用户名: 密码: 验证码:
新疆巴楚地区中一晚奥陶世海平面变化:碳、氧、锶同位素记录
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奥陶纪经历了诸如生物大辐射事件、奥陶纪末生物灭绝事件等一系列的变化。气候与环境的变迁无疑是推动这些变化的因素之一。海水是气候和环境变化的重要载体,海平面的变化能够在一定程度上反映了气候和环境变化的性质和范围,并能够直接与浅水陆表海海底演化、海底生态及生物多样性联系起来,在塑造海洋沉积体系过程中发挥着重要作用。在研究海平面变化的众多技术手段中,保存于海相碳酸盐岩中的碳、氧、锶同位素已经证明是重建奥陶纪环境变化、对不同沉积条件下或者不同古大陆沉积层序进行对比的一种有效工具。塔里木作为地质历史中一个主要地块,在奥陶纪位于北半球的中低纬度地带。巴楚地区位于塔里木西北部,在中—晚奥陶世经历了台地、台地边缘和斜坡的演化过程,广泛发育的碳酸盐岩地层,为研究碳、氧、锶同位素的组成与演化提供了很好的素材。针对巴楚地区碳酸盐岩露头的地层、古生物、岩相、沉积环境等研究也为在该地区开展碳、氧、锶同位素地层学和海平面变化研究提供了坚实的基础。
     为了重建塔里木巴楚地区中—晚奥陶世海平面变化,探讨巴楚地区碳、氧、锶同位素演化规律,本文在对塔里木盆地巴楚地区中—上奥陶统南一沟剖面和良里塔格组建组剖面实测的基础上,结合牙形刺等化石资料,建立了具有精确生物(年代)地层格架的碳、氧、锶同位素变化曲线,并依据碳、氧、锶同位素对海平面变化的响应机理,结合层序地层学,重建了该地区海平面变化曲线。最终获得以下成果:
     1.选作进行碳、氧、锶同位素测试的碳酸盐岩样品中未见或者极少见矿物、微晶结构的改变,赋存于岩石中的古生物体在结构上亦未发生改变或极少改变。δ18O值除一个样品为-11.7‰(鹰山组顶部)以外,均位于-10‰~-4‰之间。δ13C与δ18O值得分布是相当离散的,无明显的正向线性关系。表明塔里木盆地巴楚地区中—上奥陶统碳酸盐岩样品受到成岩蚀变的影响较小,碳、氧、锶同位素组成基本能够代表原始沉积时期海水的同位素组成。
     2.在塔里木盆地巴楚地区中—上奥陶统首次识别出4个δ13C和δ18O正向旋回及与其相应的4个87Sr/86Sr的反向旋回,分别命名为IC-1、IC-2、IC-3和IC-4。IC-1旋回出现在一间房组,IC-2旋回出现在恰尔巴克组和良里塔格组底部,IC-3和IC-4旋回出现在良里塔格组。
     3.以塔里木盆地巴楚地区中—晚奥陶世碳同位素记录为基础,通过与柯坪地区和塔中地区的对比,建立了塔里木板块中—晚奥陶世碳同位素演化谱。达瑞威尔中期碳同位素正向漂移(MDICE)在巴楚地区一间房组首次识别出来。桑比期末或凯迪期初的古腾伯格碳同位素正向漂移(GICE)在巴楚地区、柯坪地区和塔中地区均能识别。这些具有全球对比意义的碳同位素正向漂移事件在塔里木板块的出现,说明塔里木板块碳同位素变化同全球碳同位素演化有着良好的可对比性。
     4.塔里木板块的δ18O值自达瑞威尔期到桑比期呈现逐渐上升的趋势,在凯迪初期有一个下降以后,随后重新开始上升,并在赫南特期达到最大。这与全球通过腕足壳体和牙形刺体获得的氧同位素变化具有较好的一致性。这表明巴楚地区氧同位素虽然会受到成岩作用的改变而造成数值的减小,但是仍可保存部分原始沉积时期海水的同位素信息,在一些大的事件上可以进行全球对比。
     5.塔里木板块巴楚地区87Sr/86Sr值从一间房组的0.7090左右经过恰尔巴克组沉积时期快速降低到良里塔格组的0.7080左右。这与全球锶同位素从达瑞威尔期到桑比期87Sr/86Sr的快速降低趋势相一致。表明塔里木盆地巴楚地区中—晚奥陶世的锶同位素演化具有全球性的特点。
     6.通过对碳、氧、锶同位素与层序地层的综合研究发现,碳、氧、锶同位素与层序地层的短期旋回有着良好的吻合性。一间房组下部延续了鹰山组开始时期的海侵,中上部海平面有所下降,但在恰尔巴克组重新开始快速海侵,海平面达到最大,恰尔巴克组是海侵最大时期形成的凝缩层。良里塔格组底部有短期的海退,但随后重新开始海侵。通过与全球海平面变化的对比,结合塔里木板块构造运动及沉积速率等影响,表明巴楚地区中—奥陶世海平面主要受到全球海平面变化的影响,但是区域性构造活动和沉积速率对海平面的变化也发挥了很大的作用。
     7.通过对塔里木盆地巴楚地区中—晚奥陶世礁滩体发育层段的碳、氧、锶同位素的研究,发现生物礁体发育层段普遍具有比同时期地层要高的δ18C、δ18O、87Sr/86Sr值。碳同位素数值的增加无疑是因为礁滩体发育期生物生产率和埋藏作用加强引起的。氧同位素的增加可能是生物礁造成局部地势升高,露出地表遭受风化,引起周边海水中盐度增加造成的。锶同位素数值的增加,则可能与生物体对具有较高87Sr/86Sr的陆源物质的吸附有关。
     8.通过对塔里木盆地巴楚地区中—晚奥陶世礁滩体发育层位与相对海平面变化的研究,提出在海平面较高时期不利于礁滩体的发育,礁滩体主要发育于海平面上升初期。
     9.通过对不同微相单元礁滩体储层物性的分析显示,礁基、礁翼和礁内滩具有更高的孔隙度和渗透率,礁核、礁间和礁盖的孔隙度和渗透率则较小。这表明礁基、礁翼和礁内滩是较有利的储层。礁滩体储层随着孔隙度的线性升高,渗透率呈现对数级别的升高,表明礁滩体中孔隙度与渗透率有较好的相关性。这为在礁滩体发育层段寻找有利储层提供了帮助。
     总之,上述工作的深入开展,对提高塔里木盆地中—上奥陶统研究程度,进一步与全球典型剖面对比,扩大塔里木盆地中—上奥陶统礁滩相地层油气资源前景等方面,具有重要的科学意义和实际应用意义。
The Ordovician underwent a series of manifold changes, e.g. the GreatOrdovician Biodiversification Event (GOBE) and the end-Ordovician extinction.Climatic and environmental changes are undoubtedly major drivers of these changes.Sea water is an important carrier of climate and environment; sea level, which canreflect the possible nature and range of climatic and environmental changes, exerts afirst order control on the architecture of marine sedments and is intimately related tosea-floor and substrate evolution, benthic ecology, and biodiversity in shallow-watercratonic seas. Among a wide array pf tecjmoqies developed for interpreting sea-levelchange, carbon, oxygen and strontium isotopes in marine carbonates have beenproved to be an effective tool to track Ordovician environmental change and correlatesedimentary sequences from different areas or even different continents. Tarim, as oneof the independent blocks, was situated in the middle and low latitudes in theNorthern Hemisphere. Continuous carbonate rocks, deposited in the sedimentaryenvironments including platform, margin and slope during Middle–Late Ordovician inthe Bachu area of Tarim Basin, provide material for studying the composition andevolution of carbon, oxygen and strontium isotopes. Detailed studies on stratigraphy,paleontology and lithofacies in this area provide the substantial basis for the presentresearch on the isotopic evolution and sea-level changes.
     Based on lithostratigraphy and conodont biostratigraphy from the Nanyigousection and the stratotype section of the Lianglitag Formation in the Bachu area,Tarim Basin, the Middle–Upper Ordovician biostratigraphically calibrated δ13C,δ18O and87Sr/86Sr curves and sea-level curves are reconstructed. The followingachievements are obtained:
     1. The carbonate samples selected for carbon, oxygen and strontium isotopeanalysis show few crystal structure changes and paleobiological structure alterations.The values of δ18O are mostly between-10‰~-4‰(except a value of-11.7‰in theYingshan Formation). Meanwhile, the values of δ13C and δ18O without distinctivelinear relationship are quite discrete. All these indicate that the carbon, oxygen andstrontium isotope compositions involved in this study were less altered by thediagenesis, and can reflect the original isotope compositions of sea water.
     2. Four δ13C, δ18O positive cycles and four87Sr/86Sr negative cycles arerecognized for the first time in Middle–Upper Ordovician in the Bachu area, TarimBasin, and are named as IC-1, IC-2, IC-3and IC-4respectively, of which, IC-1cycleoccurred in the Yijianfang Formation, IC-2occurred in the Qiaerbake Formation andthe lowermost part of the Lianglitag Formation, IC-3and IC-4are mainly occurred inthe Lianglitag Formation.
     3. Based on the records of carbon isotope from Middle-Late Ordovician in theBachu area and the comparisons with the Kalpin and Tazhong areas, the carbonisotope evolution spectra in Middle-Late Ordovician is reconstructed for the wholeTarim Plate. The mid-Darriwilian δ13C excursion (MDICE) is recognized for the firsttime in the Yijianfang Formation in the Bachu area. The Guttenberg δ13C excursion(GICE) is recognized in the uppermost-Sandbian or lowermost-Katian in the Bachu,Kalpin and Tazhong areas. This indicates that the evolution of carbon isotope in Tarimshows a good consistency with the global carbon isotope evolution.
     4. The δ18O values in the Bachu area showed an increasing trend during theDarriwilian and Katian, a slight decrease in the early Katian, and another increase inthe Katian, which are correlated with the global oxygen isotope curves based onbrachiopods and conodonts. Although δ18O values are often diagenetically altered andtrend to smaller values, they still reflect part of the original signal of sea water, andare correlated to the global oxygen isotopes evolution.
     5. In the Bachu area, the strontium isotope curves show higher87Sr/86Sr values of0.7090in the Yijianfang Formation, rapidly drop in the Qiaerbake Formation, and getlower values of0.7080in the Lianglitag Formation. The evolution in the studed areais compatible with the global trends, which are characterized by a major drop in theDarriwilian–Sandibian.
     6. Comprehensive researches on carbon, oxygen and strontium isotopes withsequence stratigraphy show that the cycles of carbon, oxygen and strontium isotopes are correlated to the short-term cycles of sequence stratigraphy. The sea-levelcontinued the increased trend in the Yijianfang Formation, and got the maximum inthe Qiaerbake Formation. The Qiaerbake Formation is considered to be the condensedsection in maximum flooding. After a regression in the lower part of the LianglitagFormation, a transgression occurred to in the upper part of the Lianglitag Formation.The results show that the global sea-level fluctuations is an influencing factor in theBachu area, and the regional tectonic activities and deposition rates are also anotherdriver to the relative sea-level changes in the Bachu area.
     7. The reef-bank complexes show higher δ13C, δ18O and87Sr/86Sr values than thatof the coeval carbonate strata. The higher δ13C values are explained in terms ofincreased productivity and enhanced burial of organic matter. The higher δ18O valuesare mainly caused by the increasing salinity in sea water due to the enhancedbiological weathering when the reef-bank complexes are exposed out of the seasurface. The higher87Sr/86Sr values are mainly caused by the adsorption of theterrestrial material.
     8. The research on the relationship between relative sea-level changes and thegrowth of reefs in Middle–Upper Ordovician in the Bachu area, Tarim Basin, showsthat reefs are mainly developed in the sea-level rising periods, but too deep water isnot beneficial to the growth of reefs.
     9. The analysis on the porosity and permeability in different microfacies ofreef-bank complex in the Bachu area show that the reef bases, reef flanks and bankspossesses higher porosity and permeability than the reef cores, reef inners and reefcaps. The reef bases, reef flanks and banks are the favorable reservoirs. The values ofporosity and permeability have a positive relationship. When the porosity isincreasing linearly, the permeability increases logarithmically. This is helpful toexplore favorable reservoirs in the reef-bank complex.
     In sum, the above research is significant for the further study in Middle–UpperOrdovician in the Bachu area of Tarim Basin, particularly for promoting the accuracyin stratigraphic correlation internationally. Meanwhile, it would be also beneficial formaximize oil and gas potential in reef-bank complex in the Bachu area of TarimBasin.
引文
AINSAAR L, KALJO D, MARTMA T, et al. Middle and Upper Ordovician carbonisotope chemostratigraphy in Baltoscandia: A correlation standard and clues toenvironmental history [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2010,294(3-4):189-201.
    AINSAAR L, MEIDLA T, MARTMA T. Evidence for a widespread carbon isotopicevent associated with late Middle Ordovician sedimentological and faunalchanges in Estonia [J]. Geological Magazine,1999,136(1):49-62.
    AINSAAR L, MEIDLA T, TINN O, et al. Darriwilian (Middle Ordovician) carbonisotope stratigraphy in Baltoscandia [J]. Acta Palaeontologica Sinica,2007,46(1.
    ALLAN J R, MATTHEWS R K. Carbon and oxygen isotopes as diagenetic andstratigraphic tools: Surface and subsurface data, Barbados, West Indies [J].Geology,1977,5:16-20.
    ARMSTRONG H A, BALDINI J, CHALLANDS T J, et al. Response of theinter-tropical convergence zone to Southern Hemisphere cooling during UpperOrdovician glaciation [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2009,284:227-236.
    ARTHUR M A, DEAN W E, SCHLANGER S O. Variations in the global carboncycle during the Cretaceous related to climate, volcanism, and changes inatmospheric CO2[J]. Geophysical Monograph Series,1985,32:504-529.
    BAUD A, MAGARITZ M, HOLSER W T. Permian-Triassic of the Tethys: Carbonisotope studies [J]. Geologische Rundschau,1989,78(2):649-677.
    BERGSTR M S M, AGEMATSU S, SCHMITZ B. Global Upper Ordoviciancorrelation by means of δ13C chemostratigraphy: implications of the discovery ofthe Guttenberg δ13C excursion (GICE) in Malaysia [J]. Geological Magazine,2010,147(5):641-651.
    BERGSTR M S M, CHEN X, GUTI RREZ-MARCO J C, et al. The newchronostratigraphic classification of the Ordovician System and its relations tomajor regional series and stages and to δ13C chemostratigraphy [J]. Lethaia,2009,42:97-107.
    BERGSTR M S M, CHEN X, SCHMITZ B, et al. First documentation of theOrdovician Guttenberg δ13C excursion (GICE) in Asia: chemostratigraphy of thePagoda and Yanwashan formations in southeastern China [J]. GeologicalMagazine,2009,146(1):1-11.
    BERGSTR M S M, FINNEY S C, CHEN X, et al. A proposed global boundarystratotype for the base of the Upper Series of the Ordovician System: TheF gels ng section, Scania, southern Sweden [J]. Episodes,2000,23(2):102-109.
    BERGSTR M S M, SCHMITZ B, YOUNG S A, et al. Lower Katian (UpperOrdovician) δ13C chemostratigraphy, global correlation and sea-level changes inBaltoscandia [J]. GFF,2011,133(1-2):31-47.
    BERGSTR M S M, SCHMITZ B, YOUNG S A, et al. The δ13C chemostratigraphyof the Upper Ordovician Mj sa Formation at Furuberget near Hamar,southeastern Norway: Baltic, Trans-Atlantic, and Chinese relations [J].Norwegian Journal of Geology,2010,90:65-78.
    BERGSTR M S M, YOUNG S, SCHMITZ B. Katian (Upper Ordovician) δ13Cchemostratigraphy and sequence stratigraphy in the United States andBaltoscandia: A regional comparison [J]. Palaeogeography, Palaeoclimatology,Palaeoecology,2010,296(3-4):217-234.
    BERNER R A, KOTHAVALA Z. GEOCARB III: A revised model of atmosphericCO2over Phanerozoic time [J]. American Journal of Science,2001,301(2):182-204.
    BERNER R A.3GEOCARB Ⅱ: A revised model of atmospheric CO2overPhanerozoic Time [J]. American Journal of Science,1994,294:56-91.
    BERNER R A. A model for atmospheric CO2over phanerozoic time [J]. AmericanJournal of Science,1991,291(4):339-376.
    BERNER R A. Atmospheric oxygen over Phanerozoic time [J]. Proceedings of theNational Academy of Sciences,1999,96(20):10955-10957.
    BERNER R A. GEOCARBSULF: A combined model for Phanerozoic atmosphericO2and CO2[J]. Geochimica et Cosmochimica Acta,2006,70(23):5653-5664.
    BOUCOT A J,陈旭, SCOTESE C R,等.显生宙全球古气候重建[M].北京:科学出版社,2009.
    BRAND U. Carbon, oxygen and strontium isotopes in Paleozoic carbonatecomponents: an evaluation of original seawater-chemistry proxies [J]. ChemicalGeology,2004,204(1-2):23-44.
    BRENCHLEY P J, CARDEN G A, HINTS L, et al. High-resolution stable isotopestratigraphy of Upper Ordovician sequences: Constraints on the timing ofbioevents and environmental changes associated with mass extinction andglaciation [J]. Geological Society of America Bulletin,2003,115(1):89-104.
    BRENCHLEY P J, MARSHALL J D, CARDEN G A F, et al. Bathymetric andisotopic evidence for a short-lived Late Ordovician glaciation in a greenhouseperiod [J]. Geology,1994,22:295-298.
    BRENCHLEY P J. Late ordovician extinction [J]. Palaeobiology II,2007,220-223.
    BRENCHLEY P J. Late Ordovician extinctions and their relationship to theGondwana glaciation [J]. Geological Journal,1984, Special issue(11):291-315.
    BRETT C E, GOODMAN W M, LODUCA S T. Sequences, cycles, and basindynamics in the Silurian of the Appalachian Foreland Basin [J]. SedimentaryGeology,1990,69(3):191-244.
    BUGGISCH W, JOACHIMSKI M M, LEHNERT O, et al. Did intense volcanismtrigger the first Late Ordovician icehouse?[J]. Geology,2010,38(4):327-330.
    BUGGISCH W, KELLER M, LEHNERT O. Carbon isotope record of Late Cambrianto Early Ordovician carbonates of the Argentine Precordillera [J].Palaeogeography, Palaeoclimatology, Palaeoecology,2003,195(3-4):357-373.
    BURKE W H, DENISON R E, HETHERINGTON E A, et al. Variation of seawater87Sr/86Sr throughout Phanerozoic time [J]. Geology,1982,10:516-519.
    CAI C F, FRANKS S G, AAGAARD P. Origin and migration of brines fromPaleozoic strata in Central Tarim, China: constraints from87Sr/86Sr, δ13C, δ18Oand water chemistry [J]. Applied Geochemistry,2001,16(9):1269-1284.
    CHEN Q, LI W H, HAO S L, et al. Carbon isotope evidence for Ordovician marinehydrocarbon source rocks in Ordos Basin, North China [J]. Energy Exploration&Exploitation,2011,29(3):267-289.
    COCKS L R M, TORSVIK T H. Earth geography from500to400million years ago:A faunal and palaeomagnetic review [J]. Journal of the Geological Society,2002,159(6):631-644.
    COMPSTON W. The carbon isotopic compositions of certain marine invertebratesand coals from the Australian Permian [J]. Geochimica et Cosmochimica Acta,1960,18(1):1-22.
    CRAIG H. The geochemistry of the stable carbon isotopes [J]. Geochimica etCosmochimica Acta,1953,3(2):53-92.
    CRAMER B D, SALTZMAN M R. Sequestration of12C in the deep ocean during theearly Wenlock (Silurian) positive carbon isotope excursion [J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2005,219(3):333-49.
    DEGENS E T, EPSTEIN S. Relationship Between O18/O16Ratios in CoexistingCarbonates, Cherts, and Diatomites: Geological notes [J]. AAPG Bulletin,1962,46(4):534-42.
    DEGENS E T. Stabile Isotope in Iihren Beziehungen zur Zeit [J]. GeologischeRundschau,1960,49(1):277-8.
    EINSELE G, RICKEN W, SEILACHER A. Cycles and events in stratigraphy [M].New York: Springer-Verlag,1991.
    EINSELE G, SEILACHER A. Cyclic and event stratification [M]. Berlin:Springer-Verlag,1982.
    EMILIANI C. Pleistocene temperatures [J]. The Journal of Geology,1955,63(6):538-578.
    EMRICH K, EHHALT D H, VOGEL J C. Carbon isotope fractionation during theprecipitation of calcium carbonate [J]. Earth and Planetary Science Letters,1970,8(5):363-371.
    FAIRCHILD I J, MARSHALL J D, BERTRAND-SARFATI J. Stratigraphic shifts incarbon isotopes from Proterozoic stromatolitic carbonates (Mauritania):influences of primary mineralogy and diagenesis [J]. American Journal ofScience,1990,290:46-79.
    FANTON K C, HOLMDEN C. Sea-level forcing of carbon isotope excursions inepeiric seas: implications for chemostratigraphy [J]. Canadian Journal of EarthSciences,2007,44(6):807-818.
    FAURE G. Principles of isotope geology [M]. New York: Wiley,1977.
    FAURE G. Principles of isotope geology [M]. New York; Wiley.1986.
    GALIMOV E M, MIGDISOV A A, RONOV A B. Variation in the isotopiccomposition of carbonate and organic carbon in sedimentary rocks during Earth'shistory [J]. Geochemistry International,1975,12(2):1-19.
    GOLDMAN D, LESLIE S A, NOLVAK J, et al. The Global Stratotype Section andPoint (GSSP) for the base of the Katian Stage of the Upper Ordovician Series atBlack Knob Ridge, southeastern Oklahoma, USA [J]. Episodes,2007,30(4):258-270.
    GROSSMAN E L, KU T L. Oxygen and carbon isotope fractionation in biogenicaragonite: temperature effects [J]. Chemical Geology: Isotope GeoscienceSection,1986,59:59-74.
    GUERRERA A, PEACOCK S M, PAUL KNAUTH L. Large18O and13C depletionsin greenschist facies carbonate rocks, western Arizona [J]. Geology,1997,25(10):943-936.
    HALLAM A, WIGNALL P B. Mass extinctions and sea-level changes [J].Earth-Science Reviews,1999,48(4):217-50.
    HAQ B U, SCHUTTER S R. A Chronology of Paleozoic sea-level changes [J].Science,2008,322:64-68.
    HECKEL P H. Sea-level curve for Pennsylvanian eustatic marinetransgressive-regressive depositional cycles along midcontinent outcrop belt,North America [J]. Geology,1986,14(4):330-334.
    HENSON F R S. Cretaceous and Tertiary reef formations and associated sediments inMiddle East [J]. AAPG Bulletin,1950,34(2):215-238.
    HEREDIA S, BERESI M. Ordovician events and sea-level changes on the westernmargin of Gondwana: The Argentine Precordillera [M]. Fullerton, California:SEPM,1995.
    HINTS L, HINTS O, KALJO D, et al. Hirnantian (latest Ordovician) bio-andchemostratigraphy of the Stirnas-18core, western Latvia [J]. Estonian Journal ofEarth Sciences,2010,59:1-24.
    HINTS O, DELABROYE A, NOLVAK J, et al. Biodiversity patterns of Ordovicianmarine microphytoplankton from Baltica: Comparison with other fossil groupsand sea-level changes [J]. Palaeogeography Palaeoclimatology Palaeoecology,2010,294(3-4):161-173.
    HOLSER W T. Geochemical events documented in inorganic carbon isotopes [J].Palaeogeography, Palaeoclimatology, Palaeoecology,1997,132(1):173-182.
    HOWARTH R J, MCARTHUR J M. Statistics for strontium isotope stratigraphy: arobust LOWESS fit to the marine Sr-isotope curve for0to206Ma, with look-uptable for derivation of numeric age [J]. The Journal of Geology,1997,105(4):441-456.
    HUANG W H, YANG M, YU B S, et al. Strontium isotope composition andcharacteristic analysis of Cambrian-Ordovician carbonate in the region ofTazhong, Tarim Basin [J]. Journal of China University of Geosciences,2006,17(3):246-257.
    JAMES N P. Facies Models8. Shallowing-Upward Sequences in Carbonates [J].Geoscience Canada,1977,4(3).
    JEFFERY P M, COMPSTON W, GREENHALGH D, et al. On the carbon-13abundance of limestones and coals [J]. Geochimica et cosmochimica acta,1955,7(5):255-286.
    JOHNSON M E. Relationship of silurian sea-level fluctuations to oceanic episodesand events [J]. GFF,2006,128:115-121.
    KALJO D, HINTS L, MARTMA T, et al. Carbon isotope stratigraphy in the latestOrdovician of Estonia [J]. Chemical Geology,2001,175(1):49-59.
    KALJO D, HINTS L, MARTMA T, et al. Late Ordovician carbon isotope trend inEstonia, its significance in stratigraphy and environmental analysis [J].Palaeogeography, Palaeoclimatology, Palaeoecology,2004,210(2-4):165-185.
    KALJO D, MARTMA T, M NNIK P, et al. Implications of Gondwana glaciations inthe Baltic late Ordovician and Silurian and a carbon isotopic test ofenvironmental cyclicity [J]. Bulletin de la SociétéGéologique de France,2003,1:59-66
    KANYGIN A, DRONOV A, TIMOKHIN A, et al. Depositional sequences andpalaeoceanographic change in the Ordovician of the Siberian craton [J].Palaeogeography, Palaeoclimatology, Palaeoecology,2010,296(3):285-296.
    KAUFMAN A J, KNOLL A H, AWRAMIK S M. Biostratigraphic andchemostratigraphic correlation of Neoproterozoic sedimentary successions:Upper Tindir Group, northwestern Canada, as a test case [J]. Geology,1992,20(2):181-185.
    KAUFMAN A J, KNOLL A H. Neoproterozoic variations in the C-isotopiccomposition of seawater: stratigraphic and biogeochemical implications [J].Precambrian Research,1995,73(1):27-49.
    KEITH M L, WEBER J N. Carbon and oxygen isotopic composition of selectedlimestones and fossils [J]. Geochimica et Cosmochimica Acta,1964,28(10):1787-1816.
    LAPORTE D F, HOLMDEN C, PATTERSON W P, et al. Local and globalperspectives on carbon and nitrogen cycling during the Hirnantian glaciation [J].Palaeogeography, Palaeoclimatology, Palaeoecology,2009,276(1-4):182-195.
    LEHNERT O, STOUGE S, JOACHIMSKI M M, et al. δ18O record fromconodontapatite across the Lower-Middle Ordovician boundary on the Yangtze platform(western Hubei, South China)[J]. Acta Palaeontologica Sinica,2007,46(suppl.):256-261.
    LONG D G F. Oxygen and carbon isotopes and event stratigraphy near theOrdovician–Silurian boundary, Anticosti Island Quebec [J]. Palaeogeography,Palaeoclimatology, Palaeoecology,1993,104:49-59.
    LOUCKS R G, SARG J F. Carbonate sequence stratigraphy: recent developments andapplications [M]. Tulsa, Oklahoma: American Association of PetroleumGeologists Memoir,1993.
    LUDVIGSON G A, WITZKE B J, GONZ LEZ L A, et al. Late Ordovician(Turinian–Chatfieldian) carbon isotope excursions and their stratigraphic andpaleoceanographic significance [J]. Palaeogeography, Palaeoclimatology,Palaeoecology,2004,210(2-4):187-214.
    LUDVIGSON G A, WITZKE B J, SCHNEIDER C L, et al. A profile of themid-Caradoc (Ordovician) carbon isotope excursion at the McGregor Quarry,Clayton County, Iowa [J]. Geological Society of Iowa Guidebook,2000,70:25-31.
    MACDONALD D I M. Sedimentation, tectonics and eustasy; Sea-level changes atactive Margins Special Publication12[M]. Oxford: International Associationof Sedimentologists,2009.
    MARSHALL J D, BRENCHLEY P J, MASON P, et al. Global carbon isotopic eventsassociated with mass extinction and glaciation in the late Ordovician [J].Palaeogeography, Palaeoclimatology, Palaeoecology,1997,132(1):195-210.
    MEIDLA T, AINSAAR L, BACKMAN J, et al. Middle–Upper Ordovician carbonisotopic record from V sterg tland (Sweden) and East Baltic; proceedings of theWOGOGOB-20048th Meeting on the Working Group on the OrdovicianGeology of Baltoscandia, Tallinn and Tartu, Estonia [C]. Estonia OrganisingCommittee,2004
    MELCHIN M J, HOLMDEN C. Carbon isotope chemostratigraphy in Arctic Canada:Sea-level forcing of carbonate platform weathering and implications forHirnantian global correlation [J]. Palaeogeography, Palaeoclimatology,Palaeoecology,2006,234(2-4):186-200.
    MIALL A D. Principles of sedimentary basin analysis [M]. New York:Springer-Verlag,1990.
    MITCHELL C E, CHEN X, BERGSTR M S, et al. Definition of a global boundarystratotype for the Darriwilian Stage of the Ordovician System [J]. Episodes,1997,30(3):158-166.
    MONTA EZ I P, BANNER J L, OSLEGER D A, et al. Integrated Sr isotope variationsand sea-level history of Middle to Upper Cambrian platform carbonates:Implications for the evolution of Cambrian seawater87Sr/86Sr [J]. Geology,1996,24(10):917-920.
    MUNNECKE A, CALNER M, HARPER D A T, et al. Ordovician and Siluriansea-water chemistry, sea level, and climate: a synopsis [J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2010,296(3-4):389-413.
    MUNNECKE A, M NNIK P. New biostratigraphic and chemostratigraphic data fromthe Chicotte Formation (Llandovery, Anticosti Island, Laurentia) compared withthe Viki core (Estonia, Baltica)[J]. Estonian Journal of Earth Sciences,2009,58(3):159-169.
    MUNNECKE A, ZHANG Y D, LIU X, et al. Stable carbon isotope stratigraphy in theOrdovician of South China [J]. Palaeogeography, Palaeoclimatology,Palaeoecology,2011,307(1-4):17-43.
    NIELSEN A T. Ordovician sea level changes: a Baltoscandian perspective [M]. NewYork: Colunmbia University Press,2004.
    NIER A O, GULBRANSEN E A. Variations in the Relative Abundance of the CarbonIsotopes [J]. Journal of America Chemistry Society,1939,61:697-698.
    PLAYFORD P E. Reefal platform development, Devonian of the Canning Basin,western Australia. In: CREVELLO P D, WILSON J L, SARG J F, et al, eds.Controls on Carbonate Platform and Basin Development [M]. Society ofEconomic Paleontology Mineralogy Special Publication,1989,44:187-202.
    QING H R, BARNES C R, BUHL D, et al. The strontium isotopic composition ofOrdovician and Silurian brachiopods and conodonts: relationships to geologicalevents and implications for coeval seawater [J]. Geochimica et CosmochimicaActa,1998,62(10):1721-1733.
    RAMSBOTTOM W H C. Rates of transgression and regression in the Carboniferousof NW Europe [J]. Journal of the Geological Society,1979,136(2):147-153.
    READ J F. Carbonate platform facies models [J]. AAPG bulletin,1985,69(1):1-21.
    RICHTER F M, ROWLEY D B, DEPAOLO D J. Sr isotope evolution of seawater:the role of tectonics [J]. Earth and Planetary Science Letters,1992,109(1):11-23.
    ROSS C A, ROSS J R P. North American Ordovician depositional sequences andcorrelations; proceedings of the Ordovician Odyssey [C]: Proceeding of7thInternational Symposium on the Ordovician System, Pacfic Section, Fullerton,California,. SEPM.1995
    SALTZMAN M R, BERGSTR M S M, HUFF W D, et al. Conodont and graptolitebiostratigraphy and the Ordovician (Early Chatfieldian, Middle Caradocian) δ13Cexcursion in North America and Baltoscandia: implications for the interpretationof the relations between the Millbrig and Kinnekulle K-bentonites [J].Ordovician from the Andes,2003,17:137-142.
    SALTZMAN M R, YOUNG S A. Long-lived glaciation in the Late Ordovician?Isotopic and sequence-stratigraphic evidence from western Laurentia [J].Geology,2005,33(2):109-112.
    SAMTLEBEN C, MUNNECKE A, BICKERT T, et al. Shell succession, assemblageand species dependent effects on the C/O-isotopic composition ofbrachiopods—examples from the Silurian of Gotland [J]. Chemical Geology,2001,175(1):61-107.
    SARG J F, MARKELLO J R, WEBER L J. The second-order cycle,carbonate-platform growth, and reservoir, source, and trap prediction [J]. Specialpublication-SEPM,1999,63:11-34.
    SARG J F. Carbonate sequence stratigraphy [M]. Society of Economic PaleontologyMineralogy Special Publication,1988.
    SCHMITZ B, BERGSTR M S M. Chemostratigraphy in the Swedish UpperOrdovician: regional significance of the Hirnantian δ13C excursion (HICE) in theBoda Limestone of the Siljan region [J]. GFF,2007,129:133-40.
    SCHMITZ B, BERGSTR M S M, XIAOFENG W. The middle Darriwilian(Ordovician) δ13C excursion (MDICE) discovered in the Yangtze Platformsuccession in China: implications of its first recorded occurrences outsideBaltoscandia [J]. Journal of the Geological Society,2010,167(2):249-259.
    SCHOLLE P A, ARTHUR M A. Carbon isotope fluctuations in Cretaceous pelagiclimestones: potential stratigraphic and petroleum exploration tool [J]. AAPGBulletin,1980,64(1):67-87.
    SCOTESE C R, BAMBACH R K, BARTON C, et al. Paleozoic base maps [J]. TheJournal of Geology,1979,87(3):217-77.
    SCOTESE C R, MCKERROW W S. Revised world maps and introduction [M].1990.
    SERVAIS T, HARPER D A T, MUNNECKE A, et al. Understanding the GreatOrdovician Biodiversification Event (GOBE): Influences of paleogeography,paleoclimate, or paleoecology [J]. GSA Today,2009,19(4):4.
    SERVAIS T, LEHNERT O, LI J, et al. The Ordovician Biodiversification: revolutionin the oceanic trophic chain [J]. Lethaia,2008,41(2):99-109.
    SERVAIS T, OWEN A W, HARPER D A T, et al. The Great OrdovicianBiodiversification Event (GOBE): the palaeoecological dimension [J].Palaeogeography, Palaeoclimatology, Palaeoecology,2010,294(3-4):99-119.
    SERVAIS T, OWEN A W. Early Palaeozoic palaeoenvironments and the explosion‘of diversity of marine species, genera and families [J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2010,294(3-4):95-98.
    SHEEHAN P M. The late Ordovician mass extinction [J]. Annual Review of Earthand Planetary Sciences,2001,29(1):331-364.
    SHIELDS G A, CARDEN G A F, VEIZER J, et al. Sr, C, and O isotope geochemistryof Ordovician brachiopods: a major isotopic event around the Middle-LateOrdovician transition [J]. Geochimica et Cosmochimica Acta,2003,67(11):2005-2025.
    SHIELDS G A, VEIZER J. Isotopic signatures [M]. New York: Columbia UniversityPress,2004.
    SUN L, LEYBOURNE M I, MILLER N R, et al. Strontium isotope constraints onsolute sources and mixing dynamics in a large impoundment, South-Central USA[J]. Chemical Geology,2011,285(1):203-214.
    SUTTNER T, LEHNERT O, JOACHIMSKI M M, et al. Recognition of the BodaEvent in the Pin Formation of northern India based on new δ13C and conodontdata [J]. Acta Palaeontologica Sinica,2007,46(suppl.):466-470.
    TROTTER J A, WILLIAMS I S, BARNES C R, et al. Did cooling oceans triggerOrdovician biodiversification? Evidence from conodont thermometry [J].Science,2008,321:550-554.
    TUCKER M E, WRIGHT V P. Carbonate sedimentology [M]. Wiley-Blackwell,2009.
    UREY H C. Measurement of paleotemperatures and temperatures [J]. Bulletin of theGeological Society of America,1951,62(4):399-416.
    VAIL P R, MITCHUM JR R M, THOMPSON III S. Seismic Stratigraphy and GlobalChanges of Sea Level: Part4. Global Cycles of Relative Changes of Sea Level.:Section2. Application of Seismic Reflection Configuration to StratigraphicInterpretation [J].1977,83-97.
    VAIL P R. Seismic stratigraphy and global changes of sea level, Part4: Global cyclesof relative changes of sea level, Seismic stratigaphy-applications to hydrocarbonexploration [J]. Member American Association of Petroleum Geology,1977,26:83-97.
    VAIL P R. The stratigraphic signatures of tectonics, eustacy and sedimentology-anoverview [J]. Cycles and events in stratigraphy,1991,617-59.
    VEIZER J, ALA D, AZMY K, et al.87Sr/86Sr, δ13C and δ18O evolution ofPhanerozoic seawater [J]. Geology,1999,161(1-3):59-88.
    VEIZER J, HOEFS J. The nature of O18/O16and C13/C12secular trends in sedimentarycarbonate rocks [J]. Geochimica et Cosmochimica Acta,1976,40(11):1387-1395.
    WANG Z H, QI Y P, BERGSTR M S M. Ordovician conodonts of the Tarim Region,Xinjiang, China: Occurrence and use as paleoenvironment indicators [J]. Journalof Asian Earth Sciences,2007,29(5):832-843.
    WEBBY B D, DROSER M L, PARIS F, et al. The great Ordovician biodiversificationevent [M]. New York: Columbia University Press,2004.
    WENZEL B, JOACHIMSKI M M. Carbon and oxygen isotopic composition ofSilurian brachiopods (Gotland/Sweden): palaeoceanographic implications [J].Palaeogeography, Palaeoclimatology, Palaeoecology,1996,122(1):143-166.
    WICKMAN F E. Isotope ratios: a clue to the age of certain marine sediments [J].Geology,1948,56:61-66.
    YOUNG S A, SALTZMAN M R, BERGSTR M S M, et al. Paired δ13Ccarbandδ13Corgrecords of Upper Ordovician (Sandbian–Katian) carbonates in NorthAmerica and China: Implications for paleoceanographic change [J].Palaeogeography, Palaeoclimatology, Palaeoecology,2008,270(1-2):166-178.
    YOUNG S A, SALTZMAN M R, BERGSTR M S M. Upper Ordovician(Mohawkian) carbon isotope (δ13C) stratigraphy in eastern and central NorthAmerica: Regional expression of a perturbation of the global carbon cycle [J].Palaeogeography, Palaeoclimatology, Palaeoecology,2005,222(1-2):53-76.
    YOUNG S A, SALTZMAN M R, FOLAND K A, et al. A major drop in seawater87Sr/86Sr during the Middle Ordovician (Darriwilian): Links to volcanism andclimate?[J]. Geology,2009,37(10):951-954.
    ZHANG Y D, CHENG J F, MUNNECKE A, et al. Carbon Isotope Development inthe Ordovician of the Yangtze Gorges Region (South China) and Its Implicationfor Stratigraphic Correlation and Paleoenvironmental Change [J]. Journal ofEarth Science,2010,21(special issue):70-74.
    BAO Z D, ZHU J Q, JIANG M S, et al. Strontium isotope evolution: Responding withsea-level fluctuation-an example of Ordovician in middle Tarim area [J]. ScientiaGeologica Sinica,1998,7(3):329-333.
    鲍志东,金之钧,孙龙德,等.塔里木地区早古生代海平面波动特征:来自地球化学及岩溶的证据[J].地质学报,2006,80(3):366-373.
    鲍志东,朱井泉.海平面升降中的元素地球化学响应——以塔中地区奥陶纪为例[J].沉积学报,1998,16(4):32-36.
    曾鼎乾,地质,刘炳温.中国各地质历史时期生物礁[M].北京:石油工业出版社,1988.
    陈旭.塔康运动与广西运动的地层学依据[J].地层学杂志,1996,20(04):305-313.
    程裕淇.中国区域地质概论[M].北京:地质出版社,1994.
    杜金虎,王招明,李启明,等.塔里木盆地寒武—奥陶系碳酸盐岩油气勘探[M].北京:石油工业出版社,2010.
    杜小弟,王璞君,匡立春,等.碳氧同位素与海平面变化──以新疆柯坪地区上震旦统一奥陶系碳氧同位素剖面为例[J].沉积学报,1997,15(3):14-7.
    冯增昭,鲍志东,吴茂炳,等.塔里木地区奥陶纪岩相古地理[J].古地理学报,2007,9(5):447-460.
    冯增昭,张家强,金振奎,等.中国西北地区奥陶纪岩相古地理[J].古地理学报,2000,2(3):1-14.
    顾家裕,张兴阳,罗平,等.塔里木盆地奥陶系台地边缘生物礁、滩发育特征[J].石油与天然气地质,2005,26(3):277-283.
    何登发,贾承造,李德生,等.塔里木多旋回叠合盆地的形成与演化[J].石油与天然气地质,2005,26(1):64-77.
    何登发,周新源,张朝军,等.塔里木多旋回叠合盆地地质结构特征[J].中国石油勘探,2006,1:31-41.
    何治亮,徐宏节,段铁军.塔里木多旋回盆地复合构造样式初步分析[J].地质科学,2005,40(2):153-166.
    胡明毅,钱勇,胡忠贵,等.塔里木柯坪地区奥陶系层序地层与同位素地球化学响应特征[J].岩石矿物学杂志,2010,29(2):199-205.
    黄思静,石和,张萌,等.锶同位素地层学在奥陶系海相地层定年中的应用—以塔里木盆地塔中12井为例[J].沉积学报,2004,22(1):1-5
    黄思静.上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J].地质学报,1997,71(1):45-53.
    黄文辉,杨敏,于炳松,等.塔中地区寒武系-奥陶系碳酸盐岩Sr元素和Sr同位素特征[J].地球科学:中国地质大学学报,2006,31(6):839-845.
    贾承造.塔里木盆地构造特征与油气聚集规律[J].新疆石油地质,1999,20(3):177-184.
    贾承造.塔里木盆地构造演化与区域构造地质[M].北京:石油工业出版社,1995.
    贾承造.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,1997.
    江茂生,朱井泉,陈代钊,等.塔里木盆地奥陶纪碳酸盐岩碳、锶同位素特征及其对海平面变化的响应[J].中国科学(D辑)地球科学,2002,32(1):36-41.
    康玉柱,康志宏.塔里木盆地构造演化与油气[J].地球学报:中国地质科学院院报,1994,3(4):188-197.
    李丕龙,冯建辉,樊太亮,等.塔里木盆地构造沉积与成藏[M].北京:地质出版社,2010.
    李越,黄智斌,王建坡,等.新疆巴楚中—晚奥陶世牙形刺生物地层和沉积环境研究[J].地层学杂志,2009,33(2):113-122.
    梅冥相.碳酸盐旋回与层序[M].贵州科技出版社,1995.
    梅冥相.碳酸盐岩米级旋回层序的成因类型及形成机制[J].岩相古地理,1993,13(6):34-43.
    孟祥化,葛铭.内源盆地沉积研究[M].北京:石油工业出版社,1993.
    彭苏萍,何宏,邵龙义,等.塔里木盆地-O碳酸盐岩碳同位素组成特征[J].中国矿业大学学报,2002,31(04):26-30.
    沈安江,陈子炓.南盘江地区二叠纪生物礁成因类型及潜伏礁预测[J].石油勘探与开发,2001,28(03):29-32.
    苏文博,李志明,陈建强,等.上扬子地台东南缘奥陶纪层序地层及海平面变化研究[J].沉积学报,1999,17(3):345-354.
    孙庆峰,宋春辉,邵龙义,等.新疆柯坪中奥陶统沉积特征及其环境[J].新疆地质,2005,23(02):111-116.
    孙庆峰.新疆柯坪中奥陶统结核状灰岩的沉积环境及成因[J].岩石矿物学杂志,2006,25(02):137-147.
    汤良杰.塔里木盆地构造演化与构造样式[J].地球科学:中国地质大学学报,1994,19(6):742-745.
    汤良杰.塔里木盆地演化和构造样式[M].北京:地质出版社,1996.
    汪新伟,沃玉进,张荣强.扬子克拉通南华纪—早古生代的构造—沉积旋回[J].现代地质,2008,22(4):525-533.
    王大锐,白玉雷.碳酸盐岩中稳定同位素对古气候的表征[J].石油勘探与开发,1999,26(5):30-32.
    王招明,杨海军,王振宇,等.塔里木盆地塔中地区奥陶系礁滩体储层地质研究[M].北京:石油工业出版社,2010.
    王招明等.塔里木盆地巴楚露头区奥陶系一间房组礁滩储层特征[M].北京:石油工业出版社,2011.
    王志浩,李越,王建坡, et al.塔里木中央隆起区上奥陶统的牙形刺[J].微体古生物学报,2009,26(2):97-116.
    王志浩,祈玉平.中国新疆塔克拉玛干沙漠井下奥陶系的牙形刺[J].微体古生物学报,2001,18(2):133-148.
    王志浩,周天荣.塔里木西部与东北部奥陶系的牙形刺及其意义[J].古生物学报,1998,37(2):173-193.
    王宗哲,杨杰东.新疆柯坪地区早古生代地层的碳同位素变化特征及其意义[J].地层学杂志,1994,18(1):45-52.
    谢刚平.广西隆林祥播二叠系生物礁相微量元素含量特征研究[J].云南地质,1992,11(1):69-74.
    熊剑飞,武涛,叶德胜.新疆巴楚中—晚奥陶世牙形刺研究的新进展[J].古生物学报,2006,45(3):359-373.
    颜梅,左军成,傅深波,等.全球及中国海海平面变化研究进展[J].海洋环境科学,2008,27(2):197-200.
    杨杰东,王宗哲.新疆柯坪地区早古生代地层的碳、氧和锶同位素[J].地质评论,1994,40(4):377-385.
    赵治信,张桂芝,肖继南.新疆古生代地层及牙形石[M].北京:石油工业出版社,2000.
    赵宗举,陈轩,潘懋,等.塔里木盆地塔中—巴楚地区上奥陶统良里塔格组米兰科维奇旋回性沉积记录研究[J].地质学报,2010,84(04):518-536.
    赵宗举,潘文庆,张丽娟,等.塔里木盆地奥陶系层序地层格架[J].大地构造与成矿学,2009,33(1):175-188.
    赵宗举,赵治信,黄智斌.塔里木盆地奥陶系牙形石带及沉积层序[J].地层学杂志,2006,30(3):193-203.
    周志毅,陈旭,王志浩,等.塔里木生物地层和地质演化[M].北京:科学出版社,1990.
    周志毅,林焕令.西北地区,地层,古地理和板块构造[M].南京:南京大学出版社,1995.
    周志毅.塔里木盆地各纪地层[M].北京:科学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700