪方法简单可靠,笔者运用Cr-Ni及ZrHf、Mb、Ta对铝土矿物源进行分析,务正道铝土矿的Cr-Ni值分布范围较广,指示铝硅酸盐岩母岩与碳酸盐岩母岩,另有少部分玄武岩母岩,高场强元素Zr-Hf、Nb-Ta图解表明韩家店组泥页岩与铝土矿亲缘关系更近,微量元素物源示踪表明韩家店组泥页岩与黄龙组灰岩都为铝土矿的重要物源,但韩家店组泥页岩对铝土矿的贡献比黄龙组灰岩更大,另有少部分玄武岩为铝土矿提供成矿物质,成矿物质从四周向盆地中心搬运沉积,矿体呈层状,为典型的沉积型铝土矿。
     铝土矿的主要成分为硬水铝石与高岭石、绿泥石、伊利石等粘土矿物,可见少量锐钛矿、锆石、金红石、黄铁矿等重矿物,含极少量石英与长石,ZK14904、ZK3402、ZK9A04中产有长条状或椭球状的稀土矿物氟碳钙铈矿(Ce2Ca(CO3)3F2)。铝土矿二元结构明显,通常中上部硬水铝石含量40%-95%,其余主要为高岭石、绿泥石、伊利石等粘土矿物,达到工业品位的铝土矿多集中于此段。下部以粘土矿物为主,硬水铝石含量5%-40%,粘土矿物含量最高可达95%。铝土矿常量元素主要为A12O3(26.13-75.16%), SiO2(4.52-44.46%), Fe2O3(0.77-27.67%), TiO2(1.05-5.24%),这些元素分布范围较宽,碱性元素含量较低且变化较大(0.01-4.77%). Al2O3与SiO2, Fe2O3呈负相关,A1203与Ti02呈正相关,表明铝土矿的成矿过程是一个A1、Ti富集而Si、Fe流失的过程。铝土矿中Zr、Cr, V, Li等微量元素富集,Zr, Hf, Nb, Ta, Cr具有相似的变化规律,平面上由北往南含量呈逐步增加的趋势,垂向上剖面顶部至底部呈逐步降低的趋势,Zr,Cr,Nb含量相对较高,zr值最高达1835ppm,Cr, V, Li值几乎全在150m之上,Hf与Ta含量相对较低,Ni较独特,平面与垂向上含量变化规律与其余元素相反,且各样品中Ni含量差异极大。铝土矿LREE、HREE、ΣREE范围分别为18.49×106-993.6×10-6,12.7×10-6-47.3×10-6,38×10-6-1040.9×10-6,平均值分别为198.82×10-6,26.3×10-6,225.1×10-6石。钻孔剖面顶部至底部,LREE、HR、ΣREE整体均呈增加的趋势,LREE变化幅度较大,HREE变化幅度较小,钻孔中Ce的正异常明显。
     铝土矿含矿岩系底部可见不超过1m的铁质风化壳,矿系由黏土岩与铝土矿组成,黏土岩为均质构造,含矿岩系中缺乏层理与古生物化石,部分钻孔中有黑色炭质夹层与劣质煤夹层,铝土矿的这些特征表明其形成于低能的湖泊、海湾或滨岸泻湖环境中。
     通过古盐度分析可以精确确定铝土矿的沉积环境,湖泊为淡水环境,海湾为咸水环境,滨岸泻湖为淡水-咸水过渡环境。B、Sr、Ba等微量元素及稀土元素具良好的指相意义,覆盖研究区由北往南选择ZK202、ZK5604、ZK3228、ZK3402、ZK14904系统取样进行微量元素与稀土元素测试。大量的统计表明陆相淡水环境中B含量小于60个ppm,过渡相半咸水中为60-100ppm,海相咸水中大于100ppm,务正道铝土矿中B含量在45ppm-148ppm之间,超过60%的样品指示海陆过渡环境,但淋滤作用是沉积型铝土矿的形成的必要条件,在淋滤作用下B元素可能向下聚集,造成判断的偏差,因此必须先对B含量进行一定的校正。铝土矿的主要成分中高岭石为红土物质的主要成分,绿泥石主要为沉积或成岩时形成,因此剖面底部距高品位铝土矿相对较远且矿物成分主要为高岭石(硬水铝石含量小于10%)的层位经受的淋滤作用较弱,可指示原始沉积环境,而中下部层位虽然不达工业铝土矿品位但硬水铝石含量较高(>10%)的样品B含量则不能直接用于沉积环境识别。含矿岩系若经过强烈的淋滤作用则中上部的B元素大量流失,底部B含量大幅度升高,B含量的垂向变化曲线必然弯曲多变,而淋滤作用较弱的含矿岩系B含量垂向曲线应较平直。高品位铝土矿的形成需经过强烈的淋滤作用,可对含工业铝土矿比重较大的钻孔进行测试,垂向对比B含量的变化,若上部高品位铝土矿B含量高则表明经过淋滤作用的损失依然具有高B含量,沉积环境偏海相,如B含量较低,则需参考其余指标。总之工业铝土矿(高品位铝土矿)层的厚度特征、含矿岩系的矿物组合特征、B含量曲线变化特征均能反映淋滤作用的强度,对三者综合分析选择淋滤作用弱的钻孔是利用B元素判别沉积环境的关键所在。分析发现ZK202与ZK5604经历的淋滤作用较弱,2口钻孔样品的B含量指示海陆过渡环境,同时经历了较强淋滤作用而使B元素丢失较多的ZK14904与ZK3402中上部B含量依然较高,指示过渡-海相环境,总体上铝土矿中的B含量指示铝土矿形成于过渡环境。Sr/Ba是常用的古盐度恢复方法之一,海相环境中Sr/Ba>1,陆相环境Sr/Ba<1,过渡相沉积物0.6     综合铝土矿的矿物组合、野外宏观特征、微量元素与稀土元素地球化学特征可知务正道铝土矿形成于一种较为特殊的动态环境中,主体环境为半封闭海湾,随海平面变化,沉积环境在半封闭海湾与陆相湖泊之间转换,海平面高时成矿区与扬子海连通,表现为咸水与半咸水沉积,海平面较低时,成矿区与海洋失去联系变成一个陆相咸水-微咸水湖泊,随大气降水与陆地淡水输入,咸水被不断淡水,经过一段时间的淡化作用,部分地区变为淡水环境,淡化程度与淡化范围取决于淡化时间长短。湖泊中的咸水或半咸水经过部分淡化或完全淡化后,随下一次海侵,沉积环境再次变为半咸水或咸水环境,之后随海平面降低海水退去,湖泊或半封闭海湾再次经历淡化过程,如此循环,成矿环境在陆相湖泊-半封闭海湾-海湾之间转换,水体的古盐度在淡水-半咸水-咸水之间转变,从而使铝土矿的沉积兼具陆相与过渡相的特征。
     务正道铝土矿可分为致密、半土、碎屑、豆鲕四种类型,不同自然类型铝土矿具有不同的环境意义。致密状铝土矿具泥状结构,坚硬光滑,孔隙度小,反映其未经过后期的强烈改造,致密状铝土矿品位较低,多数情况下粘土矿物含量大于50%,从岩石学角度可视为粘土岩,代表低能的沉积环境。碎屑状铝土矿以砾屑和砂屑为主,反映经历了一定强度的水动力搬运作用,代表沉积环境中的相对高能位置。豆鲕状铝土矿中的鲕粒多以粗碎屑为核心,常见破碎鲕粒、完整鲕粒、以破碎鲕粒为核心的新鲕粒共存的局面,表明鲕粒的形成亦经历了一定的水动力作用。除铝土质鲕粒外,部分钻孔中发现有赤铁矿鲕粒,赤铁矿鲕粒代表近岸氧化环境。半土状铝土矿为铝土矿演化的最终状态,成片出现的半土状铝土矿反映沉积物暴露后经受的淋滤作用强。不同自然类型铝土矿反映不同的沉积环境,研究不同自然类型铝土矿的空间分布规律及组合特征可划分铝土矿的沉积相带。碎屑与豆鲕状铝土矿在南部的新模向斜与张家院向斜较多,栗园向斜东翼亦含大量碎屑状铝土矿,半土状铝土矿主要分布于栗园向斜,安场向斜为各类型矿石过渡地带,张家院向斜与新模向斜中有鲕状赤铁矿与褐红色粘土岩产出,以上表明安场-张家院-新模-栗园向斜一线为近岸环境,西南-东南地势相对较高,靠近陆地,水动力作用相对较强,往西北方向逐渐远离陆地,大塘向斜与道真向斜的交汇地带为汇水盆地中心,依此将铝土矿的沉积古地理环境分为三个相带:近岸平原、滨岸湿地、半封闭海湾,滨岸湿地地势较高,容易暴露地表接受淋滤是铝土矿成矿的有利地带,矿石品质较好,半封闭海湾地势较低,距海较近而不容易暴露,矿石品质较差。铝土矿的沉积体系控制了含矿岩系的厚度,含矿岩系的厚度与工业铝土矿层的厚度呈正相关,控制高品位铝土矿形成的因素较多,沉积体系虽控制含矿岩系的厚度但并不直接控制高品位铝土矿形成,只有在其余条件都适合的情况下沉积体系才对高品位铝土矿的形成具有决定意义。
     铝土矿的品位与结构、颜色密切相关。不同类型铝土矿品质特征为:半土状铝土矿>碎屑状铝土矿>豆鲕状铝土矿>致密状铝土矿,颜色越浅、结构越疏松则矿石品质越好。铝土矿的颜色主要为浅灰-灰绿的还原色,表明铝土矿整体形成于还原环境中,但矿系内部颜色由浅到深的周期性变化是对淋滤作用的反应。准同生期铝土矿数次暴露地表接受淋滤,富氧的孔隙水与植物残骸中的有机质及黄铁矿反应生成有机酸与硫酸,成矿环境变为酸性,硅、铁溶解在酸性溶液中向矿系底部运移,矿系中上部铝相对富集而形成高品位铝土矿。准同生期淋滤过程中剖面中上部为氧化环境,由剖面顶部往下,含氧量逐渐减少,至底部变为还原环境。铝土矿中的碱金属元素大量丢失表明成矿过程中存在明显的酸性环境,准同生期由于硫酸与有机酸的生成,成矿环境中上部为酸性环境,往剖面底部酸性逐渐减弱,至底部可变为弱碱性。依据铝土矿颜色、结构、矿物组合垂向上的规律性变化,垂向上可将成矿环境划为渗流带与潜流带,渗流带为氧化与酸性环境,准同生期的脱硅排铁作用主要在渗流带中进行,潜流带不利于成矿,潜水面越低则越有利于成矿。
There are abundant bauxite resources in Wuchuan-Zheng'an-Daozhen Area, North Guizhou (Wuzhengdao for short). Two competing views on the forming environments of bauxites in Wuzhengdao are debatable in the long term, including "marine facies" and "continental facies ". The studies on redox conditions, pH etc. in the forming environment of bauxite during penecontemporaneous period are still far from certain. Paleogeographic environment and characters of penecontemporaneous metallogenic environment have been analysed here, based on sedimentary, mineralogy and geochemistry study, which illustrates the relationship between paleogeography and bauxite, effects of penecontemporaneous metallogenic environment on high grade bauxite and the beneficial subenvironment of bauxite formation.
     Wuzhengdao bauxite formed in a elliptic basin, extends to Wulong on the north, Nanchuan on the west, Yanhe on the east and Suiyang-Fenggang on the south, with the south side higher than of the north. The ore-bearing horizon overlies limestone beds of late Carboniferous Huanglong Formation or mud shales of early-middle Silurian Hanjiadian Formation, and underlies the shales of early Permian Liangshan Formation or limestone of Qixia Formation, the contact relationship is parallel unconformity. Source tracing of trace elements is simple and reliable. Cr-Ni, Zr, Hf, Nb, Ta have been used to analyse the sources of bauxite. Cr-Ni value has a wide distribution in Wuzhengdao bauxite, indicating parent rocks of aluminosilicate rocks and carbonatites and small part of basalt parent rocks. High Field-Strength Elements (HFSE) Zr-Hf and Nb-Ta chart indicate mud shale of Hanjiadian formation has a closer relationship with bauxite. Source tracing of trace elements indicates mud shale of Hanjiadian Formation and limestone of Huanglong Formation are important material sources of bauxite, and mud shale of Hanjiadian Formation even contribute more to bauxite. Besides, there is another small part of basalt provides metallogenic material to bauxite. Metallogenic materials transported form areas around the basin were deposited in the centre of the basin, forming bedded ore-bodies, which are typical sedimentary bauxite.
     Bauxite is mainly composed of diaspore and clay minerals like kaolinite, chlorite and illite etc., and contains a bit of heavy minerals, such as anatase, zircon and rutile. and minute quantity of quartz, feldspar and pyrite. Striped and elliptic spherical parasites (Ce2Ca(CO3)3F2) have been recognized in ZK14904, ZK3402and ZK9A04. Binary structure of bauxite is clear, generally, diaspore takes the content of40%-95%in the middle-upper part, the rest are mainly clay minerals like kaolinite, chlorite and illite etc. Bauxites achieving the industrial grade mainly distributes in this part. The lower part is dominated by clay minerals, diaspore takes the content of5%-40%, while clay minerals can reach up to95%. Constant compositions of bauxite are A12O3(26.13-75.16%), SiO2(4.52-44.46%), Fe2O3(0.77-27.67%)and TiO2(1.05-5.24%), these elements have wide distributions. Basic element content is low and rather changeable (0.01-4.77%). A12O3has negative correlations with SiO2and Fe2O3, while displays positive correlation with TiO2, indicating bauxite metallogenic process is a process enriching Al, Ti and losing Si, Fe. Trace elements of Zr, Cr, V and Li are enrichment in bauxite. In parallel, Zr, Hf, Nb, Ta and Cr with similar changing rules display an increasing trend in content from north to south, while in vertical, the content shows an opposite trend from the top to the bottom of the section. Contents of Zr, Cr and Nb are relatively high, Zr is up to1835ppm, Cr, V, Li are more than150m. Hf and Ta are relatively low. Ni is special with different changing rules from other elements both in parallel and vertical. The contents of Ni in the samples are significantly different. Ranges of LREE, HREE, ΣREE in bauxite are18.49×10-6-993.6×10-6,12.7×10-6-47.3×10-6,38×10-6-1040.9×10-6, respectively, average values are198.82×10-6,26.3×10-6,225.1×10-6. LREE, HREE, ΣREE show an increasing trends from top to the bottom of the drill section. LREE displays large variation, while HREE has the opposite trend positive anomaly of Ce in the drill is obvious.
     The iron weathering crust, less than1m has been discovered at the bottom of ore-bearing rock series of bauxites. The ore-bearing rock series is composed of clay rocks and bauxites. Clay rocks exhibit homophaneous structure. Bedding and fossils are absent in the ore-bearing rock series of bauxites. Black carbonaceous interbeds and inferior coal interlayer appear in some drills. All these characters of bauxite indicate the forming environment should be low energy lacustrine, bay or coastal lagoon.
     Sedimentary environment can be accurately determined by paleosalinity analysis. Terrestrial lake is fresh water environment, bay belongs to salt water environment, while coastal lagoon is fresh water-salt environment. Trace elements of B, Sr, Ba and REE are good indicators for certain facies. Systematic sampling for trace elements and REE analysis by ZK202, ZK5604, ZK3228, ZK3402, ZK.14904covering the whole research area. A large number of statistics indicate B has significant meaning in facies, B is less than60ppm in terrestrial fresh water, while in transient phase it is60-100ppm. It is more than100ppm in salt water. B in Wuzhengdao bauxites ranges between45ppm-148ppm. More than60%of the sample indicates sea-land transition environment. However, eluviation is the necessary condition for bauxite formation, in this condition B may enrich downward, causing some bias in judgement, so it is necessary to check the content of B first. Kaolinite, the main composition of bauxite, is also the key component of laterite, chlorite is mainly formed during sedimentation or diagenesis, hence the bottom of the section enriched kaolinite (content of diaspore less than10%), far away from the high grade bauxite, is the level experienced weak eluviation, which can indicate the original sedimentary environment. While in samples from the middle-lower part of the section, though contains high diaspore (>10%), the content of B cannot directly indicate the sedimentary environment. If the ore-bearing rock series experienced serious eluviation, B in the middle-upper part will be massive lose, B in the bottom will be largely increased, the vertical curve of B must be changeable, on the contrary, the vertical curve of B in the ore-bearing rock series experienced weak eluviation should be straightness. The formation of high grade bauxite should be experienced serious eluviation, so the drills with high content of industrial bauxite can be tested to vertically contrast the content of B. If the upper high grade bauxite contains high B, it means there is still high content of B after the eluviation, the environment should be marine facies. If the content of B is low, then other indicators should be considered. In conclusion, characters of industrial banxite (high grade bauxite) in thickness, ore-bearing rock series and variation of the curve of B are significant reflections of the degree of eluviation. It is the key point to choose the drill experienced weak eluviation to decide the sedimentary environment by B. It is suggested from the data that ZK202and ZK5604experienced relatively weak eluviation. The content of B in drill2indicates a marine-continental transitional environment. While the ZK14904and ZK3402experienced serious eluviation result in great loss of B, but the contents of B in the middle-upper part of the two drills are still very high, which indicates a transitional-marine environment. As a whole, the content of B in bauxite indicates the bauxite deposited in transitional facies. Sr/Ba is a common method to recovery the paleosalinity, Sr/Ba>1in marine environment, Sr/Ba<1in terrestrial environment and0.6     It is suggested that Wuzhengdao bauxite formed in a special dynamic environment, from evidences of the mineral assemblages, outcrop charaters, geochemistry of trace elements and REE of bauxite, subjective environment is partly closed bay. Although the sea level is fluctuated, the sedimentary environment switched between partly closed bay and terrestrial lake. When the sea level was high, metallogenic province connected with Yangtze sea, it appears to be salt-brackish water sedimentation. When the sea level was low, metallogenic province out of touch with sea, it appears to be terrestrial salt-brackish water sedimentation. The input of atmospheric precipitation and land fresh water, salt water was diluted constantly. After a period of desalination, some areas changed into fresh water environment. The degree and scale of desalination are determined by length of time of desalination. After lacustrine salt or brackish water totally desalted, sedimentary environment became a brackish water or salt water environment again over the next transgression. After the sea level reduced, lacus or partly closed bay experienced desalination again. In this cycle, metallogenic environment switched in terrestrial lacus, partly closed bay and bay, paleosalinity was in the transition between fresh-brackish water-salt water, so that the sedimentation of bauxite have both continental and transitional characters.
     Wuzhengdao bauxite is divided into4types, including massive, earthy, debris and ooid, different type of bauxite has different environmental significance. Massive bauxite with characters of muddy texture, hard and smooth and small porosity, indicates it didn't experience serious reform. Ore grade of massive bauxite is low, in most cases, the content of clay minerals exceeds50%, from the perspective of petrology it can be treated as clay rock, representing low energy sedimentary environment. Clastic bauxite is dominated by grained clastic and sand cutting, reflecting it has experienced water transportation with certain intensity, which indicates the relatively high energy position of sedimentary environment. Ooids in Oolitic bauxite are mostly coarse fragment-core. Coexistence of broken ooid, complete ooid and new ooid with broken ooid-core is very common, which indicates the formation of ooids also experienced certain intensity of water power. Besides bauxitic ooids, hematite ooids have been discovered in some drills. Hematite ooids reflect nearshore oxidation environment. Earthy bauxite is the final state of evolution, massive appearance of half of soil bauxite indicates sediments have experienced serious eluviation after exposure. Different nature type of bauxite reflects different sedimentary environment, the division of sedimentary facies of bauxite according to the spatial distribution pattern and combination feature of different types of bauxite. Clastic and oolitic bauxites are common at Xinmo and Zhangjiayuan synclines on the south, clastic bauxite also appears in the east limb of Liyuan syncline. Earthy bauxite is mainly distributed in Liyuan syncline. Anchang syncline is a transitional belt of all kinds of ores. Zhangjiayuan syncline and Xinmo syncline yield oolitic hematite and maroon clay rock. It is suggested that Anchang-Zhangjiayuan-Xinmo-Liyuan syncline is located as nearshore environment, southwest-southeast of it close to land is relatively higher, water power is relatively strong. It is far away from continent in northwest direction. The convergence zone of Datang syncline and Daozhen syncline is the center of Huishui basin, so that the sedimentary palaeogeographic environment of bauxite is divided into three facies belts:nearshore plain, coastal wetland and partly closed bay. Coastal wetland is high and easier to exposure to accept leaching, it is the favorable zone of bauxite mineralization, ore quality is better. Partly closed bay is relatively low, it is close to sea and difficult to exposure, ore quality is worse. The ore-bearing rock series thickness is controlled by sedimentary paleogeography of bauxite, and appears positive correlation with the thickness of industrial bauxite beds. The formation of high quality bauxite is controlled by many factors, although sedimentary paleogeography controls the thickness of ore-bearing rock series, do not directly control the formation of high quality of bauxite. Only under the condition of other conditions are suitable, sedimentary paleogeography plays the decision significance on high quality bauxite formation.
     Grade of bauxite is closely related with texture and color. Quality of ores in decreasing order, they are semi-earthy bauxite, clastic bauxite, oolitic bauxite and massive bauxite. Lighten of the color and loosen of the structure, the ore quality is better. Color of bauxite is mainly reduced color of light grey-grayish green, which indicates bauxite formed in reducing environment, but periodic changes of color in inner ore-bearing rock series from light to deep is the reflection of eluviation. Bauxite of penecontemporaneous period exposed to the surface many times and experienced leaching. Pore water with oxygen enrichment, organic matter from plant debris and pyrite react to organic acid and sulfuric acid, metallogenic environment became acidic. Si, Fe dissolved in the acidic solution and migrated to the bottom of ore series. Al is relative enrichment in the middle-upper part of ore series to form high grade bauxite. The middle-upper part of the section belongs to oxidation environment in penecontemporaneous period, oxygen content gradually reduced, to the bottom of the reductive environment. Alkali elements in bauxite greatly lost indicates a significant acidic environment during the mineralization process. Because of the formation of sulfuric acid and organic acid in penecontemporaneous period, it is acidic environment in the middle-upper part of metallogenic environment. Acidity gradually reduced to the bottom of the section, it is alkaline to the bottom by the influence of transgression. According to the vertical changing rules of color, texture and mineral assemblages, metallogenic environment can be vertically divided into vadose zone and phreatic zone. Vadose zone is oxidation and acidic environment. Desilication and eisenaustrag of penecontemporaneous period mainly occur in the vadose zone. Phreatic zone is not favorable to mineralization. The lower the phreatic surface is more conducive to mineralization.
引文
[1]Laskou M.Concentration of rare earths in Greek bauxite. Acta Geological Hungarica.1991. 34(4):195-404.
    [2]Evans AM. Ore Geology and Industrial Minerals-An Introductijon. London:Blackwell, 1993:386-389.
    [3]Calagari AA, Abedini A. Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, West-Azarbaidjan, Iran. Journal of Geochemical Exploration.2007,94(5):1-18.
    [4]赵群.云南氧化铝工业的发展方向.云南冶金.2010,39(1):3944.
    [5]刘宝珺,曾允孚.岩相古地理基础与工作方法.北京:地质出版社.1985.102-144.
    [6]谢家荣,张宏远,邵龙义.古地理为探矿工作之指南.古地理学报,2001,3(4):1-9.
    [7]刘平,1993.三论贵州之铝土矿-贵州北部铝土矿成矿时代、物质来源及成矿模式.贵州地质,10(2):105-113.
    [8]武国辉,金中国,鲍淼等.黔北务正道铝土矿成矿规律探讨.地质与勘探.2008,44(6):31-35.
    [9]金中国,武国辉,赵远由等.贵州务川瓦厂坪矿床地质特征.矿产与地质,2009,23(2):137-141.
    [10]殷科华.黔北务正道铝土矿的成矿作用及成矿模式.沉积学报,2009b,27(3):452-457.
    [11]雷志远,廖友常.黔北大竹园铝土矿矿床地质特征及成因浅析.西部探矿工程,2007,18(2)94-97.
    [12]赵远由.贵州省务川县瓦厂坪铝土矿矿床地质特征[学位论文].昆明:昆明理工大学,2007.
    [13]韩忠华.贵州道真县大塘铝土矿沉积相特征.矿产与地质,2008,22(5):428432.
    [14]张启明,江新胜,秦建华等.黔北-渝南地区中二叠世早期梁山组的岩相古地理特征和铝土矿成矿效应.地质通报,2012,31(4):558-568.
    [15]金中国,武国辉,黄智龙,等.贵州务川瓦厂坪铝土矿床地球化学特征.矿物学报,2009,29(4):458462.
    [16]布申斯基.铝土矿地质学.北京:地质出版社,1984.150-164.
    [17]Bardossy G Karst bauxites, bauxite deposits on carbonate rocks. London:Developments in Economic Geology,1982.320-332.
    [18]Lapparent. JDE. Les bauxites de la France meridionale. Mem. France Paris:Carte Geol, 1930.1-187.
    [19]Konta J.Proposed classification and terminology of rocks in the series bauxite-clay-ironoxid ore.Sediment Petrol,1958,28(4):83-6.
    [20]Grubb PLC.High-level and low-level bauxitization:a criterion for classification. Miner.Sci. Engin. Johannesburg,1973,32(5):219-31.
    [21]Harder EC, Greig EW. Bauxite:in industrial minerals and rocks-nonmetallics other than fuels. Gillson,1992,77(4):65-85.
    [22]Peive AV. Tectonics of the Northern Ural Bauxite Belt.Izd.Mosk.Ob-va Isp. Moscow: Prirody Moscow,1947.78-95.
    [23]Fox CS.Bauxite and aluminous laterite. London:The Technical Press Ltd,1932.312-324.
    [24]Weisse GDE. Les bauxites de l'Europe Centrale.Mem Soc. Vaudoise Sci.Nat.1932.58(9): 142-162
    [25]Weisse GDE.Bauxite lateritique et bauxite karstique. Symp. Bxuxites, Oxydes et Hydroxydes d'Aluminium, Zagreb:Trav,1963,7-29.
    [26]Weisse GDE.Bauxite karstiques sur calcaries recents. Zagreb:Trav,1976.51-62.
    [27]Hardee EC.Examples of bauxite deposits illustrating variations in origin.AIMESymp. Problems of clay and laterite genesis,1952,23(2)35-64.
    [28]Bushinsky GI. Geology of bauxites. Moscow:Izd.Nedra Moscow,1971.1-366.
    [29]Valeton I.Bauxites.-Development in Soil Science. Amsterdam:Elsevier,1972.1-226.
    [30]Bardossy G. Network design for the spatial estimation of environmental variables. Applied Mathematics and Computation,1983,12 (3) 339-365.
    [31]Haberfelner. Zur Genesis der Bauxite in den Alpen and Dinariden. Berg and Huttenmann,1951,36 (6) 62-92.
    [32]Nemecz E.and Varju GY. Reletiongship between "flintclay" and bauxite formation in the Pilis Mountains.A model of bauxite formation. Acta Geology,1967,11(2):453-738.
    [33]Boldizsar T. Bauxit es mas asvanygelek keletkezese colloid disperz rendszerkbol (Formation of bauxite and other mineral gels out of colloidal-disperse syetems). Moscow: Bany. Koha.Lapok Budapest.1981.231-237.
    [34]Jurkovic I, Sakac.Straugraphical,paragenetical and genetical characteristic of bauxites in Yugoslavia.Symp. Zagreb:Bauxites,Oxydes et Hydroxydes d'Aluminium,1-3.X.1963. 253-63.
    [35]Schroll E,Sauer D. Beitrag zur Geochemie von Titan, Chrom, Nikel, Cobalt, Vanadium undMolibdan in Bauxitischen gestermenund problem der stofflichen herkunft des Aluminiums. Zagreb:Travaux du Icsoba,1968.83-96.
    [36]Kurtz AC, Dery LA, Chadwick OA, Alfano Mj. Refractory element mobility in volcanic soils. Geology,2000,28(2):683-686.
    [37]Panahi A, Young GM, Rainbird RH. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Quebec, Canada. Geochimica et Cosmochimica Acta,2000,64 (12):2199-2220.
    [38]Valeton I, Biermann M, Reche R, Rosenberg F.Genesis of nickel laterites and bauxites in Greece during the Jurassic and Cretaceous, and their relation to ultrabasic parent rocks. Ore Geology Reviews,1987,45(2):359-404.
    [39]Calagari AA, Abedini A. Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, West-Azarbaidjan, Iran. Journal of Geochemical Exploration,2007,94(7):1-18.
    [40]Karadag MM. Rare earth element (REE) geochemistry and genetic implication of Mortas bauxite deposit (Seydisehir/Konya-Southern Turkey). Chemie der Erde-Geochemistry, 2009,69(2):143-159.
    [41]Cullers RL, Graf J. Rare earth elements in igneous rocks of the continental crust: intermediate and silicic rocks, ore petrogenesis. In:Henderson, P. (Ed.), Rare Earth Element Geochemistry. Amsterdam:Elsevier,1983,275-312.
    [42]Cullers RL, Barrett T, Carlson R,et al. REE and mineralogic changes in Holocene soil and stream sediment. Chemical Geology,1987,63(5):275-297.
    [43]McLennan SM, Taylor SR. Sedimentary rocks and crustal evolution:tectonic setting and secular trands. The J Geol,1991.99(4):1-21.
    [44]McLennan S M. Rare earth elements in sedimentary rocks influence of provenance and sedimentary processes. In:Lipin B R, McKay GA, eds. Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy,1989,21(2):169-200.
    [45]Taylor SR, McLennan SM. The continental crust:Its composition and evolution. London,Blackwell,1985.312-314.
    [46]Girty GH. Provenance and depositional setting of Paleozoic chert and argillite,Sierra Nervada, California. J Sedi Res. Reviews in Mineralogy,1996,28 (1):10-118.
    [47]Roaldest E. REE in Quaternary clays of the Numedal area,southern Norway. Lithos, 1973,6(3):349-372.
    [48]Valeton. Genesis of nickel laterites and bauxites in greece during the jurassic and cretaceous, and their relation to ultrabasic parent rocks. Ore Geology Reviews,1987. 2(4)359-404
    [49]Josep M.Soler. A mass transfer model of bauxite formation. Geochimica et Cosmochemica Acta.1996,60(24):4913-1431.
    [50]刘长龄.中国石炭纪铝土矿的地质特征与成因.沉积学报,1988.(3):1-10.
    [51]廖士范.中国铝土矿地质学.贵阳:贵州科技出版社,1991.187-252.
    [52]章柏盛.黔中石炭纪铝土矿矿床成因等若干问题的初步探讨.地质论评,1984,21(6):553-560.
    [53]刘长龄,覃志安.某些铝土矿中稀土元素的地球化学特征.地质与勘探,1991,14(11):49-53.
    [54]李启津,国内外岩溶型铝土矿矿物学的研究现状.轻金属.1987,21(9):1-6.
    [55]陈旺.豫西石炭纪铝土矿成矿系统[学位论文].北京,中国地质大学,2009.
    [56]于蕾.滇东南地区晚二叠世沉积型铝土矿矿床成因与成矿规律[学位论文].北京,中国地质大学,2012.
    [57]范法明.从贵县铝土矿的特征看豫西铝土矿的成因.轻金属,1989,23(3):1-3.
    [58]袁跃清,河南省铝土矿床成因探讨.矿产与地质,2005.19(1):52-56.
    [59]贺淑琴,郭建卫,胡云沪.河南省三门峡地区铝土矿矿床地质特征及找矿方向.矿产与地质,2007,(2):181-185.
    [60]姬苕生.河南省铝土矿找矿工作的回顾与展望.地质与勘探,1987(3):9-11.
    [61]徐丽杰,卢静文,彭晓蕾.山西铝土矿床成矿物质来源.长春地质学院学报,1997,22(2):147-151.
    [62]陈平,刘凯.拓宽找矿思路铝土矿储量翻番.中国地质,1992,39(10):17-18.
    [63]Liu Cl. The genetic types of bauxite deposits in China. Science in China, Ser.B,1988,23(8):1010-1024.
    [64]王绍龙.再论河南G层铝土矿的物质来源.河南地质,1990,23(2):15-19.
    [65]吴国炎.华北铝土矿的物质来源及成矿模式探讨.河南地质,1997,56(3):2-7.
    [66]赵运发,柴东浩.山西铝土矿成矿因素探讨.有色矿山,2002,55(6):1-5.
    [67]孟祥化,葛铭,肖增起.华北石炭纪含铝建造沉积学研究.地质科学.1987.(2):182-197.
    [68]刘长龄,覃志安.论中国岩溶铝土矿的成因与生物和有机质的成矿作用.地质找矿论丛,1999,14(4):24-28.
    [69]孙思磊.山西宁武县宽草坪铝土矿床地质与地球化学特征研究[学位论文].北京,中国地质大学,2011.
    [70]Jun D, Wang QF, Yang SJ,et al.Genetic relationship between the Emeishan plume an the bauxite deposits in Western Guangxi. China:Constraints from U-Pb and Lu-Hf isotopesof the detrital zircons in bauxite ores Journal of Asian earth sciences,2009,37(4)412-424.
    [71]Jun Deng Interfacial stressanalysis of RC beams strengthened hybrid CFS and GFS. Construction and Building Material.2009.23(6):2394-2401
    [72]刘巽锋,王庆生,陈有能等.黔北铝土矿成矿地质特征及成矿规律.贵阳:贵阳人民出版社,1990.135-138.
    [73]甄秉钱,柴东浩.晋豫(西)本溪期铝土矿成矿富集规律及其沉积环境探讨.沉积学报,1986,4(3):115-126.
    [74]李海光.孝义-霍州一带铝土矿形成的古地理环境及找矿前景.华北地质矿产杂志,1998,6(3):46-53.
    [75]俞缙,李普涛,于航波.靖西三合铝土矿微量元素地球化学特征与成矿环境研究.河南理工大学学报(自然科学版),2009,20(3):289-293.
    [76]李中明,赵建敏,王庆飞,等.豫西郁山铝土矿床沉积环境分析.现代地质,2009,15(3):481-489.
    [77]范忠仁.河南省中西部铝土矿微量元素比值特征及其成因意义.地质与勘探,1989,9(7):23-27.
    [78]韩景敏.鲁西地区二叠系铝土矿特征及成矿机制研究[学位论文].青岛,山东科技大学,2005.
    [79]刘长龄.论高岭石粘土和铝土矿研究的新进展.沉积学报,2005,32(3):467-474.
    [80]陈履安.腐殖酸在铝土矿形成中的作用的实验研究.沉积学报,1996,23(2):119-125.
    [81]雷怀彦,师育新.铝硅酸盐矿物溶解作用铝活性研究.沉积学报,1996,23(2):153-156.
    [82]赵远由.渝南-黔北铝土矿矿物特征及沉积环境浅析.矿产勘查,2012,8(2):202-206.
    [83]汪小妹,焦养泉,杜远生,等.黔北务正道地区铝土矿稀土元素地球化学特征.地质 科技情报,2013,32(1):27-33.
    [84]刘平.四论贵州之铝土矿-黔中-川南成矿带铝土矿的稀散、稀土组分特征.贵州地质,1994,23(3):179-187.
    [85]刘平.贵州铝土矿伴生镓的分布特征及综合利用前景-九论贵州之铝土矿.贵州地质,2007,36(2):90-96.
    [86]翁申富,赵爽.黔北务正道铝土矿矿床特征及成矿模式-以务川大竹园铝土矿床为例.贵州地质,2010,39(3):185-192.
    [87]苏小平,杜芳应,陈启飞,等.贵州省务川-正安-道真地区大竹园式铝土矿典型矿床特征及资源潜力预测.贵州地质,2010,39(1):27-32.
    [88]李沛刚,王登红,雷志远等.贵州大竹园大型铝土矿稀土元素地球化学特征及其意义.地球科学与环境学报,2012,8(2):31-40.
    [89]杜远生,周琦,金中国,等.黔北务正道地区铝土矿基础地质与成矿作用研究进展.地质科技情报,2013,32(1):1-6.
    [90]谷静,黄智龙,金中国,等.黔北务-正-道地区瓦厂坪铝土矿床稀土元素地球化学研究.矿物学报,2011,43(3):198-199.
    [91]鲁方康,黄智龙,金中国,等.黔北务-正-道地区铝土矿镓含量特征与赋存状态初探.矿物学报,2009,32(3):373-379.
    [92]王登红,李沛刚,屈文俊,等.贵州大竹园铝土矿中钨和锂的发现与综合评价.中国科学:地球科学,2013,125(1):44-51.
    [93]雷志远,翁申富,陈强,等.黔北务正道地区早二叠世大竹园期岩相古地理及其对铝土矿的控矿意义.地质科技情报,2013,46(1):8-12.
    [94]郝家栩,杜定全,王约,等.黔北铝土矿含矿岩系的沉积时代研究.矿物学报,2007,32(3):466-472.
    [95]刘平,廖友常.黔中-渝南铝土矿含矿岩系时代探讨.中国地质,2012,28(3):661-682.
    [96]黄兴,张雄华,杜远生,等.黔北地区铝土矿形成的地质时代.地质科技情报,2012,31(3):49-54.
    [97]黄兴,张雄华,杜远生,等.黔北务正道地区及邻区石炭纪-二叠纪之交海平面变化对铝土矿的控制.地质科技情报,2013,32(1):80-86.
    [98]贵州省地矿局,贵州区域地质志.北京:地质出版社,1987,132-156.
    [99]裴荣富,熊群尧,沈宝丰等,难识别及隐伏大矿-富矿资源潜力的地质评价.北京:地质出版社,2001,129-140.
    [100]吴国炎,姚公一.河南铝土矿床.北京:冶金工业出版社,2003,77-89.
    [101]Maclean. Lithogeochemical techniques using immobile element. Journal of Geochemical Exploration,1993,48(2):109-133.
    [102]李爱国,易海永,汪福勇,等.渝东下石炭统河洲组的分布及其对油气运移的影响.天然气勘探与开发,2001,(4):23-27.
    [103]陈宗清.扬子区石炭纪黄龙期沉积相.沉积学报,1990,14(2):23-31.
    [104]陈宗清.扬子区黄龙组的划分与对比.地层学杂志,1991,15(3):197-200.
    [105]郑荣才,李德敏,张梢楠.川东黄龙组天然气储层的层序地层学研究.沉积学报,1995,19(3):1-9.
    [106]郑荣才,党录瑞,郑超,等.川东-渝北黄龙组碳酸盐岩储层的成岩系统.石油学报,2010,22(2):237-245.
    [107]李伟,张志杰,党录瑞.四川盆地东部上石炭统黄龙组沉积体系及其演化.石油勘探与开发,2011,55(4):400-408.
    [108]文华国,郑荣才,沈忠民.四川盆地东部黄龙组碳酸盐岩储层沉积-成岩系统.地球科学(中国地质大学学报),2011,36(1):111-121.
    [109]Rygel M, Fielding C, Frank T, Birgenheier L. The magnitude of late Paleozoic glacioeustatic fluctuations:a synthesis. Journal of Sedimentary Research,2008,78(5): 500-511
    [110]林甲兴,黎汉明,陈家怀.鄂西黄龙期有孔虫组合(带)及其与马鞍煤系富煤带分布规律的关系.矿床地质,1984,25(3):85-94.
    [111]MacLean,W.H., Kranidiotis,P.,1987.Immobile elements as monitors of mass transfer in hydrothermal alteration:Phelps Dodge massive sulfide deposit. Economical Geology,82(6), 951-962.
    [112]MacLean WH.Mass change calculations in altered rock series. Mineralium Deposita,1990,25(3),44-49.
    [113]李国胜,杨锐.对硼作为相标志的异议.岩相古地理,1992,4(2):41-45.
    [114]邓宏文,钱凯.沉积地球化学与环境分析兰州,甘肃科学技术出版社,1993,120-132.
    [115]孙镇城,杨藩,张枝焕等.中国新生代咸化湖泊沉积环境与油气生成.北京:石油工业出版社,1997,58-67.
    [116]余文超,杜远生,顾松竹,等.黔北务正道地区早二叠世铝土矿多期淋滤作用及其控矿意义.地质科技情报,2013,32(1):34-39.
    [117]史忠生,陈开远,史军,等.运用锶钡比判定沉积环境的可行性分析.断块油气田,2003,10(2):12-18.
    [118]陈平,柴东浩.山西地块石炭纪铝土矿沉积地球化学研究.山西:山西科学技术出版社,1997,202-268.
    [119]王中刚,赵振华,赵惠兰.REE Distribution Patterns of Granites in South China. Geochemistry,1982,35(1):39-50.
    [120]陈德潜,吴静淑.离子吸附型稀土矿床的成矿机制.中国稀土学报,1990,22(2):175-179.
    [121]石学法,陈丽蓉,马建国,等.西菲律宾海沉积物稀土元素地球化学.矿物学报,1996,9(3):260-267
    [122]真允庆,王振玉.华北式(G层)铝土矿稀土元素地球化学特征及其地质意义.桂林冶金地质学院学报,1991,10(3):49-56.
    [123]Bardossy,Aleva G J J, Lateritic bauxites.Amsterdam:Elsevier Science Publishers,1990: 1-624.
    [124]王俊达,李华梅,林树基,等.贵州草海沉积物的古地磁地层学初步研究.地球化学,1986,12(4):329-335.
    [125]廖士范.铝土矿矿床成因与类型(及亚型)划分的新意见.贵州地质,1998,8(2):139-144.
    [126]Cai J G,Bao Y G,Yang S Y,et al. Research on preservation and enrichment mechanisms of organic matter in muddy sediment and mudstone. Science in China Series D:Earth Science,2007,50(5):765-775.
    [127]李任伟,林大兴,黄宛平等.苏北盆地有机地球化学环境分析.中国科学,1986:7(6):647-655.
    [128]李任伟.高盐环境与生油.中国科学,1988,9(3):303-313.
    [129]梅博文,刘希江.我国原油中异戊间二烯烷烃的分布及其与地质环境的关系.石油与天然气地质,1980:1(2):99-114.
    [130]余文超等,杜远生,周琦等.黔北务川-正安-道真地区铝土矿系中生物标志物及其地质意义.古地理学报,2012,14(5):651-662.
    [131]张亚男,张莹华,吴慧,等.黔北务正道地区铝土矿鲕状矿石中鲕粒的微区元素地球化学特征及其成矿意义.地质科技情报,2013,32(1):62-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700