用户名: 密码: 验证码:
长春市中心区地下空间岩土体可利用性分析与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文搜集了长春市中心区大量基础地质资料,其中包括一千多个钻孔资料。论文分析研究了长春市中心区的工程地质分布特征,将长春市中心区按照其地貌特征划分为两个大的工程地质地貌单元,并对其地层层序进行了划分。论文从地质环境、人口经济、气候环境、城市经济建设发展现状等几个方面论述了长春市目前大规模开发利用地下空间的适宜性。
     论文分析了长春市现有的岩土工程勘察资料的主要存储数据格式,利用CASE工具Power Designer构建了长春市中心区工程地质数据仓库的物理模型,并在Microsoft SQL Server2005中实现了数据仓库的物理存储,从而能够将勘察单位资料库现存的大量勘察数据快速读取并存储入长春市中心区工程地质数据仓库中,用于进行与地下空间开发利用主题相关的研究与分析。
     论文利用GOCAD软件分别模拟了线状工程和面状工程的三维可视化工程地质地层模型。对按照宏观地层层序的划分,对钻孔数据的地层缺失及透镜体夹层情况进行了调整,在此基础上建立了长春市中心区三维工程地质地层模型和属性模型,通过对模型的研究分析进一步摸清了长春市中心区的工程地质地层分布的特点。
     论文探讨了目前长春市地下空间开发利用的工程类型及其分布深度,分别从地表以下0~3m浅层区域、3~15m中层区域、15~30m深层区域三个层次探讨了影响工程开发利用的工程地质因素。借助粗糙集理论对部分影响要素进行了约简,利用模糊层次分析法计算了约简后的影响要素的权重值,利用可拓学理论分别对不同深度区域的工程建设适宜性进行了评价,并利用其评价结果分别对浅层、中层和深层区域的岩土体可利用性进行了可拓综合评价。论文应用长春市地下空间岩土体可利用性综合评价结果对长春市地铁一号线的线路周边区域进行了分析评价。论文的研究结果具有实用价值,能够为长春市地下空间规划和工程建设提供参考依据。
With the development of economy, the Civil construction of underground space isprogressively increasing. Some local government introduced the planning provisionsabout the development and utilization of underground space. Many large andmedium-sized city constructed the underground space very well. Since2010, the ChangChun government has planned and constructed the NO.1subway in Chang Chun City,which will promote the economic development and engineering construction in thesurrounding area. Right now it is significance for carrying out the availibility research ofrock and soil mass in Chang Chun City underground space. The availibility of rock andsoil mass in urban underground space is carryed out from the view of engieering geology,comprehensively analysis the engineering geology characteristics of rock and soil mass,analysis and judge the feasibility of underground construction. The main analysis contentincludes the distribution of rock and soil mass in underground space, the engineeringgeology characteristics, and the feasibility for the excavation and construction in differentdepth of underground engineering such as foundation engineering, foundation pitengineering, underground chamber. The division and evaluation of the availibility of rockand soil mass in urban underground space can aid the urban planning design. Thus caneffectively use the stratum with a well engineering geology characteristics, avoid the landresources tense and waste, decrease the unnecessary redo construction in undergroundengineering, and decrease the economic loss of improper land use.
     The paper collected about thousand borehole informations of Chang Chun citygeotechnical engineering investigation. Comprehensively analysised the rock and soilmass distribution and engineering geology characteristics in the depth range of30m belowthe Chang Chun downtown surface. In principle, the formation lithology in Chang ChunCity is very well. The distribution of stratum is relatively uniformity and single. There isno large-scale soil distribution. The adverse geologic phenomena is relatively less. So theChang Chun City is suitable for the development of underground space construction.
     For rapidly withdraw and storage magnanimity geotechnical engineeringinvestigation data, the paper analysised the existed data structure type, based on the theme of underground space exploitation, used the CASE tool of Power Designer to construct theChang Chun City downtown engineering geology data warehouse model and achieved thedata storage in Microsoft SQL2005.
     The paper adjusted the sourc borehole data based on the macroscopic engineeringgeology stratigraphic sequence, used the GOCAD to construct the Chang Chun Citydowntown3D visualization engineering geology model. The analysis of lacuna in themodel can particularlly describe the stratum distribution of Chang Chun City.
     The paper analysised the key factors of Chang Chun City downtown undergroundspace exploitation from several aspects such as engineering geology, human engineering,hydrogeology, and earthqueke. From the construction type and human activity intensitypoint of view, the paper respectively discussed the factors of the availibility of rock andsoil mass in superficial zone of0~3m below the surface, and in3~15m middle zone,15~30m deep zone. The paper use the rough set theory to significance assess and reductthe factors in different underground spaces. Use the FAHP to calculate the weight ofreduced factors. And use the extenics theory to evaluate the utilizability of rock and soilmass in different underground spaces.
     Through the reserch of the availibility of rock and soil mass in Chang Chun Citydowntown underground spaces, the paper acquired achievement and conclusion as below:
     1. Concluded the comprehensive engineering geology in reserch area. Separate thestratum in research area into two engineering geology unit by the Yi Tong river whichranges running north and south in the reserch area, namely the second-step platformunit in the weat Yi Tong river and the first terrace unit in the east Yi Tong river.
     2. Analysised the key factors of Chang Chun City downtown underground spaceexploitation from several aspects such as engineering geology, human engineering,hydrogeology, and earthqueke.
     3. Divided the Chang Chun City downtown underground spaces into three zones:0~3msuperficial zone,3~15m middle zone,15~30m deep zone. Respectively choosedcorresponding factors for different underground spaces by the construction types androck and soil mass distribution.
     4. Constructed Chang Chun City downtown engineering geology data warehouse, whichcan rapidly and effectively withdraw data from the backup in Li Zheng geotechnicalengineering investigation software.
     5. Constructed Chang Chun City downtown3D visualization engineering geology model,which can perceptual intuitively observe the distribution of Chang Chun Citydowntown stratum.
     6. Use the rough set theory to reduct the factors of the availibility of rock and soil massin different underground spaces. The reducted factors is representative, and reducedthe caculation time.
     7. Use the extenics theory to evaluate the utilizability of rock and soil mass in ChangChun City downtown underground spaces. The result is meaningful and available.
引文
[1]童林旭.地下空间概论(一)[J].地下空间2004,(01):133-136+142.
    [2]康宁.美国的地下空间开发和利用[J].浙江地质2001,(01):67-72.
    [3]李春.城市地下空间分层开发模式研究[D].同济大学,2007.
    [4]钱七虎.迎接我国城市地下空间开发高潮[J].岩土工程学报1998,(01):112-113.
    [5]李明曦,李文.大连市地下空间现状与规划研究[J].科技创新导报2011,(11):37-38.
    [6]奚江琳,钱七虎.中国大都市地下空间后发优势探析[J].地下空间与工程学报2005,(03):329-333+337.
    [7] He, L., Y. Song, S.Z. Dai, et al. Quantitative research on the capacity of urban underground space-Thecase of Shanghai, China[J]. Tunnelling and Underground Space Technology2012,32:168-179.
    [8] Zhu, W.J., J. Liu. Correlation between Underground Space Intensity and Land-use TransportInteraction[J]. Progress in Civil Engineering, Pts1-42012,170-173:1790-1795.
    [9] Zhu, W.J., X.D. Kan. Coordination Analysis for Urban Underground Space and Rail Transit Based onSpace Syntax[J]. Progress in Civil Engineering, Pts1-42012,170-173:1388-1391.
    [10] Lv, S.R. Underground Space Development and Urban Safety[J]. Sustainable Cities Development andEnvironment, Pts1-32012,209-211:516-520.
    [11] Zhang, Y. A Fire Disaster Intelligence Alarm System Applicable To Underground Space[J]. Vibration,Structural Engineering and Measurement Ii, Pts1-32012,226-228:1049-1054.
    [12] Canto-Perello, J., J. Curiel-Esparza, V. Calvo. Criticality and threat analysis on utility tunnels forplanning security policies of utilities in urban underground space[J]. Expert Systems with Applications2013,40(11):4707-4714.
    [13] Zhao, Z.W., X.B. Wang. Site Selection of Underground Space for Disaster Prevention based on GIS[J].Frontiers of Green Building, Materials and Civil Engineering, Pts1-82011,71-78:4858-4863.
    [14] Cano-Hurtado, J.J., J. Canto-Perello. Sustainable development of urban underground space forutilities[J]. Tunnelling and Underground Space Technology1999,14(3):335-340.
    [15]薛伟辰,胡翔,王恒栋.综合管沟的应用与研究进展[J].特种结构2007,(01):96-99.
    [16]王恒栋,王梅.综合管沟工程综述[J].上海建设科技2004,(03):37-39.
    [17]高建宇,郭海鸥,杨庆利, et al.城市地下空间的利用与开发展望[J].城市道桥与防洪2004,(05):47-49+7.
    [18] Liu, H.D. Visual Identity Problems and Integrated Measures on Space Design under the Concept ofSystem Design-Design of Underground Garage as an Example[J]. Progress in Civil Engineering, Pts1-42012,170-173:3653-3657.
    [19]刘春彦,沈燕红.日本城市地下空间开发利用法律研究[J].地下空间与工程学报2007,(04):587-591.
    [20]肖军.论日本地下空间利用的基础法制[J].行政法学研究2008,(02):118-123.
    [21]钱七虎,陈晓强.国内外地下综合管线廊道发展的现状、问题及对策[J].地下空间与工程学报2007,(02):191-194.
    [22]段富凯.层状岩质边坡三维可视化系统研究[D].贵州大学,2009.
    [23]熊祖强.工程地质三维建模及可视化技术研究[D].中国科学院研究生院(武汉岩土力学研究所),2007.
    [24]涂齐亮.昆明城市地质数据三维GIS分析与可视化平台研究[D].吉林大学,2007.
    [25]刘腾,王华,张劲超, et al.北京及其附近地区地壳结构三维可视化建模研究[J].长江大学学报(自科版)2013,(10):68-70+75+1.
    [26]张芳,朱合华,吴江斌.城市地下空间信息化研究综述[J].地下空间与工程学报2006,(01):5-9.
    [27]严学新,杨建刚,史玉金, et al.上海市三维地质结构调查主要方法、成果及其应用[J].上海地质2009,(01):22-27.
    [28]陈华文.上海城市地质工作服务经济社会发展机制与模式探索[J].上海地质2010,(03):9-15.
    [29]董慧超.北京地铁九号线三维地质建模研究[D].中国地质大学(北京),2011.
    [30]明镜,潘懋,屈红刚, et al.北京市新生界三维地质结构模型构建[J].北京大学学报(自然科学版)2009,(01):111-119.
    [31]张素君,陈浩权.广州城市三维地质结构模型构建方法[J].学习月刊2010,(12):113-114.
    [32]张素君.广州大坦沙地区三维地质结构模型建成及其对城市建设和规划的指导性意义[J].科技资讯2011,(22):155.
    [33]王剑波,斯小君,华锡宏, et al.杭州城市三维地质结构特征介绍[J].浙江国土资源2011,(03):51-54.
    [34]傅俊鹤,郝社锋,邹霞.杭州市城市三维地质信息管理与服务系统的构建[J].地质学刊2011,(01):50-56.
    [35]陈忠大,胡根兴,毛汉川, et al.杭州湘湖地区三维工程地质结构特征与分析[J].上海地质2009,(01):16-21.
    [36]苏锡常地区地面沉降及地质结构三维可视化模型研究[M].
    [37] Shao, Y.X., C.L. Wu, Q. Chen. Application on establishment of digital urban geologic spatial datawarehouse[J]. Progress in Intelligence Computation and Applications, Proceedings2007:505-508.
    [38]方锋. GIS支持下的广州市城市地下空间信息平台建设[J].工程勘察2005,(04):56-59.
    [39] Zhou, W., G. Chen, H. Li, et al. GIS application in mineral resource analysis-A case study of offshoremarine placer gold at Nome, Alaska[J]. Computers&Geosciences2007,33(6):773-788.
    [40] Nimmagadda, S.L., H. Dreher. Petroleum Ontology: an effective data integration and miningmethodology aiding exploration of commercial petroleum plays[J].20086th Ieee InternationalConference on Industrial Informatics, Vols1-32008:1222-1228.
    [41] Storr, E., R. Adams, A. Western. How can data from headwater catchments be used to improve runoffand nutrient predictions at larger scales?[J].19th International Congress on Modelling and Simulation(Modsim2011)2011:2381-2387.
    [42] Lin, H., P. Liu, W. Li, et al. Construction of Digital Mine and Key Technologies[J]. Natural Resourcesand Sustainable Development Ii, Pts1-42012,524-527:413-420.
    [43] Liu, Z.K., Y.W. Bai, Q. Li. Application Research of Data Warehouse Technology in Integrated DrillingEngineering Design[J]. Advanced Design Technology2012,421:431-435.
    [44] Ji, M., F.X. Jin, X.W. Zhao, et al. Mine Geological Hazard Multi-dimensional Spatial Data WarehouseConstruction Research[J].201018th International Conference on Geoinformatics2010.
    [45]朱传华.三峡库区地质灾害数据仓库与数据挖掘应用研究[D].中国地质大学,2010.
    [46] Huang, X.B., Z.H. Tan, W.M. Cheng. Study on methods and procedures of geological hazard preventionand decision support[J]. GIS and Spatial Analysis, Vol1and22005:976-981.
    [47]于焕菊,谢传节,李云岭, et al.中国华北地区地震空间数据仓库的构建与分析[J].地球信息科学2006,(03):88-93.
    [48]史昌盛.数字地下空间与工程的空间分析与知识发现[J].铁道建筑技术2010,(02):29-34.
    [49]郭峰.数据仓库技术在GIS决策支持中的应用[J].华中农业大学学报2003,(01):60-64.
    [50]张庆.上海市规划国土资源指挥监测中心在智慧城市建设中的实践[J].国土资源信息化2012,(04):33-39.
    [51]孙滨峰.上海市地下空间数据仓库系统的研究与实现[D].华东师范大学,2009.
    [52]梁文全.基于ArcObjects的城市地下空间资源系统研究与开发[D].中国地质大学(北京),2009.
    [53]车德福,徐磊,吴立新, et al.城市地下空间资源信息共享研究[C].中国地理信息系统协会第九届年会.中国浙江抗州.2005.253-254-255-256-257-258.
    [54]吴立新,姜云,车德福, et al.城市地下空间资源质量模糊综合评估与3D可视化[J].中国矿业大学学报2007,(01):97-102.
    [55]姜云,吴立新,车德福, et al.城市地下空间资源质量评估基本单元体的研究[J].武汉大学学报(信息科学版)2007,(03):275-278.
    [56]姜云,吴立新,杜立群.城市地下空间开发利用容量评估指标体系的研究[J].城市发展研究2005,(05):47-51+75.
    [57]吴立新,姜云,梁越, et al.城市地下空间开发利用容量评估的基础研究[J].地理与地理信息科学2004,(04):44-47.
    [58]刘金明.长春市活动断层探测及第四纪标准剖面的建立[D].吉林大学,2007.
    [59]管振德.长春目标地区地层信息可视化的研究[D].吉林大学,2009.
    [60]蔡可易,王清.长春地区黄土状土工程地质研究[C].第三届全国岩土与工程学术大会.中国四川成都.2009.174-175-176.
    [61]周志广.长春市活断层研究及区域现代构造应力场数值分析[D].吉林大学,2007.
    [62]李恩泽.伊通—舒兰断裂带(长春段)地震活动性及对长春城市发展的影响[D].吉林大学,2012.
    [63]李军敏.长春—四平地区新构造运动[D].吉林大学,2004.
    [64]张建伟,王锡魁,隋维国, et al.长春地区地震地质构造活动性分析[J].内陆地震2010,(03):269-274.
    [65]盛俭.长春市近断层地震动场预测[D].吉林大学,2008.
    [66] Durmisevic, S. The future of the underground space[J]. Cities1999,16(4):233-245.
    [67]孙影.长春市地下空间开发利用模式研究[D].东北师范大学,2010.
    [68]蔡向民,何静,白凌燕, et al.北京市地下空间资源开发利用规划的地质问题[J].地下空间与工程学报2010,(06):1105-1111.
    [69]徐生钰.城市地下空间资源定价——以南京为例的研究[J].中国城市经济2010,(10):234-235.
    [70]徐新巧.城市更新地区地下空间资源开发利用规划与实践——以深圳市华强北片区为例[J].城市规划学刊2010,(S1):30-35.
    [71]柳昆,彭建,彭芳乐.地下空间资源开发利用适宜性评价模型[J].地下空间与工程学报2011,(02):219-231.
    [72]郭琳珂.合肥市地下空间资源开发利用机制探讨[J].科技创业家2013,(14):153-154.
    [73]王海刚,贾三满,杨艳, et al.基于GIS的城市地下空间资源综合质量评估研究[J].上海国土资源2011,(01):59-62+77.
    [74]徐军祥,秦品瑞,徐秋晓, et al.济南市地下空间资源开发地质环境适宜性评价[J].山东国土资源2012,(08):14-17.
    [75]张平,陈志龙.历史街区地下空间资源质量评估——以扬州老城区为例[J].城市规划2012,(11):29-32.
    [76]吴莎莎.上海市地下空间资源利用及管理问题研究[D].华东理工大学,2012.
    [77]陈华元.重视城市地下空间资源的开发利用[J].楚天主人2013,(06):34.
    [78]贾世平,李伍平.城市地下空间资源评估研究综述[J].地下空间与工程学报2008,(03):397-401.
    [79]黄冬梅,张弛,杜继鹏, et al.数字海洋中海量多源异构空间数据集成研究[J].海洋环境科学2012,(01):111-113+119.
    [80]沙宗尧.空间数据仓库体系结构框架的概念模型[J].地理空间信息2008,(01):18-21.
    [81] Schneider, A., H.H. Gerke, T. Maurer.3D initial sediment distribution and quantification of massbalances of an artificially-created hydrological catchment based on DEMs from aerial photographsusing GOCAD[J]. Physics and Chemistry of the Earth2011,36(1-4):87-100.
    [82] Sausse, J., C. Dezayes, L. Dorbath, et al.3D model of fracture zones at Soultz-sous-Forets based ongeological data, image logs, induced microseismicity and vertical seismic profiles[J]. Comptes RendusGeoscience2010,342(7-8):531-545.
    [83] Bar, K., D. Arndt, J.G. Fritsche, et al.3D modeling of the deep geothermal Potential of Hesse-Inputdata and Potential expulsion[J]. Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften2011,162(4):371-388.
    [84] Hu, H., T.M. Fernandez-Steeger, M. Dong, et al.3D Modeling Using LiDAR Data and its Geologicaland Geotechnical Applications[J].201018th International Conference on Geoinformatics2010.
    [85] Arndt, D., K. Bar, J.G. Fritsche, et al.3D structural model of the Federal State of Hesse (Germany) forgeopotential evaluation[J]. Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften2011,162(4):353-369.
    [86] Schober, A., U. Exner.3d Structural Modelling of an Outcrop-Scale Fold Train Using Photogrammetryand Gps Mapping[J]. Austrian Journal of Earth Sciences2011,104(2):73-79.
    [87] Bauer, T., P. Skytta, P. Weihed, et al.3D-modelling of the Central Skellefte District, Sweden[J]. SmartScience for Exploration and Mining, Vol1and22010:394-396.
    [88] Hodgkinson, J., M. Grigorescu. Background research for selection of potential geostorage targets-casestudies from the Surat Basin, Queensland[J]. Australian Journal of Earth Sciences2013,60(1):71-89.
    [89] Lamarche, J., J. Borgomano, B. Caline, et al. Characterization of Fault-Related Dolomite Bodies inCarbonate Reservoirs Using Lidar Scanning[J]. Outcrops Revitalized: Tools, Techniques andApplications2011,(10):175-194.
    [90] Ramon, M.J., E.L. Pueyo, A. Rodriguez-Pinto, et al. A computed tomography approach forunderstanding3D deformation patterns in complex folds[J]. Tectonophysics2013,593:57-72.
    [91] Bistacchi, A., W.A. Griffith, S.A.F. Smith, et al. Fault Roughness at Seismogenic Depths from LIDARand Photogrammetric Analysis[J]. Pure and Applied Geophysics2011,168(12):2345-2363.
    [92] Schumann, A., D. Arndt, T. Wiatr, et al. High-resolution terrestrial laser scanning and3D modelling of amineral deposit for extraction management optimisation[J]. Zeitschrift Der Deutschen Gesellschaft FurGeowissenschaften2011,162(4):435-442.
    [93] Piedrahita, C., C.L. Montana. Methodology implemented for the3D-seismic modelling using GOCADand NORSAR3D software applied to complex areas in the Llanos Foothills[J]. Earth SciencesResearch Journal2007,11(1):35-43.
    [94] Lang, J., J. Winsemann, D. Steinmetz, et al. The Pleistocene of Schoningen, Germany: a complex tunnelvalley fill revealed from3D subsurface modelling and shear wave seismics[J]. Quaternary ScienceReviews2012,39:86-105.
    [95]赵晓东,李利岗,彭林军. GIS和GOCAD支持下的矿山3D地质建模[J].地理与地理信息科学2009,(02):34-38.
    [96]王长海,许国. GOCAD地质建模在某工程中的应用[J].红水河2011,(06):165-167+171.
    [97]詹莉,刘聪元,张春芳, et al. GOCAD及其在乌东德工程中的应用[J].资源环境与工程2011,(05):495-498.
    [98]邵国波,郭艳,蔡冰. GOCAD软件在三维地质建模中的应用[J].山东交通科技2010,(05):25-27.
    [99]蒋锐. GOCAD与CATIA在三维地质建模生产中的应用分析[J].地下水2013,(02):97-98.
    [100]王斯娜. GOCAD与FLAC~(3D)接口程序设计[J].科技信息2010,(28):631.
    [101]童亮,胡卸文,汪雪瑞. GOCAD在某桥基边坡三维地质建模中的应用研究[J].地质灾害与环境保护2009,(01):60-65.
    [102]姚高峰,郭元世,黄小华.地质三维模型快速生成标准地质剖面图方法初探[J].广西水利水电2012,(05):17-20.
    [103]肖阳,冯积累,江同文, et al.缝洞型碳酸盐岩油气藏数值模拟技术研究[J].新疆石油天然气2012,(02):35-39+3.
    [104]杨志华,兰恒星,张永双.基于GIS-GOCAD耦合技术的三维地质建模[J].地理与地理信息科学2012,(05):16-20.
    [105]刘秀军.基于GOCAD的复杂地质体FLAC~(3D)模型生成技术[J].中国地质灾害与防治学报2011,(04):41-45.
    [106]张燕飞,朱杰勇,张威.基于GOCAD的三维地质模型构建[J].河北工程大学学报(自然科学版)2011,(04):69-73.
    [107]贾新会,王小兵,曹文广.基于GoCAD平台的地质三维建模技术在水电工程中的应用[J].西北水电2012,(04):18-22.
    [108]孙涛,刘亮明,赵义来, et al.基于GOCAD平台的复杂地质体系的动力学建模研究[J].矿产与地质2011,(02):163-167.
    [109]邱俊玲.基于三维激光扫描技术的矿山地质建模与应用研究[D].中国地质大学,2012.
    [110]姚高峰,郭元世,黄小华, et al.某变电站工程三维地质建模研究[J].企业科技与发展2013,(02):54-56.
    [111]康景文,孙铁,孙涛, et al.软土场地工程地质三维模型实现[C].第九届全国工程地质大会.中国山东青岛.2012.841-842-843-844-845-846-847-848.
    [112]张先伟,王常明,张国柱, et al.三维边坡地质体建模方法及工程应用[J].地下空间与工程学报2011,(02):329-334.
    [113]公维学.三维地质填图中地质体可视化技术研究与实现[D].吉林大学,2013.
    [114]吴晓野.土石坝三维地质建模及有限元分析研究[D].南昌大学,2012.
    [115]许毓才.托口水电站河湾地块三维地质仿真及其防渗工程模拟[D].长沙理工大学,2012.
    [116]许国,王长海.万家口水电站复杂地质体三维模型及其数值模型构建[J].武汉大学学报(工学版)2013,(04):469-474.
    [117]李永强,景立平,梁海安, et al.汶川地震中土石坝地震灾变过程三维再现[J].水力发电学报2011,(06):98-103.
    [118]孙岳,王功文,方同辉, et al.新疆红海块状硫化物矿床三维地质建模及勘探应用[J].地质与勘探2013,(01):179-184.
    [119]王长海,许国,范孝锋, et al. GOCAD与ABAQUS的数据接口实现[J].测绘信息与工程2008,(05):41-42.
    [120]王丹微.上海世博会会址区地基土工程地质可利用性评价与研究[D].吉林大学,2008.
    [121] Wen, K.L., Y.T. Lee. Applying rough set theory in the function group analysis for phenolic amidecompounds[J]. Computers&Electrical Engineering2012,38(1):11-18.
    [122] Chou, H.L., S.H. Wang, C.H. Cheng. Discovering knowledge of hemodialysis (HD) quality usinggranularity-based rough set theory[J]. Archives of Gerontology and Geriatrics2012,54(1):232-237.
    [123] Liang, J.Y., R. Li, Y.H. Qian. Distance: A more comprehensible perspective for measures in rough settheory[J]. Knowledge-Based Systems2012,27:126-136.
    [124] Huang, K.Y. An enhanced classification method comprising a genetic algorithm, rough set theory anda modified PBMF-index function[J]. Applied Soft Computing2012,12(1):46-63.
    [125] Lee, C., H. Lee, H. Seol, et al. Evaluation of new service concepts using rough set theory and groupanalytic hierarchy process[J]. Expert Systems with Applications2012,39(3):3404-3412.
    [126] Dobrilovic, D., V. Brtka, I. Berkovic, et al. Evaluation of the Virtual Network Laboratory ExercisesUsing a Method Based on the Rough Set Theory[J]. Computer Applications in Engineering Education2012,20(1):29-37.
    [127] Shirahama, K., Y. Matsuoka, K. Uehara. Event retrieval in video archives using rough set theory andpartially supervised learning[J]. Multimedia Tools and Applications2012,57(1):145-173.
    [128] Wang, B.W., V.S. Tseng. Improving Missing-Value Estimation in Microarray Data with CollaborativeFiltering Based on Rough-Set Theory[J]. International Journal of Innovative Computing Informationand Control2012,8(3B):2157-2172.
    [129] Mandal, S.K., F.T.S. Chan, M.K. Tiwari. Leak detection of pipeline: An integrated approach of roughset theory and artificial bee colony trained SVM[J]. Expert Systems with Applications2012,39(3):3071-3080.
    [130] Lee, Y.S., L.I. Tong. Predicting High or Low Transfer Efficiency of Photovoltaic Systems Using aNovel Hybrid Methodology Combining Rough Set Theory, Data Envelopment Analysis and GeneticProgramming[J]. Energies2012,5(3):545-560.
    [131] Xiao, Z., X.L. Yang, Y. Pang, et al. The prediction for listed companies' financial distress by usingmultiple prediction methods with rough set and Dempster-Shafer evidence theory[J]. Knowledge-BasedSystems2012,26:196-206.
    [132]倪龙强,周振堂,高社生.粗糙集和证据理论相结合的数据挖掘方法[J].西北工业大学学报2010,(06):927-931.
    [133]韩祯祥,张琦,文福拴.粗糙集理论及其应用综述[J].控制理论与应用1999,(02):153-157.
    [134]张鹏,陈剑平,肖云华, et al.粗糙集—小波神经网络在隧道围岩分类中的应用[J].地下空间与工程学报2011,(03):429-434+456.
    [135]张振华.粗集理论及其在数据预处理过程中的应用[D].昆明理工大学,2002.
    [136]王浩.地下工程监测中的数据分析和信息管理、预测预报系统[D].中国科学院研究生院(武汉岩土力学研究所),2007.
    [137]井彦林,仵彦卿.黄土力学数据挖掘系统研究[J].岩土工程学报2005,(10):1154-1158.
    [138]李订芳,章文,牛艳庆.基于粗糙集的缺失数据循环搜索重建算法[J].武汉大学学报(信息科学版)2005,(11):79-82.
    [139]张鹏,陈剑平,邱道宏.基于粗糙集的隧道围岩质量可拓学评价[J].岩土力学2009,(01):246-250.
    [140]姜云,吴立新,车德福, et al.基于粗糙集和GeoMo~(3D)的城市岩土参数重要性评估与可视化[J].地理与地理信息科学2005,(06):19-21+36.
    [141]段鹏.基于粗糙集和神经网络的不完备信息系统数据挖掘研究[D].云南师范大学,2004.
    [142]肖云华,王清,陈剑平, et al.基于粗糙集和支持向量机的融合算法在岩体质量评价中的应用[J].煤田地质与勘探2008,(06):49-53.
    [143]丁加明.基于粗糙集理论的膨胀土路基气候作用分析及水毁灾害预测[D].中南大学,2006.
    [144]井彦林.基于数据挖掘技术的黄土湿陷性研究[D].西安理工大学,2006.
    [145]赵安平.季冻区路基土冻胀的微观机理研究[D].吉林大学,2008.
    [146]申翃.土性统计参数及土坡稳定性可靠度分析研究[D].武汉理工大学,2004.
    [147]张其文,李明.一种缺失数据的填补方法[J].兰州理工大学学报2006,(02):102-104.
    [148]高社生,倪龙强,杨凯.一种新的基于局部冲突分配的证据合成规则[J].西北工业大学学报2009,(01):43-46.
    [149]蔡文.可拓学概述[J].系统工程理论与实践1998,(01):77-85.
    [150]蔡文,杨春燕,何斌.可拓学基础理论研究的新进展[J].中国工程科学2003,(02):80-87.
    [151]蔡文,石勇.可拓学的科学意义与未来发展[J].哈尔滨工业大学学报2006,(07):1079-1086.
    [152]李映红,陶占盛,秦喜文, et al.基于组合赋权法的地质灾害可拓学评价模型研究[J].哈尔滨工业大学学报2011,(11):141-144.
    [153]范建华.环滇池城区地质环境资源综合评价与规划[D].吉林大学,2008.
    [154]张丽.蓟县老虎顶采石矿复垦工程地质评价[D].吉林大学,2009.
    [155] Wang, X.M., Z.S. Tao, X.W. Qin. Evaluation of Geological Disaster with Extenics Based on EntropyMethod[J]. Life System Modeling and Intelligent Computing2010,6330:708-715.
    [156] Xue, Y.G., S.C. Li, Y. Zhao, et al. Study on Extenics Prediction of Rockburst in High Ground StressZone of Deep Buried Tunnel[J]. Controlling Seismic Hazard and Sustainable Development of DeepMines:7th International Symposium on Rockburst and Seismicity in Mines (Rasim7), Vol1and22009:1533-1538.
    [157] Qin, S.W., J.P. Chen, Q. Wang, et al. Research on Rockburst Prediction with Extenics EvaluationBased on Rough Set[J]. Controlling Seismic Hazard and Sustainable Development of Deep Mines:7thInternational Symposium on Rockburst and Seismicity in Mines (Rasim7), Vol1and22009:937-944.
    [158]郭金玉,张忠彬,孙庆云.层次分析法的研究与应用[J].中国安全科学学报2008,(05):148-153.
    [159]李永,胡向红,乔箭.改进的模糊层次分析法[J].西北大学学报(自然科学版)2005,(01):11-12+16.
    [160]周艳美,李伟华.改进模糊层次分析法及其对任务方案的评价[J].计算机工程与应用2008,(05):212-214+245.
    [161]吕跃进.基于模糊一致矩阵的模糊层次分析法的排序[J].模糊系统与数学2002,(02):79-85.
    [162]兰继斌,徐扬,霍良安, et al.模糊层次分析法权重研究[J].系统工程理论与实践2006,(09):107-112.
    [163]陶余会.如何构造模糊层次分析法中模糊一致判断矩阵[J].四川师范学院学报(自然科学版)2002,(03):282-285.
    [164]黄静莉,王常明,王钢城, et al.模糊综合评判法在冰湖溃决危险度划分中的应用——以西藏自治区洛扎县为例[C].中国地质学会工程地质专业委员会、贵州省岩石力学与工程学会2005年学术年会暨“岩溶工程环境”学术论坛.中国贵阳.2005.109-110-111-112-113-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700