用户名: 密码: 验证码:
同时极化测量体制雷达的校准方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
极化信息的充分利用可以显著提高雷达在杂波抑制、目标检测、目标分类识别与抗干扰等方面的性能,而目标极化特性的准确获取是雷达目标分类识别、杂波抑制和抗干扰的基础和前提条件,具有重要的理论和现实意义。论文以防空反导和气象目标探测为应用背景,立足于同时极化测量雷达体制,紧密围绕如何准确获取目标极化散射特性这一主线,深入开展了多极化通道测量波形非正交性抑制、目标运动调制误差补偿、雷达系统误差无源和有源极化校准以及极化雷达杂波抑制方法等方面的研究,主要内容如下:
     针对同时极化测量体制雷达,研究了由于多极化通道测量波形非理想正交以及目标运动引入的目标极化散射矩阵(Polarization Scattering Matrix, PSM)测量误差的修正问题。定义了距离-速度-加速度联合模糊函数矩阵,定量刻画了速度和加速度对正负斜率线性调频极化测量雷达各极化通道隔离度的影响;分析了调频连续波全极化雷达去斜处理获取PSM时的交叉极化通道干扰,提出了基于分数阶傅里叶变换的交叉通道干扰抑制方法,与传统的方法相比,该方法获得的距离像具有更低的峰值旁瓣电平和积累旁瓣电平,可显著提高多目标极化测量时的弱目标极化测量性能和单目标极化测量时较弱散射矩阵元素的测量性能;分析了目标运动状态对全极化雷达PSM测量精度的影响,针对匹配滤波和去斜处理两种极化测量方法,提出基于分数阶傅里叶变换的运动参数估计和补偿方法,仿真实验表明,该方法较常规方法具有更高的精度。
     研究了全极化雷达的无源极化校准技术。建立了全极化雷达PSM测量系统误差模型,分析了几种典型点目标无源极化校准算法在不同天线极化隔离度下性能的优劣,发现了传统无源校准算法在实际应用中的不足,提出了一种基于Pauli基分解的极化校准算法,该方法通过选择任意三个PSM互相正交的目标作为定标体实现全极化雷达的校准,放宽了传统校准方法对定标体PSM的苛刻需求。基于荷兰Delft理工大学的PARS AX (Polarimetric Agile Radar S-And X-band)极化气象雷达外场校准实验结果验证了所提算法的有效性,校准后PSM的最大幅度相对误差为-22.04dB、最大相位误差为1.40°。
     针对大口径天线雷达极化校准这一理论和工程现实难题,研究了基于极化有源校准器(Polarimetric Active Radar Calibrator, PARC)的动态极化校准方法,设计了基于数字射频存储器的双/单天线PARC系统,据此提出了频域动态极化校准方法,通过匀速旋转PARC天线实现待校准极化雷达的接收信号调制,在频域上求解全极化雷达系统误差模型中的未知量。该方法克服了传统静态极化校准方案中多次测量引入的误差和PARC天线初始角度的影响。仿真实验表明,基于PARC的动态极化校准算法性能优于TSC (Target Spinor Calibration)和FPCT (Full Polarimetric Calibration Technique)等传统静态极化校准算法。
     研究了气象目标极化特性测量中的杂波抑制技术,提出一种基于数学形态学和双SLDRs (Spectral Linear Depolarization Ratios)滤波器的极化杂波抑制方法。该方法在对气象目标、地杂波的双距离-多普勒谱去极化比统计分析基础上,利用数学形态学算子构造了二值掩模矩阵并据此对气象目标的距离-多普勒谱进行滤波。结合PARSAX极化雷达同时极化测量采集的气象目标数据,对极化杂波抑制后气象目标的反射率、平均多普勒速度和多普勒宽度的计算结果分析表明了所提方法的有效性。通过与传统方法实验结果的对比,验证了所提方法的优越性。
     论文的研究成果有助于推动极化雷达技术的应用,对于提高防空反导、气象观测、对地侦察等应用领域中的目标分类识别、杂波抑制和抗干扰等的性能具有重要意义。
The adequate use of polarization information can remarkably improve theperformance of radar in the aspect of clutter suppression, target detection, targetidentification and recognition, and anti-jamming, etc. Therefore, the accurateacquirement of targets’ polarimetric characteristics, which is a basis and preconditionfor target identification and recognition, clutter suppression, and anti-jamming of radar,owns an important meaning in theory and practice. Under the background of airsurveillance, missile defence, and weather target exploration, this paper, closesurrounding the main line of how to precisely obtain targets’ polarimetric scatteringcharacteristics, deeply studies on the methods of the measurement-waveformnon-orthogonality suppression, the kinematic error compensation, the passive and activecalibration of polarimetric radar system error and the polarimetric-radar cluttersuppression, etc., based on the simultaneous measurement scheme. The main contentsof the dissertation are as follows:
     For the simultaneous measurement polarimetric radar, the modification of errorsdue to the unideal orthogonality of measurement waveforms and target kinesi in themulti-polarimetric channels during the measurement of the polarization scatteringmatrix (PSM) is studied. The effect of the velocity and acceleration on the waveformisolation of the opposite slope linear frequency modulated signals is quantitativelydescribed by defining the range-velocity-acceleration ambiguity function matrix. Afterthe cross-channel interference produced by the frequency-modulated continuous-wavefull-polarimetric radar using the de-ramping processing to obtain the PSM is analyzed,the interference suppression method based on the fractional Fourier transform isproposed. Compared with the traditional method, the proposed method can achievelower peak sidelobe levels and integrated sidelobe levels in range profiles, which canobviously improve the polarimetric measurement performance of weak targets formulti-targets and weak polarimetric scattering components for a single target. After theerror due to the target kinestate is analyzed for the full-polarimetric radar during thePSM measurement, the estimation and compensation method of the kinetic parametersbased on the fractional Fourier transform is proposed. The simulative results show thatthe accuracy of the proposed method is higher than the conventional method.
     The point-target passive polarimetric calibration technique is studied. Afull-polarimetric radar system error model during PSM measurement is established. Thepolarimetric calibration performances of several typical point-target passivepolarimetric calibration algorithms are compared under different antenna polarizationisolations. After the disadvantage of the traditional passive calibration algorithms in thepractical application is founded, a new polarimetric calibration algorithm based on the Pauli-basis decomposition is proposed. Any three targets satisfying the orthogonalcondition can be chosen as calibrators to calibrate the full-polarimetric radar, whichbroaden the limitation to PSM of calibrators in the traditional calibration algorithms.The validity of the proposed method is proved by the out-field calibration experimentalresult of the PARSAX (Polarimetric Agile Radar S-And X-band) polarimetric weatherradar developed by the Delft University of Technology in the Netherlands. After theexternal calibration, the maximum amplitude and phase relative errors of the relativePSM are-22.04dB and1.40°, respectively.
     For the polarimetric calibration with the theory and practical engineering problemof the giant aperture antenna radar, the dynamic polarimetric calibration algorithmbased on the digital polarimetric active radar calibrator (PARC) is studied. The newPARC systems with two antennas and a single antenna are designed based on the digitalradio frequency memory, respectively. The frequency-domain dynamic polarimetriccalibration algorithm is proposed by the uniform-speed rotation of the PARCs’ antennasto modulate receive signals of the polarimetric radar. The unknowns in the system errormodel of the full-polarimetric radar are resolved in the frequency domain. The proposedmethod can eliminate the errors due to a set of measurements and the initial angles ofPARCs’ antennas in the traditional static calibration methods. The simulative resultsshows that the calibration performance of the dynamic polarimetric calibrationalgorithm based on the digital PARC is better than the traditional static polarimetriccalibration algorithms, such as the Target Spinor Calibration (TSC) and the FullPolarimetric Calibration Technique (FPCT), etc.
     The clutter suppression technique for the polarimetric characteristic measurementof atmospheric targets is studied. A new polarimetric clutter suppression method basedon the mathematical morphology method and double spectral linear depolarizationratios (SLDRs) is proposed. A binary mask matrix is constructed by using mathematicalmorphology operators via the analysis of statistical properties of the doublerange-Doppler spectral linear depolarization ratios of atmospheric targets and theground clutter. Using the atmospheric target data acquired by the PARSAX polarimetricradar in the simultaneous measurement mode, the analysis of calculation results of theatmospheric target data after clutter suppression in the range-Doppler spectrogram, thereflectivity, the mean Doppler velocity, and the Doppler width show the efficiency ofthe proposed method. Compared with the results of the traditional method, results of theproposed method verify its improvement and advantage.
     The research results of this dissertation help to promote the application of thepolarimetric radar technology and possess an important meaning to improve theperformance of target identification and recognition, clutter suppression andanti-jamming in the application area of the air surveillance, missile defence, weatherobservation and ground reconnaissance.
引文
[1]庄钊文,肖顺平,王雪松.雷达极化信息处理及应用[M].北京:国防工业出版社,1999.
    [2]Giuli D. Polarization Diversity in Radars[J]. Proceedings of the IEEE,1986:74(2),245-269.
    [3]王雪松.宽带极化信息处理的研究[D].长沙:国防科学技术大学,1999.
    [4]肖顺平.宽带极化雷达目标识别的理论与应用[D].长沙:国防科学技术大学,1995.
    [5]李永祯.瞬态极化统计特性及处理的研究[D].长沙:国防科学技术大学,2004.
    [6]曾勇虎.瞬态极化时频分析与目标识别的研究[D].长沙:国防科学技术大学,2004.
    [7]施龙飞.雷达极化抗干扰技术研究[D].长沙:国防科学技术大学,2007.
    [8]王涛.弹道中段目标极化域特征提取与识别[D].长沙:国防科学技术大学,2007.
    [9]曾清平,董天临,万山虎.极化雷达的发展动态与极化信息的应用前景[J].系统工程与电子技术,2003,25(6):669~673.
    [10]许小剑,黄培康.雷达系统及其信息处理[M].北京:电子工业出版社,2010.
    [11]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2005.
    [12]李永祯,王国玉,汪连栋,等.有源假目标极化识别方案的设计与性能分析[J].电子学报,2007,35(9):1642~1646.
    [13]宋立众,乔晓林,吴群.一种基于极化DBF的制导雷达抗干扰方法[J].电波科学学报,2010,25(1):109~116.
    [14]刘勇,李永祯,王雪松,等.有源压制干扰背景下的雷达目标空域极化检测[J].电波科学学报,2010,25(3):453~459.
    [15]Wiesbeck W, Riegger S. A Complete Error Model for Free Space Polarimetric Measurement[J]. IEEE Transations on Antennas and Propagation,1991,39(8):1105-1111.
    [16]Freeman A. A New System Model for Radar Polarimeters [J]. IEEE Transations on Antennas and Propagation,1991,29(5):761-767.
    [17]Michelson D G, Jull E V. Depolarizing Trihedral Comer Reflectors for Radar Navigation and Remote Sensing[J]. IEEE Transactions on Antennas and Propagation,1995,43(5):513-518.
    [18] Titin-Schnaider C, Attia S. Calibration of the MERIC full-polarimetricradar:theory and implementation[J]. Aerospace Science and Technology,2003,7(2003):633~640.
    [19] Whitt M W, Ulaby F T, Polatin P, et al. A General Polarimetric RadarCalibration Technique[J]. IEEE Transactions on Geoscience and Remote Sensing,1991,39(1):62~67.
    [20] Sarabandi K, Ulaby F T, Tassoudji M A. Calibration of Polarimetric RadarSystems with Good Polarization Isolation[J]. IEEE Transactions on Geoscience andRemote Sensing,1990,28(1):70~75.
    [21] Sarabandi K, Ulaby F T. A Convenient Technique for Polarimetric Calibrationof Single-Antenna Radar Systems[J]. IEEE Transactions on Geoscience and RemoteSensing,1990,28(6):1022~1033.
    [22] Chen T, Chu T, Chen F. A New Calibration Algorithm of Wide-bandPolarimetric Measurement System[J]. IEEE Transactions on Geoscience and RemoteSensing,1991,39(8):1188~1192.
    [23] Unal C M H, Niemeijer R J, Van Sinttruyen J S, et al. Calibration of APolarimetric Radar Using A Rotatable Dihedral Corner Reflector[J]. IEEE Transactionson Geoscience and Remote Sensing,1994,32(4):837~845.
    [24] Welsh B M, Kent B M, Buterbaugh A L. Full Polarimetric Calibration forRadar Cross-Section Measurements: Performance Analysis[J]. IEEE Transaction onAntennas and Propagation,2004,52(9):2357~2365.
    [25] Giuli D, Facheris L, Fossi M. Simultaneous Scattering Matrix MeasurementThrough Signal Coding[C]. Proceedings of IEEE Rader Conference, Arlington, VA,USA:1990:258~262.
    [26] Giuli D, Fossi M, Facheris L. Radar Target Scattering Matrix MeasurementThrough Orthogonal Signals[C]. Proceedings of IEE Radar and Signal Processing,1993,140(4):233~242.
    [27] Jersak B D. Bistatic, Fully Polarimetric Radar Cross-section CalibrationTechniques and Measurement Error Analysis[D]. Arlington: University of Texas,1993.
    [28] Nutten B, Hauser D, Roux F, et al. The RONSARD Radars: InternalCalibration Techniques Using Coherent and Noise Sources[J]. IEEE Transactions onGeoscience Electronics,1979,17(4):288~295.
    [29] Freeman A. SAR Calibration: An Overview[J]. IEEE Transactions onGeoscience and Remote Sensing,1992,30(6):1107~1121.
    [30] Hong J, Zang B R, Wang H Q. The Progress of the Airborne SAR CalibrationTechniques in China[C]. Proceedings of IEEE Geoscience and Remote SensingSymposium, Beijing, China,1999,1:422~424.
    [31] Bringi V N, Chandrasekar V. Polarimetric Doppler Weather Radar: Principles and Applications[M]. London:Cambridge University Press,2001:401-433.
    [32]王超,张红,陈曦,等.全极化合成孔径雷达图像处理[M].北京:科学出版社,2008.
    [33]庄钊文,袁乃昌.雷达散射截面测量——凑场理论与技术[M].长沙:国防科技大学出版社,2000.
    [34]焦中生,沈超玲,张云.气象雷达原理[M].北京:气象出版社,2005.
    [35]Ventura J F I. Design of a High Resolution X-band Doppler Polarimetric Weather Radar[D]. Delft:Delft University of Technology,2009.
    [36]Dufournet Y. Ice Crystal Properties Retrieval[D]. Delft:Delft University of Technology,2010.
    [37]Knott E F, Shaeffer J F, Tuley M T. Radar Cross Section (Second Edition)[M]. Raleigh:SciTech,2004.
    [38]Stone M L, Banner G P. Radars for the Detection and Tracking of Ballistic Missiles, Satellites, and Planets[J]. Lincoln Laboratory Journal,2000,12(2):217-244.
    [39]Ingwersen P A, Lemnios W Z. Radars for Ballistic Missile Defense Research[J]. Lincoln Laboratory Journal,2000,12(2):245-266.
    [40]Hubbert J, Chandrasekar V, Bringi V N. Processing and Interpretation of Coherent Dual-polarized Radar Measurements[J]. Journal of Atmospheric and Oceanic Technology,1993,10(2):155-164.
    [41]Wang X, He J W, Zhu B C, et al. Application of Dual Polarimetric Radar for Weather Modification in China[J]. Physics and Chemistry of the Earth (B),2000,25(10-12):1013-1016.
    [42]Unal C M H. Spectral Polarimetric Radar Clutter Suppression to Enhance Atmospheric Echoes[J]. Journal of Atmospheric and Oceanic Technology,2009,26(9):1781-1797.
    [43]Boerner W-M, Foo B Y, Eorn H J. Interpretation of the Polarimetric Co-Polarization Phase Term in High Resolution SAR Imaging Using the JPL CV-990Polarimetric L-Band SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing,1987,25(1):77-82.
    [44]Touzi R, Shimada M. Polarimetric PALSAR Calibration[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(12):3951-3959.
    [45]Luscombe A P, Chotoo K, Huxtable B D. Polarimetric Calibration for RADARS AT-2[C]. Proceedings of IEEE Geoscience and Remote Sensing Symposium, Richmond B C, Canada,2000,5:2197-2199.
    [46]Wang Y, Chen X, Ge J L, et al. Internal and External Calibration of POLINSAR[C]. Proceedings of IEEE Conference on Radar, Hefei, China,2011:879-882.
    [47]卢万铮.天线理论与技术[M].西安:西安电子科技大学出版社,2004.
    [48]IEEE Recommended Practice for Radar Cross-Section Test Procedures. IEEE Antennas and Propagation Society[S]. IEEE Std1502TM-2007ed.2007.
    [49]何密,王雪松,李永祯,等.运动目标PSM的时分极化测量方法研究[J].电波科学学报,2009,24(5):960~995.
    [50]王雪松,王剑,王涛,等.雷达目标极化散射矩阵的瞬时测量方法[J].电子学报,2006,34(6):1020~1025.
    [51]王涛,王雪松,肖顺平.运动目标的时分极化测量研究[J].电子与信息学报,2006,28(11):1989~1993.
    [52]Santalla V, Antar Y M M, Pino A G. Polarimetric Radar Convariance Matrix Algorithms and Applications to Meteorological Radar Data[J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):1128-1137.
    [53]Brunkow D, Bringi V N, Kennedy P C, et al. A Description of the CSU-CHILL National Radar Facility[J]. Journal of Atmospheric and Oceanic Technology,2000,17(12):1596-1608.
    [54]Hubbert J, Bringi V N, Carey L D. CSU-CHILL Polarimetric Radar Measurements from a Severe Hail Storm in Eastern Colorado[J]. Journal of Applied Meteorology,1998,37:749-775.
    [55]常宇亮.瞬态极化雷达测量、检测与抗干扰技术研究[D].长沙:国防科学技术大学,2010.
    [56]Krasnov O A, Ligthart L P, Li Z, et al. The PARSAX-Full Polarimetric FMCW Radar with Dual-Orthogonal Signals[C]. European Radar Conference, Delft, Netherlands,2008:84-87.
    [57]Zhang G, Doviak R J, Zrnic D S, et al. Polarimetric Phased-Array Radar for Weather Measurement:A Planar or Cylindrical Configuration?[J]. Journal of Atomspheric and Oceanic Technology,2011,28:63-73.
    [58]Keeler R J, Johnson M, Quinlan W, et al. The ARC X250PM X-band Polarimetric Mobile Radar System[C]. The Sixth European Conference on Radar in Meteorology and Hydrology, Sibiu, Romania,2010.
    [59]刘勇.动态目标极化特性测量与极化雷达抗干扰新方法研究[D].长沙:国防科学技术大学,2011.
    [60]李永祯,肖顺平,王雪松.雷达极化抗干扰技术[M].北京:国防工业出版社,2010.
    [61]Imbo P, Souyris J C. Assessment of Partial Polarimetry Versus Full Polarimetry Architectures for Target Analysis[C]. Proceedings EUSAR, Munich, Germany,2000.
    [62]Souyris J, Patrick Imbo R F, Mingot S, et al. Compact Polarimetry Based on Symmetry Properties of Geophysical Media:The pi/4Mode[J]. IEEE Transctions on Geoscience and Remote Sensing,2005,43(3):634-646.
    [63]Raney R K. Hybrid-Polarity SAR Architecture[J]. IEEE Transctions on Geoscience and Remote Sensing,2007,45(11):3397-3404.
    [64]Dubois-Fernandez P C, Souyris J, Angelliaume S, et al. The Compact Polarimetry Alternative for Spaceborne SAR at Low Frequency [J]. IEEE Transctions on Geoscience and Remote Sensing,2008,46(10):3208-3222.
    [65]Goswami J N, Annadurai M. Chandrayaan-1:India's First Planetary Science Mission to the Moon[J]. Current Science,2009,96(4):486-491.
    [66]Spudis P D, Bussey D B J, Baloga S M, et al. Initial Results for the North Pole of the Moon from Mini-SAR,Chandrayaan-1Mission[J]. Geophysical Research Letters,2010,37(L06204):1-6.
    [67]Nozette S, Spudis P, Bussey B, et al. The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) Technology Demonstration[J]. Space Science Reviews,2010,150(1-4):285-302.
    [68]罗佳.天线空域极化特性及应用[D].长沙:国防科学技术大学,2008.
    [69]罗佳,王雪松,李永祯,等.一种估计来波信号极化状态的新方法[J].国防科技大学学报,2010,30(5):56~61.
    [70]常宇亮,王雪松,李永祯,等.极化测量雷达的信号选择与处理[J].中国科学F辑:信息科学,2009,39(12):1296~1304.
    [71]Babur G P, Wang Z B, Krasnov O A, et al. Design and Implementation of Cross-Channel Interference Suppression for Polarimetric LFM-CW Radar[C]. Proceedings of SPIE, Poland,2010,7745:774520-1-6.
    [72]Babur G P, Krasnov O A, Ligthart L P. Inter-Period Compensation Algorithm Implementation in Full-polarimetric FMCW Radar with Continuous Waveforms[C]. European Radar Conference, Paris, France,2010:156-159.
    [73]Keenan T, Glasson K, Cummings F. The BMRC/NCAR C-Band Polarimetric (C-POL) Radar System[J]. Journal of Atmospheric and Oceanic Technology,1998,15(4):871-886.
    [74]Sarabandi K, Pierce L E, Oh Y. Cross-calibration Experiment of JPL AIRSAR and Truck-mounted Polarimetric Scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing,1994,32(5):975-985.
    [75]Freeman A. A New System Model for Radar Polarimeters[J]. IEEE Transactions on Geoscience and Remote Sensing.1991,29(5):761-767'.
    [76]Sarabandi K, Oh Y. RCS Measurement of Polarimetric Active Radar Calibrators[D]. Michigan:University of Michigan,1990.
    [77]Sarabandi K, Oh Y, Ulaby F T. Performance Characterization of Polarimetric Active Radar Calibrators and a New Single Antenna Design[J]. IEEE Transactions on Antennas and Propagation,1992,40(10):1147-1154.
    [78] Sarabandi K, Pierce L E, Ulaby F T. Calibration of A Polarimetric ImagingSAR[J]. IEEE Transactions on Geoscience and Remote Sensing,1992,30(3):540~549.
    [79] Freeman A, Shen Y, Werner C L. Polarimetric SAR Calibration ExperimentUsing Active Radar Calibrators[J]. IEEE Transactions on Geoscience and RemoteSensing,1990,28(2):224~240.
    [80] Sarabandi K, Pierce L E, Craig Dobson M, et al. Polarimetric Calibration ofSIR-C Using Point and Distributed Targets[J]. IEEE Transactions on Geoscience andRemote Sensing,1995,33(4):858~866.
    [81] Fujita M, Masuda T, Fujino Y, et al. Polarimetric Calibration of the SIR-CC-band Channel Using Active Radar Calibrators and Polarization Selective Dihedrals[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(6):1872~1878.
    [82] Shimada M, Oaku H, Nakai M. SAR Calibration Using Frequency-TunableActive Radar Calibrators[J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(1):564~573.
    [83] Fujit M. Development of A Retrodirective PARC for ALOS&PALSARCalibration[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(10):2177~2186.
    [84] Freeman A. Calibration of Linearly Polarized Polarimetric SAR Data Subjectto Faraday Rotation[J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(8):1617~1624.
    [85] Shimada M, Oaku H, Nakai M. SAR Calibration Using Frequency-TunableActive Radar Calibrators[J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(1):564~573.
    [86] Fujita M, Nakamura S, Murakami C. Reflection Characteristics of aRetrodirective PARC[C]. Proceedings of IEEE Geoscience and Remote SensingSymposium,2003,7:4506-4508.
    [87] Barnes R M. Polarimetric Calibration Using In-Scene Reflectors[R].Lexington, MA: MIT, Lincoln Lab,1986.
    [88] Zhang G F, Doviak R, Zrnic D, et al. Phase Array Radar Polarimetry forWeather Sensing: Chanllenges and Opportunities[C]. Proceedings of IEEE Geoscienceand Remote Sensing Symposium,2008,5:449~452.
    [89] Fulton C, Chappell W J. Calibration of A Digital Phased Array forPolarimetric Radar[C].2010:161~164.
    [90] Touzi R. Calibrated Polarimetric SAR Data for Ship Detection[C].Proceedings of IEEE Geoscience and Remote Sensing Symposium, Ottawa, Canada,2000,1:144-146.
    [91] Moisseev D N, Unal C M H, Russchenberg H W J, et al. ImprovedPolarimetric Calibration for Atmospheric Radars[J]. Journal of Atmospheric andOceanic Technology,2002,19(12):1968~1977.
    [92]Wang S, Qi H, Yu W. An Internal Calibration Scheme for Polarimetric Synthetic Aperture Radar System[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(1):15-20.
    [93]Zhu Y T, Wang C Y, Li L, et al. An X Band Polarimetric ARC Prototype[C]. Asian and Pacific Conference on Synthetic Aperture Radar, Beijing, China,2007:218-220.
    [94]邹鲲,梁甸农.基于回波域的低频UWBSAR极化校准[J].国防科技大学学报,2005,27(2):65~69.
    [95]邹鲲,梁甸农.基于频域的低频UWBSAR极化校准[J].电子与信息学报,2006,28(7):1219~1222.
    [96]Wiesbeck W, Kahny D. Single Reference, Three Target Calibration and Error Correction for Monostatic, Polarimetric Free Space Measurements[J]. Proceedings of the IEEE,1991,79(10):1551-1558.
    [97]Brock B C. A Simple Polarimetric Calibration Method Which Utilizes A Reference Target[C]. Proceedings of International Antennas and Propagation, Albuquerque, USA,1992,1:565-568.
    [98]Gau J R J, Burnside W D. New Polarimetric Calibration Technique Using a Single Calibration Dihedral[C]. IEE Proceedings of Microwave, Antennas and Propagation.1995,142(1):19-25.
    [99]Fabregas X, Romeu J, Broquetas A, et al. Target Spinor Calibration (TSC) for Polarimetric Radar Cross-Section Measurements [J]. Electronics Letters,1995,31(19):1694-1695.
    [100]Chen T, Chu T. Calibration and Measurement of a Wideband Six-port Plarimetric Measurement System[J]. Antennas and Propagation,1997,45(7):1080-1085.
    [101]席育孝,杨汝良Whitt点目标极化定标算法的实验研究[J].遥感技术与应用,2002,17(4):220~223.
    [102]Gorgucci E, Scarchili G, Chandrasekar V. Calibration of Radars Using Polarimetric Techniques [J]. IEEE Transactions on Geoscience and Remote Sensing,1992,30(5):853-858.
    [103]Gorgucci E, Scarchilli G, Chandrasekar V. A Procedure to Calibrate Multiparameter Weather Radar Using Properties of the Rain Medium[J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(1):269-276.
    [104]Mott H著,林昌禄等译.天线和雷达中的极化[M].成都:电子科技大学出版社,1989.
    [105]Brown D P, Spilman A K, Brown T G, et al. Calibration of a Reversed-wavefront Interferometer for Polarization Coherence Metrology [C]. Proceedings of SPIE, Sandiego CA, USA,2007:6672-1-7.
    [106]谭洪,洪峻,明峰.一种基于分布目标的极化SAR串扰定标方法[J].电子测量技术.2008,31(7):44~48.
    [107]Chen J, Sato M, Yang J. Polarimetric Calibration Using Distributed Odd-Bounce Targets[C]. Proceedings of IEEE Geoscience and Remote Sensing Symposium, Canada,2011:1079-1082.
    [108]Van Zyl J J. Calibration of Polarimetric Radar Images Using Only Image Parameters and Trihedral Corner Reflector Responses [J]. IEEE Transactions on Geoscience and Remote Sensing,1990,28(3):337-348.
    [109]Kumagai H, Kozu T, Satake M, et al. Development of an Active Radar Calibrator for the TRMM Precipitation Radar[J]. IEEE Transactions on Geoscience and Remote Sensing,1995,33(6):1316-1318.
    [110]Chen J, Quegan S, Yin X J. Calibration of Spaceborne Linearly Polarized Low Frequency SAR Using Polarimetric Selective Radar Calibrators [J]. Progress in Electromagnetics Research,2011,114:89-111.
    [111]www.ticra.com/script/site/page.asp?artid=68[DB/OL][C].
    [112]张光义.相控阵雷达系统[M].北京:国防工业出版社,1994.
    [113]Technologies A. Advanced Design System2009Documentation[C]. USA:2009.
    [114]胡楚锋,许家栋,李南京,等.基于矢量网络分析仪的目标极化散射特性测量与校准[J].西北工业大学学报,2010,28(3):349~352.
    [115]Daout F, Khenchaf A, Saillard J. Calibration of Bistatic Polarimetric Scatterometers[C]. Proceedings of IEEE Geoscience and Remote Sensing Symposium,1996,1:746-748.
    [116]Li Z J. Design, Simulation and Validation of Dual-channel Polarimetric Agile Radar Technology [D]. Delft:Delft University of Technology,2011.
    [117]戴幻尧,李永祯,陈志杰,等.电扫偶极子相控阵天线的空域极化特性分析[J].国防科技大学学报.2010,32(1):84~89.
    [118]Fulton C, Chappell W. Calibration of Panelized Polarimetric Phased Array Radar Antennas:A Case Study[C]. Proceedings of International Phased Array Systems and Technology Symposium,2010:860-867.
    [119]Staiman D. Calibration of Polarimetric Phased Array Radar for Improved Measurement Accuracy[C]. International Conference on Interactive Information and Processing Systems (UPS) for Meteorology, Oceanography, and Hydrology, Japan,2009,9B2:1-9.
    [120]Zhang G, Doviak R J, Zrnic D S, et al. Phased Array Radar Polarimetry for Weather Sensing:A Theoretical Formulation for Bias Corrections [J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(11):3679-3689.
    [121]Galletti M, Zrnic D, Doviak D, et al. Polarimetric Phased Array Weather Radar:Concepts for Polarimetric Calibration[C]. Proceedings of International Phased Array Systems and Technology Symposium, Norman, USA,2010:387-393.
    [122]Curlander J C, Mcdonough R N. Synthetic Aperture Radar:System and Signal Processing (Wiley Series in Remote Sensing and Image Processing)[M]. New York:Wiley-Interscience,1991.
    [123]周安石.极化干涉SAR定标技术研究[D].北京:中国科学院电子学研究所,2004.
    [124]Klein J D. Calbration of Complex Polarimetric SAR Imagery Using Backscatter correlations[J]. IEEE Transactions on Aerospace and Electronic Systems,1992,28(1):183-194.
    [125]Touzi R, Livingstone C E, Lafontaine J R C, et al. Consideration of Antenna Gain and Phase Patterns for Calibration of Polarimetric SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing,1993,31(6):1132-1145.
    [126]王彦平,彭海良,云日升.机载干涉合成孔径雷达定标中的定标器布放[J].电子与信息学报,2004,26(1):89~94.
    [127]邹昆,梁甸农.低频UWBSAR极化校准模型[J].信号处理,2006,22(2):244~247.
    [128]熊维族,叶中付.一种利用遗传算法的极化定标算法[J].系统工程与电子技术.2007,29(4):551~554.
    [129]Brunfeldt D R, Ulaby F T. Active Reflector for Radar Calibration[J]. IEEE Transactions on Geoscience and Remote Sensing,1984,22(2):165-169.
    [130]Ahne J J, Sarabandi K, Ulaby F T. Design and Implementation of Single Antenna Polarimetric Active Radar Calibrators[C]. International Antennas and Propagation Society Symposium,1993:1280-1283.
    [131]孙芳,康士峰,罗贤云.机载雷达有源校准器[C].全国第七届电波传播学术讨论年会,合肥,中国,2001:238-241.
    [132]王一丁,涂国防.基于有源编码转发器的SAR辐射定标精度研究[J].宇航学报,2006,27(2):256~261.
    [133]耿波,洪峻.有源转发器延时对SAR定标测量的影响[J].电子与信息学报,2006,28(12):2240~2243.
    [134]Takeshiro A, Furuya T, Fukuchi H. Verification of Polarimetric Calibration Method Including Faraday Rotation Compensation Using PALSAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(12):3960-3968.
    [135]Wright P A, Quegan S, Wheadon N S, et al. Faraday Rotation Effects on L-band Spaceborne Data[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(12):2735-2744.
    [136]Nathanson F E. Adaptive Circular Polarization[C]. International RadarConference, Arlington, VA,1975:221~225.
    [137] Giuli D, Fossi M, Gherardelli M. Polarisation Behaviour of Ground ClutterDuring Dwell Time[J]. Proceedings of IEE Radar and Signal Processing,1991,138(3):211~217.
    [138] Pastina D, Lombardo P, Bucciarelli T. Adaptive Polarimetric TargetDetection with Coherent Radar Part1: Detection Against Gaussian Background[J].IEEE Transactions on Aerospace and Electronic Systems,2001,37(4):1194~1206.
    [139] Hurtado M, Nehorai A. Polarimetric Detection of Targets in HeavyInhomogeneous Clutter[J]. IEEE Transactions on Signal Processing,2008,56(4):1349~1361.
    [140] Mott H, Boerner W. Polarimetric Contrast Enhancement Coefficients forPerfecting High-Resolution POL-SAR/SAL Image Feature Extraction[C]. Proceedingsof SPIE, Sandiego, USA,1997:106~117.
    [141] Yang J, Dong G W, Peng Y N, et al. Generalized Optimization ofPolarimetric Contrast Enhancement[J]. IEEE Geoscience and Remote Sensing Letters,2004,1(3):171~174.
    [142] Grecu M, Krajewski W. An Efficient Methodology for Detection ofAnamalous Propagation Echoes in Radar Reflectivity Data Using Nneural Networks[J].Journal of Atmospheric and Oceanic Technology,2000,17(2):121~129.
    [143] Berenguer M, Sempere-Torres D, Corral C, et al. A Fuzzy Logic Techniquefor Identifying Nonprecipitating Echoes in Radar Scans[J]. Journal of Atmospheric andOceanic Technology,2006,23(9):1157~1180.
    [144] Cho Y, Lee G, Kim K, et al. Identification and Removal of Ground Echoesand Anomalous Propagation Using the Characteristics of Radar Echoes[J]. Journal ofAtmospheric and Oceanic Technology,2006,23(9):1206~1222.
    [145] Hubbert J, Dixon M, Kessinger C. Real time clutter identification andmitigation for NEXRAD[C]. San Antonio, USA, Proceedings of IIPS of Annual AMSMeeting,2007:5B~6B.
    [146] Giuli D, Gherardelli M, Freni A, et al. Rainfall and Clutter DiscriminationBy Means of Dual-linear Polarization Radar Measurements[J]. Journal of Atmosphericand Oceanic Technology,1991,8(6):777~789.
    [147] Dixon M, Kessinger C, Hubbert J C. Echo Classification Within the SpectralDomain to Discriminate Ground Clutter from Meteorological Targets[C]. InternationalConference on Interactive Information Processing Systems for Meteorology,Oceanography, and Hydrology, Atlanta, GA, American:2006, P9.6:1~11.
    [148] Hagen M. Identification of ground clutter by polarimetric radar[C].International Conference on Radar Meteorology, Austin, TX, USA,1997:67~68.
    [149] Moisseev D N, Unal C M H, Russchenberg H W J, et al. DopplerPolarimetric Ground Clutter Identification and Suppression for Atmospheric Radars Based on Co-polar Correlation[C]. Proceedings of International Conference on Microwaves, Radar and Wireless Communications,2000,1:94-97.
    [150]Unal C M H, Moisseev D N. Combined Doppler and Polarimetric Radar Measurements:Correction for Spectrum Aliasing and Non Simultaneous Polarimetric Measurements[J]. Journal of Atmospheric and Oceanic Technology,2004,21(3):443-456.
    [151]Moisseev D N, Chandrasekar V. Polarimetric Spectral Filter for Adaptive Clutter and Noise Suppression[J]. Journal of Atmospheric and Oceanic Technology,2009,26(6):215-228.
    [152]Hubbert J C, Dixon M, Ellis S M, et al. Weather Radar Ground Clutter. Part I: Identification, Modeling, and Simulation[J]. Journal of Atmospheric and Oceanic Technology,2009,26(7):1165-1180.
    [153]Hubbert J C, Dixon M, Ellis S M. Weather Radar Ground Clutter. Part II: Real-Time Identification and Filtering[J]. Journal of Atmospheric and Oceanic Technology,2009,26(7):1181-1197.
    [154]Wang Y T, Ainsworth T L, Lee J S. Assessment of System Polarization Quality for Polarimetric SAR Imagery and Target Decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(5):1755-1771.
    [155]Wang Y T, Chandrasekar V. Polarization Isolation Requirements for Linear Dual-Polarization Weather Radar in Imultaneous Transmission Mode of Operation[J]. IEEE Transactions On Geoscience and Remote Sensing,2006,44(8):2019-2028.
    [156]Zhang G, Doviak R J, Zrni C D S, et al. Phased Array Radar Polarimetry for Weather Sensing:A Theoretical Formulation for Bias Corrections [J]. IEEE Transactions On Geoscience and Remote Sensing,2009,47(11):3679-3689.
    [157]Meta A. Signal Processing of FMCW Synthetic Aperture Radar Data[D]. Delft:Delft University of Technology,2006.
    [158]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [159]马晓岩,向家彬,朱裕生,等.雷达信号处理[M].长沙:湖南科学技术出版社,1999.
    [160]林茂庸,柯有安.雷达信号理论[M].北京:国防工业出版社,1984.
    [161]陆伟宁.弹道导弹攻防对抗技术[M].北京:中国宇航出版设,2007.
    [162]Babur G P. Processing of Dual-orthogonal CW Polarimetric Radar Signals[D]. Delft:Delft University of Technology,2009.
    [163]Chang Y L, Wang X S, Li Y Z, et al. The signal selection and processing method for polarization measurement radar[J]. Science in China INFORMATION SCIENCES,2009,52(10):1926-1935.
    [164]Jacob R, Thomas T, Unnikrishnan A. Applications of Fractional Fourier Transform in Sonar Signal Processing[J]. IETE Journal of Research,2009,5(1):16-27.
    [165]高兴波,牛振兴,刘聪锋,等.随机信号分析[M].北京:科学出版社,2009.
    [166]陶然,齐林,王越.分数阶Fourier变换的原理与应用[M].北京:清华大学出版社,2004.
    [167]Steven M K. Fundamentals of Statistical Signal Processing, Volumn Ⅱ: Detection Theory[M]. Upper Saddle River:Prentice Hall,1993.
    [168]Bultheel A, Martinez-Sulbaran H. Computation of the Fractional Fourier Transform[J]. Applied and Computational Harmonic Analysis,2004,16(3):182-202.
    [169]徐振海,陈明辉,金林等.雷达动目标极化散射矩阵瞬时测量技术[J].现代雷达,2008,30(8):53~60.
    [170]Peleg S, Porat B. Linear FM Signal Parameter Estimation from Discrete-Time Observations [J]. IEEE Transaction on Aerospace and Electronic Systems,1991,27(4):607-615.
    [171]Fan P, Xia X G. Two Modified Discrete Chirp Fourier Transform Schemes[J]. Science in China Series F,2001,44(5):329-341.
    [172]Wood J C, Barry D T. Linear Signal Synthesis Using the Radon-Wigner Transform[J]. Science in China Series F,1994,42(8):2105-2111.
    [173]Barbarossa S. Analysis of Multi-Component LFM Signals by Combined Wigner-Hough Transform[J]. IEEE Transaction on Signal Processing,1995,43(6):1511-1515.
    [174]刘建成,王雪松,刘忠,等.基于Wigner-Hough变换的LFM信号检测性能分析[J].电子学报,2007,35(6):1212~1217.
    [175]刘建成,王雪松,肖顺平,等.基于Wigner-Hough变换的径向加速度估计[J].电子学报,2005,33(12):2235~2238.
    [176]陶然,邓兵,王越.分数阶Fourier变换在信号处理领域的研究进展[J].中国科学E辑:信息科学,2006,36(2):113~136.
    [177]Almeida L B. The Fractional Fourier Transform and Time-Frequency Representations[J]. IEEE Transactions on Signal Processing,1994,42(11):3084-3091.
    [178]Elgamel S A E H, Clemente C C, Soraghan J J. Radar Matched Filtering Using the Fractional Fourier Transform[C]. Sensor Signal Processing for Defence2010, London, UK,2010:1-5.
    [179]Ozaktas H M, Zalevsky G, Kutay M A. The Fractional Fourier Transform: with Applications in Optics and Signal Processing[M]. New York:John wiley&Sons,2001.
    [180]齐林,陶然,周思永,等.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J].中国科学E辑:信息科学,2003,33(8):749~759.
    [181]刘建成,王雪松,刘忠,等.基于分数阶Fourier变换的LFM信号参数 估计精度分析[J].信号处理,2008,24(02):197~200.
    [182]IEEE Standard Definitions of Terms for Antennas. Antenna Standards Committee of the IEEE Antennas and Propagation Group[S]. IEEE Std145-1983ed.1983.
    [183]Cameron W L, Leung L K. Feature Motivated Polarization Scattering Matrix Decomposition[C]. Proceedings of IEEE International Conference on Radar, Arlington, VA, USA,1990:549-557.
    [184]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [185]Babur G P. Processing of Dual-orthogonal CW Polarimetric Radar Signals[D]. Delft:Delft University of Technology,2009.
    [186]何密,刘勇,李永祯,et a1.一种新的点目标无源极化校准方案[J].雷达科学与技术.2010,8(3):273~278.
    [187]Titin-Schnaider C, Attia S. Calibration of the MERIC full-polarimetric radar:theory and implementation[J]. Aerospace Science and Technology,2003,7(2003):633-640.
    [188]Jorstad S G, Marscher A P, Stevens J A, et al. Multiwaveband Polarimetric Observations of15Active Galactic Nuclei At high frequencies:Correlated Polarization Behavior[J]. The Astronomical Journal,2007,134(2):788-824.
    [189]刘忠.基于DRFM的线性调频脉冲压缩雷达干扰新技术[D].长沙:国防科学技术大学,2006.
    [190]刘忠,王雪松,刘建成,等.基于数字射频存储器的间歇采样重复转发干扰[J].兵工学报,2008,29(4):405~410.
    [191]刘巧玲,刘忠,傅其祥,等.基于DRFM的间歇采样转发干扰系统设计与实现[J].雷达与对抗,2007,27(3):20~24.
    [192]刘忠,陈登伟,王国玉,等.一种先进结构的数字射频存储器分析[J].现代雷达,2007,29(4):90~93.
    [193]刘忠,张亮,王国玉.多比特数字射频存储器的Simulink建模与仿真[J].系统仿真学报,2006,18(S2):762~765.
    [194]王雪松,刘建成,张文明,等.间歇采样转发干扰的数学原理[J].中国科学E辑:信息科学,2006,36(8):891~901.
    [195]伍捍东,魏茂华,安增权,等.微波与毫米波(第六版)[G].西安:HD西安恒达微波集团,2010.
    [196]Christopher A R, James H C. High Accuracy Cross-Polarization Measurements Using a Single Reflector Compact Range [EB/OL]. http://www.mi-japan.co.jp/literature/EccaAMTA99. PDF.
    [197]王雪松,肖顺平,陶华敏,等.论目标互易性Cameron修正法的最优性 [J].电子学报,1999,27(06):33~35.
    [198]王雪松,李永祯,徐振海,等.雷达目标互易性的Frobenius范数修正法[J].电子学报,2000,28(03):39~42.
    [199]曾勇虎,王雪松,肖顺平,等.雷达目标互易性的最小变质修正法[J].电子学报,2001,29(12):1611~1614.
    [200]Russchenberg H W J, Spek L, Moisseev D N, et al. On the Use of Spectral Polarimetry to Observe Ice Cloud Microphysics With Radar[M]. Chapter in Precipitation:Advances in Measurement, Estimation and Prediction, Berlin: Springer-Verlag,2008.
    [201]Weerts A H, Schellekens J, Weiland F S. Real-time Geospatial Data Handling and Forecasting:Examples from Delft-FEWS Forecasting Platform/System[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2010,3(3):386-394.
    [202]Krasnov O A, Babur G P, Wang Z B, et al. Basics and First Experiments Demonstrating Isolation Improvements in the Agile Polarimetric FM-CW Radar-PARSAX[C]. International Journal of Microwave and Wireless Technologies,2010,2(3-4):419-428.
    [203]Hassiotis A. Analysis of Spectral Differential Reflectivity in the Melting Layer of Precipitation[D]. Delft:Delft University of Technology,2002.
    [204]Soille P. Morphological Image Analysis Principles and Applications[M]. Berlin:Springer-Verlag,2003.
    [205]Maragos P, Schafer R W. Morphological Systems for Multidimensional Signal Processing[J]. Proceedings of the IEEE,1990:74-78.
    [206]William K P. Digital Image Processing[M]. New York:John Wiley and Sons,2001.
    [207]www.weeronline.nl.
    [208]Saxena R, Singh K. Fractional Fourier Transform:A novel Tool for Signal Processing[J]. Journal of the Indian Institute of Science,2005,85:11-26.
    [209]Yin Z P, Chen W D. A New LFM-Signal Detector Based on Fractional Fourier Transform[J]. EURASIP Journal on Advances in Signal Processing,2010,2010:1-7.
    [210]Alieva T, Calvo M L. Image Reconstruction from Amplitude-Only and Phase-Only Data in the Fractional Fourier Domain[J]. Optics and Spectroscopy,2003,95(1):117-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700