用户名: 密码: 验证码:
高压大功率电磁发射机供电关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为人工场源电磁法勘探必备的仪器设备,电磁发射机将恒稳电性源以所需频率进行逆变,通过接地电极发射出去,用以获得有效的电磁场来进行地球物理勘探。为获得深部探测有效的地球物理数据,要求发射机具有高电压、大电流、高精度稳定输出的同时具有质量轻体积小的特点。针对高压大功率电磁发射机供电技术的研究,对我国深部地球物理探测具有重大意义。
     依托工程科研项目,基于开关电源技术,深入研究了高压大功率电磁发射机功率拓扑结构、系统建模方法、系统控制策略以及串并联组合的均压均流控制方法,解决了高压大功率电磁发射机供电技术的难题。
     分析了高压大功率电磁发射机供电技术的基本特征和研究现状,提出了基于开关电源技术对高压大功率电磁发射机供电技术进行理论研究与技术开发的方案。针对常规开关电源技术在控制方法、控制性能上,无法满足发射机供电的特殊需求,详细分析了开关电源技术的建模方法、控制策略及模块化串并联组合均压均流方法的基本特征、研究现状和各自特点,总结比较了目前各种方法存在的问题,提出了课题的研究内容。
     针对高压大功率电磁发射机的特殊用途和技术指标,采用了两路全桥变换器模块串并联的功率拓扑结构,设计了两路磁集成的高频变压器以及功率电路器件参数。对高频变压器模型以及对电磁发射机功率电路模型的仿真分析论证了设计的可行性和参数选择的合理性。
     分析了发射机在连续工作模式下的建模方法。将发射机等效为全桥变换器,分别应用能量守恒平均法建立了考虑导通损耗和应用等效受控源法建立了考虑变压器漏感的全桥变换器模型。提出了通过结合能量守恒平均法和等效受控源法,对考虑导通损耗和变压器漏感的全桥变换器进行建模分析。仿真结果表明,考虑导通损耗和变压器漏感的建模物理意义直观、明确,能直接反映出影响系统工作的变量特性,能更精确地反映非理想全桥变换器的本质特征,所建模型阐明了考虑导通损耗和变压器漏感的发射机建模的精确有效性,为后续控制策略研究提供了研究基础。
     针对发射机控制采用分数阶PID控制。提出了基于遗传内核的粒子群优化算法(GA-PSO),用于整定分数阶PID控制器参数;提出了对微积分算子在所需频段内进行近似、最优降阶,从而得到近似的分数阶PID控制器的整数阶控制器模型;对系统采用电流内环电压外环加负载电流前馈的双环控制策略,对比分析近似后的控制器、整数阶PID控制器。仿真结果表明,GA-PSO算法用于分数阶PID控制器的参数整定具有更快的收敛速度,更高的求解精度;对分数阶PID控制器近似降阶后,所得到的二阶控制器模型在所要求频段内,整体性能与分数阶PID控制器一致;系统采用分数阶PID控制器以及分数阶PID控制器近似后的二阶控制器模型具有更好的稳态性能以及动态性能,验证了发射机分数阶PID控制的鲁棒性与有效性;同时也证明了近似方法的有效性。
     详细分析了串并联组合系统中各个模块输入均压均流与输出均压均流之间的关系;从变换器模块输入阻抗特性的角度理论上证明了输入串联组合系统采用输出均压或均流控制方案时,系统不能稳定工作的原因;同时提出了采用输入LRC匹配网络来实现变换器模块的输入阻抗呈正阻性的方法,从而使输出均压均流控制能够全部实现对四类串并联组合系统的均衡控制;提出了基于平均电流的数字均压均流法,采用CAN总线设计,由数字控制器控制实现均压均流。从仿真的角度证明了均压均流方法的有效性。
     最后基于所采用的发射机拓扑、高频变压器及功率器件,根据理论研究成果,研制了25KW的原理样机,并对样机展开全面的性能实验,验证了本文理论研究及仿真结果的有效性。
     立足于发射机供电技术的要求,充分考虑工程应用中的实际因素,进行了理论研究和实验验证,并已经在实际应用中得到检验。
As essential equipment for electromagnetic exploration, electromagnetictransmitter reverse the steady power supply with desired frequency and transmit thepower through grounding electrodes, in order to obtain effective electromagneticfield for deep geophysical exploration. To obtain effective geophysical data duringdeep exploration, the transmitter needs to be high-voltage, high-current, withhigh-accuracy output, and yet compact and light. The researches on the powersupply technologies for high-voltage high-power electromagnetic transmitter is ofsignificant importance to the deep geophysical explorations in China.
     Through the engineering research project, and based on switching powertechnology, we conducted in-depth study on the topology, modeling methods, andsystem controlling methods of high-voltage high-power electromagnetic transmitters,as well as the series-parallel integrated voltage/current sharing controlling methods,in order to address the issues in the power supply for high-voltage high-powerelectromagnetic transmitter.
     After analyzing the basic characteristics and current research status of thepower supply technology for high-voltage high-power electromagnetic transmitter, anew approach for theoretical study and technical development for the power supplytechnology based on switching power technology was proposed. From theperspectives of both controlling method and controlling performance, conventionalswitching power supply technology could not fulfill the special requirements for thetransmitter. For this limitation, we conducted detailed analysis on the basiccharacteristics, research status, and individual characteristics of the modeling method,controlling method, and modularized series-parallel integrated voltage/currentsharing method of switching power supply technologies, and summarized andcompared the existing issues in each of the technologies in order to identify the focusof this study.
     For the special usages and technical indicators of high-voltage high-powerelectromagnetic transmitter, the power topology of series-parallel two-passfull-bridge converter modules is adopted for the designing of two-pass magneticintegrated high-frequency transformer as well as the parameters of the power circuitdevices. The simulation analysis of the high-frequency voltage transformer modeland the magnetic transmitter power circuit model validated the feasibility of thedesign and the reasonability of the parameter choices.
     The modeling for transmitters at continuous working mode was studied.Transmitter was treated as equivalent to full-bridge converters. For full-bridge converter with on-state loss considered, energy conservation averaging method wasemployed for modeling, while for full-bridge converter with transformer inductionloss considered, equivalent controlled source method was employed for modeling. Forthe full-bridge converters with both on-state and transformer induction lossconsidered, a modeling method was proposed which combining energy conservationaveraging method and equivalent controlled source method. The large-signal averagedmodel, DC circuit model, small-signal circuit model and transfer function atcontinuous working mode were established for each type of converter respectively.The simulation showed that the model for converter with on-state and transformerinduction loss considered could more accurately reflect the characteristics ofnon-ideal full-bridge converters, and proved the accuracy and effectiveness of theproposed transmitter modeling method.
     Since fractional-order PID controller was adopted for the transmitter, a genetickernel-based particle swarm optimization algorithm (GA-PSO) was proposed totuning parameters of fractional-order PID controller. A method was proposed that theadopting of filter approximation and optimized degree reduction within the requiredfrequency band in order to obtain the integer-order model of the lower order ofapproximated fractional-order PID controller. In addition, the fractional-order PI-PDcontrolling approach for the transmitter with inner current loop, outer voltage loopand load current forward feedback was designed. The simulation showed that theapplying of GA-PSO algorithm to the parameter tuning for fractional-order PIDcontroller accelerated the convergence and improved the accuracy. The two-orderinteger-order model after approximation and degree reduction has consistentcharacteristics with fractional-order PID controller within the required frequencyband and can be used in practical application. The transmitter employingfractional-order PI-PD control has very good stability and dynamic performance,validating the effectiveness of the adopted controlling method.
     The relationship between the input voltage/current sharing and the outputvoltage/current sharing of each module in the series-parallel integrated system wasstudied in detail. It was found that when voltage sharing or current sharing controlapproaches are adopted for series integrated system, the system is unstable, whereaswhen they are adopted for parallel integrated system, the system is stable; from theperspective of the converter module’s input impedance, this phenomenon wastheoretically demonstrated. Making the converter module’s input impedance bepositive resistant by adopting a type of input matching network was proposed, in order to achieve voltage/current sharing to ensure the balance between the four typesof series-parallel integrated system. It was proposed to employ digitalvoltage/current sharing method for the transmitters, so that based on CAN busdesign, the voltage/current sharing of the transmitter could be realized using digitalcontrollers. And the effectiveness of the voltage/current sharing method was provedfrom the perspective of simulation.
     Lastly, based on the employed topology of transmitter, high-frequencytransformer and power equipment, as well as the result of the theoretical studies, a25KW prototype was produced. The comprehensive performance tests conducted tothe prototype validated the effectiveness of the theoretical study and simulationresult in this dissertation.
     This study focused on the technical requirements on the power supply fortransmitter, the practical factors in engineering applications were taken intoconsideration, and theoretical study and experimental validation were performed, itwas also verified in practical application.
引文
[1]林君.电磁探测技术在工程与环境中的应用现状[J].物探与化探,2000,24(3):167-177.
    [2]王娟芬.大地电磁测深如干技术问题的理论研究[D].中国地质大学,2009.
    [3]滕吉文.强化开展地壳内部第二深度空间金属矿产资源地球物理找矿、勘探和开发[J].地质通报,2006,7(25):767-771.
    [4]柳建新.地球物理勘探在矿山危机深边部接替资源勘探中的应用[J].国土资源导刊,2006,3(3):120-124.
    [5]王艳.深部矿产资源的时频联合电磁探测方法研究[D].吉林大学,2011.
    [6]程德福,王君,李秀平,段清明,林君.混场源电磁法仪器研制进展[J].地球物理学进展,2004,19(4):778-781.
    [7]王言章.混场源电磁探测关键技术研究[D].吉林大学,2010.
    [8]周国华.基于DSP的瞬变电磁探测系统设计与实现[D].吉林大学,2006.
    [9]吴凯.中功率电性源电磁发射机的硬件研制[D].吉林大学,2011.
    [10]徐立忠.基于ATTEM-Ⅱ的改进型电磁发射系统设计与实现[D].吉林大学,2008.
    [11]谭国贞,付志红,周雒维.瞬变电磁发射机控制系统设计[J].电测与仪表,2006,43(483):8-12.
    [12]林品荣,郭鹏,石福升.大深度多功能电磁探测技术研究[J].地球学报,2010,4(31):149-154.
    [13]石福升,刘莺莺,郭鹏.小功率智能多频发射系统研究与应用[J].物探与化探,2007,10(31):11-18.
    [14]董树文,李廷栋,陈宣华,等.我国深部探测技术与实验研究进展综述[J].地球物理学报,2012,55(12):3884-3901.
    [15]韩琳,陈柏超,陈晓国.三相整流电路谐波注入滤波方法[J].高电压技术,2003,(7):41-46.
    [16]石福升.高精度数字稳流技术研究[J].物探与化探,2004,28(4):358-360.
    [17]韩英铎,谢小荣,崔文进.同步发电机励磁控制研究的现状与走向[J].清华大学学报,2001,41(4/5):142-146.
    [18]何丙茂.对同步发电机励磁系统若干问题的思考[J].电网技术,1999,23(3):27-30.
    [19]廖勇,杨顺昌.交流励磁发电机励磁控制[J].中国电机工程学报,1998,18(2):87-90.
    [20]段雄英,邹积岩,顾王骥,郑安康,等.相控真空断路器同步关合电容器组的研究[J].高压电器,2003,(4):28-30.
    [21]丁富华,段雄英,邹积岩.基于同步真空断路器的智能无功补偿装置[J].中国电机工程学报,25(6):30-35.
    [22]丁士启.冶金用大电流高频开关电源技术研究[D].湖南大学,2012.
    [23] Malinowski M, Jasinski M, Kazmierkowski M P. Simple Direct Power Control ofThree-phase PWM Rectifier Using Space-vector Modulation [J]. IEEE Transactions onIndustrial Electronics,2004,51(2):447-454.
    [24] Shu Z L, Tang J, Guo Y H. An Efficient SVPWM Algorithm with Low ComputationOverhead for Three-phase Inverter [J]. IEEE Transactions on Power Electronics,2007,22(5):1797-1805.
    [25]焦春雷,严登俊.三相电压型PWM整流器控制新技术的研究[J].通信电源技术,2010,27(1):15-19.
    [26]陈蕊.采用无源谐振电路的ZVZCS DC-DC变换器研究[D].哈尔滨工业大学,2007.
    [27]杜汝全.大功率开关电源的研究[D].华南理工大学,2012.
    [28]郭国强.基于DSP控制的电除尘用高频高压开关电源[D].浙江大学,2008.
    [29]刘鸿鹏.具有无损缓冲电路的ZVS DC-DC变换器研究[D].哈尔滨工业大学,2006.
    [30] Pejovic P, Janda Z. Optimal Current Programming in Three-Phase High-Power-FactorRectifier Based on Two Boost Converter[J]. IEEE Transactions on Power Electronics,1998,13(6):1152-1163.
    [31] Wang Sheng-yuan. Rectifier-preferred Power Supply for Cleaner Production in ElectroplatingIndustry [J]. Electroplating&Finishing,2007,26(7):39-41.
    [32] MA Fu-jun, LUO An, XIAO Huagen. High-power High-efficient and SimplifiedHigh-frequency Switching Power Supply for Electrolytic Plating[J]. Proceedings of theCSEE,2012,32(21):71-78.
    [33] HU Peng-feng, WANG Zheng-shi, CHEN Hui-ming. Output-voltage-regulated Full-bridgeDC-DC Converter[J]. Journal of Mechanical&Electrical Engineering,2011,28(9):1153-1156.
    [34]余明杨.变压器隔离全桥变换器的建模与应用技术研究[D].中南大学,2007.
    [35]周嘉农,曾小平. DC-DC开关变换器的建模与分析的动态评述[J].华南理工大学学报,2000,28(8):111-116.
    [36] Swami R K, Senani R, Macro modeling Ideal Switches for SPICE[J]. IEEE Circuits andDevices Magazine.1995,11(4):8-10.
    [37] Ben-Yaakov S, Adar D, Rahav G. A SPICE Compatible Behavioral Model of SEPICConverters [C]. IEEE Power Electronics Specialists Conference, Baveno, Italy,1996:1668-1674.
    [38] Lai Y M, Tse C K, Szeto C H. A Computer Method for Modeling Periodically SwitchedNetworks[C]. IEEE25th Power Electronics Specialists Conference, Taipei, Taiwan,1994:1297-1302.
    [39]欧阳长莲. DC-DC开关变换器的建模分析与研究[D].南京航空航天大学,2004.
    [40] Zhang B, Pong M H. Dynamic Model and Small Signal Analysis Based on the ExtendedDescribing Function and Fourier Series of a Novel AM ZVS Direct Coupling DC/DCConverter [C]. IEEE Power Electronics Specialists Conference, St. Louis, USA,1997:447-452.
    [41] Kazimierczuk M K, Edstrom A J. DC and AC Analysis of Buck PWM DC-DC Converterwith Peak-Voltage-Modulation Feedforward Control [C]. Proceedings of the1999IEEEInternational Symposium on Circuits and Systems, Orlando, USA,1999:246-249.
    [42] Tan F D, Middlebrook R D. A Unified Model for Current-programmed Converters [J]. IEEETransactions on Power Electronics,1995,10(4):397-408.
    [43] Ioannidis G, Kandianis A, Manias S N. Novel Control Design for the Buck Converter [J]. IEEProceedings-Electric Power Applications,1998,145(1):39-47.
    [44] Lo Y W, King R J. Sampled-data Modeling of the Average-input Current-mode-controlledBuck Converter [J]. IEEE Transactions on Power Electronics,1999,14(5):918-927.
    [45] Sun C X, Lehman B, Ciprian R. Dynamic Modeling and Control in Average Current ModeControlled PWM DC-DC Converters [C]. IEEE Power Electronics Specialists Conference,Charleston, USA,1999:1152-1157.
    [46] Cooke P. Modeling Average Current Mode Control of Power Converters [C]. Proceedings ofIEEE Applied Power Electronics Conference and Exposition, New Orleans, USA,2000:256-262.
    [47] Mahdavi J, Emaadi A, Bellar M D. Analysis of Power Electronic Converters using theGeneralized State-space Averaging Approach [J]. IEEE Transactions on circuit and systemsFundamental Theory and Applications,1997,44(8):767-770.
    [48] Sun J, Mitchell D M, Greuel M F. Averaged Modeling of PWM Converters Operating inDiscontinuous Conduction Mode [J]. IEEE Transactions on Power Electronics,2001,16(4):482-492.
    [49] Sun J, Heck B, Lehman B. Continuous Approximation and the Stability of Averaging [C].Proceedings of the7th Workshop on Computers in Power Electronics, Blacksburg, USA,2000:139-144.
    [50] Czarkowski D, Kazimierczuk M K. A New and Systematic Method of Modeling PWMDC-DC Converters [C]. IEEE International Conference on Systems Engineering, Japan,1992:628-631.
    [51] CHEN Yan-feng, QIU Shui-sheng, WU Yan-zhen. A Review on the Analysis and Simulationof PWM Switching Power Converters [J]. Electric Machines and Control,1999,3(3):153-156.
    [52] Cheng K.W E. Storage Energy for Classical Switched Mode Power Converters [J]. IEEEProceedings of Electronic Power Application,2003,150(4):439-446.
    [53] Luo F L, Ye H. Small Signal Analysis of Energy Factor and Mathematical Modeling forPower DC–DC Converters [J]. IEEE Transactions on Power Electronics,2007,22(1):69-78.
    [54] Luo F L, Ye H. Energy factor and Mathematical Modeling for Power DC/DC Converters [J].IEEE Proceedings of Electronic Power Application,2005,152(2):191-198.
    [55] Luo S G.. A Review of Distributed Power Systems [J]. IEEE A&E System Magazine,2005,20(8):5-15.
    [56]陆楠.复杂系统应该采用数字电源[J].电子设计技术,2008,15(4):42-44.
    [57]彭晓珊.大容量高频开关电源的研制[D].中南大学,2003.
    [58]许会军.数字控制DC-DC变换器的研究[D].天津大学,2006.
    [59]吴爱国,李际涛. DC-DC变换器控制方法研究现状[J].电力电子技术,1999,33(2):75-78.
    [60] Goder D, Pelletier W. V2Architecture Provides Ultra-fast Transient Response in SwitchMode Power Supplies [C]. Proceedings of HFPC,1996:19-23.
    [61]王凤岩,许建平,许俊峰. V2控制Buck变换器分析[J].中国电机工程学报,2005,25(12):67-72.
    [62]王凤岩,许建平,许俊峰.不连续导电模式V2控制Buck变换器分析[J].电工技术学报,2005,20(10):35-40.
    [63] Abu-Qahouq, Hong Mao J, Batarseh I. Multiphase Voltage-mode Hysteretic ControlledDC-DC Converter With Novel Current Sharing [J]. IEEE Transactions on Power Electronics,2004,19(6):1397-1407.
    [64] Wei Gu, Weihong Qiu, Wenkai Wu, and Issa Batarseh. A Multiphase DC/DC Converter withHysteretic Voltage Control and Current Sharing [C]. IEEE APEC,2002:670-674.
    [65] Schrom G, Hazucha P, Hahn J, Gardner D S, Bloechel B A. A480-MHz, Multi-PhaseInterleaved Buck DC-DC Converter with Hysteretic Control [C]. IEEE PESC,2004:4702-4707.
    [66] Smedley K, Cuk M. One-cycle Control of Switching Converters [C]. IEEE PESC,1991:888-896.
    [67] Smedley K, Cuk M. One-cycle Control of Switching Converters [J]. IEEE Transactions onPower Electronics,1995,10(6):625-633.
    [68] Ruzbehani M, Luowei Zhou, Mingyu Wang. A New Approach in Combining One-cycleController and PID Controller [C]. IEEE ISIE,2004:1173-1177.
    [69] Ramirez S, Garcia H, estebaba M. Dynamical Adaptive Pulsed-width-modulation Control ofDC-DC Power Converters:A Back Stepping Approach [J]. INT.J.Control,1996,65(2):205-222.
    [70] Bibian S, Hua Jin. Time Delay Compensation of Digital Control for DC Switch Mode PowerSupplies Using Prediction Techniques [J]. IEEE Transactions on Power Electronics,200015(5):835-842.
    [71] Bibian S, Jin H. High Performance Predictive Dead-beat Digital Controller for DC PowerSupplies [J]. Proceeding of IEEE APEC,2001:67-73.
    [72]陈明,汪光森,马伟明.多重化双向DC-DC变换器PI滑模变结构控制策略研究[J].电力自动化设备,2008,28(4):53-57.
    [73] HE Y, LUO F L. Study of Sliding-mode Control for DC-DC Converters [C]. IEEE CPST.Singapore,2004:1969-1974.
    [74] ZHANG Li, QIU Shuisheng. Anysis and Implementation of Buck Converter withProportional-integral Sliding Mode Control [J]. Power Electronics,2005,39(2):26-28.
    [75] Balestrino A, Landi A, Sani L. Cuk Converter Global Control via Fuzzy Logic and ScalingFactor [C]. Industrial Applications Conference2000.2(8):1241-1248.
    [76]韩智玲,智能控制在DC-DC变换器中的应用[J].电源世界,2004,3:31-34.
    [77] Calderon A J, Vinagre B M, Feliu V. Fractional Order Control Strategies for Power ElectronicBuck Converters [J]. Signal Processing,2006,86[10]:2803-2819.
    [78] Jayakrishna B, Agarwal V. FPGA Implementation of QFT based Controller for a Buck TypeDC-DC Power Converter and Comparison with Fractional and Integral Order PID Controllers
    [C].11th IEEE Workshop on Control and Modeling for Power Electronics, COMPEL,2008,1-6.
    [79]钱照明,张军明,谢小高,等.电力电子系统集成研究进展与现状[J].电工技术学报,2006,21(3):1-14.
    [80]陈桥梁,杨旭,王兆安,等.基于电力电子集成技术的开关电源模块研究[J].电力电子技术,2004,38(2):51-53.
    [81]王兆安,杨旭,王晓宝.电力电子集成技术的现状及发展方向[J].电力电子技术,2003,37(5):90-94.
    [82] Kim J W, Choi H S, Cho BH. A Novel Droop Method for Converter Parallel Operation[J].IEEE Transactions on Power Electronics,2002,17(1):25-32.
    [83] Panov Y, Jovanovi M M. Stability and Dynamic Performance of Current-sharing Control forParalleled Voltage Regulator Modules[J]. IEEE Transactions on Power Electronics,2002,17(2):172-179.
    [84] Lin C, Chen C. Single-wire Current-share Paralleling of Current-mode-controlled DC PowerSupplies[J]. IEEE Transactions on Industrial Electronics,2000,47(4):780-786.
    [85] Huang Y, Tse C K. Circuit Theoretic Classification of Parallel Connected DC-DC Converters[J]. IEEE Transactions on Circuits and Systems-I,2007,54(5):1099-1108.
    [86] Mazumder S K, Tahir M, Acharya K. Master-slave Current-sharing Control of a ParallelDC-DC Converter System over an RF Communication Interface[J]. IEEE Transactions onIndustrial Electronics,2008,55(1):59-66.
    [87] Lu H, Tsc C K. Bifurcation Behavior of Parallel-connected Buck Converters[J]. IEEETransactions on Circuits and Systems-I,2001,48(2):233-240.
    [88]张军明,谢小高,吴新科,等. DC/DC模块有源均流技术研究[J].中国电机工程学报,2005,25(19):31-36.
    [89] Al-Mothafar M. Comparison of Large-signal Behavior of Control Schemes for High-outputVoltage Modular DC-DC Converters[C]. Proc. IEEE ICECS,1999:1427-1431.
    [90] Siri K, Conner K, Truong C. Uniform Voltage Distribution Control for Paralleled-input,Series-output Connected Converters[C]. Proc. IEEE Aerospace Conference,2005:1-11.
    [91] Giri R, Choudhary V, Ayyanar R. Common-duty-ratio Control of Input-series ConnectedModular DC-DC Converters with Active Input Voltage and Load-current Sharing[J]. IEEETransactions on Industry Applications,2006,42(4):1101-1111.
    [92]裘迅,杨双景,方宇,等.交错串联-并联双管正激变换器的一种均压方法[J].中国电机工程学报,2008,28(24):1-6.
    [93]章涛,阮新波.输入串联输出并联全桥变换器均压均流的一种方法[J].中国电机工程学报,2005,25(24):47-50.
    [94] Ayyanar R, Giri R, Mohan N. Active Iinput-voltage and Load-current Sharing Input-seriesand Output-parallel Connected Modular DC-DC Converters Using Dynamic Input-voltageReference Scheme[J]. IEEE Transactions on Power Electronics,2004,19(6):1462-1472.
    [95] Qian T, Lehman B. Dual Interleaved Active-clamp Forward with Automatic Charge BalanceRegulation for High Input Voltage Application[J]. IEEE Transactions on Power Electronics,2008,23(1):38-44.
    [96] Qian T, Lehman B. Coupled Input-series and Output-parallel Dual Interleaved FlybackConverter for High Input Voltage Application[J]. IEEE Transactions on Power Electronics,2008,23(1):88-95.
    [97] Jin T, Zhang K, Zhang K. A New Interleaved Series Input Parallel Output (ISIPO) ForwardConverter with Inherent Demagnetizing Features[J]. IEEE Transactions on Power Electronics,2008,23(2):888-895.
    [98] Grbovi P. Master/Slave Control of Input-series-andOutput-parallel-connected Converters:Concept for Low-cost High-voltage Auxiliary Power Supplies[J]. IEEE Transactions onPower Electronics,2009,24(2):316-328.
    [99] Siri K, Willhoff M, Conner K. Uniform Voltage Distribution Control for Series ConnectedDC-DC Converters[J]. IEEE Transactions on Power Electronics,2007,22(4):1269-1279.
    [100] Giri R, Ayyanar R, Ledezma E. Input-series and Output-series Connected Modular DC-DCConverters with Active Input Voltage and Output Voltage Sharing[C]. Proc. IEEE APEC,2004:1751-1756.
    [101]李敏.电源并联系统数字化均流的研究[J].通信电源技术,2007,24,(2):13-18.
    [102]姜雪松.隔离升压全桥DC-DC变换器拓扑理论和控制技术研究[D].中国科学院研究生院,2006.
    [103]王圣元.高频开关电源–镀行业清洁生产的首选电源[J].电镀与涂饰,2007,26(7):39-41.
    [104]马伏军,罗安,肖华根.大功率高效简化型电解电镀高频开关电源[J].中国电机工程学报,2012,32(21):71-78.
    [105]胡蓬峰,王正仕,陈辉明.一种输出电压可调的大功率开关电源[J].机电工程,2011,28(9):1153-1156.
    [106]唐青松,吴强,曹怀志,等.一种高频变压器的研制方法[J].变流技术与电力牵引,2007,6:36-41.
    [107]贾银刚.分数阶控制系统与控制器设计[D].东北大学,2005.
    [108]赵春娜.分数阶控制器与整数阶控制器仿真研究[J].系统仿真学报,2009,21(3):768-775.
    [109]薛定宇,赵春娜.分数阶系统的分数阶PI D控制器设计[J].控制理论与应用,2007,24(5):771-776.
    [110] Podlubny I. Matrix Approach to Discrete Fractional Calculus[J]. Fractional Calclus AppliedAnalysis.2000,4:359-386.
    [111] Xue D Y, Chen YQ. The Solution Methods of Advanced Applied Math Using Matlab[M].Beijing:Tsinghua University Press,2004.
    [112] Xue D Y. Computer Aided Control System Design Using MatlabLanguage[M]. Beijing:Tsinghua University Press,2006.
    [113]朱呈祥,邹云.分数阶控制研究综述[J].控制与决策,2009,24(2):161-169.
    [114]曾庆山.分数阶控制系统的研究及其在MCFC中的应用[D].上海交通大学,2004.
    [115] Tenreiro Machado. Discerte-time Fractional-order Contorllers[J]. FACC Jounral of FraetionalCalculus Applied Analysis,2001,4:47-66.
    [116] Hartley T T, Lorenzo C F. Dynamics and Contorl of Initialized Fractional-order Systems[J].Nonlinear Dynamics,2002,29(l-4):201-233.
    [117] Raynaud H F, Zergamoh A. State-space Representation for Fractional Order Conortllers[J].Automatica,2000,36(7):1017-1021.
    [118] Podlubny I. Fraetional-order Systems and PID-Controllers[J]. IEEE Transactions onAutomatic Control,1999:44(l):208-214.
    [119] Vinagre B M, Podlubny I. On Fractional PID Controllers:A Frequency Domain Approach[C].IAFC Workshop on Digital Control-PID,Terrassa,Spain,2000:123-128.
    [120] Petras I,Yangquan chen and Blas M Vinagre. A Robust Stabiliy Test Porcedure for a Class ofUncertain LTI Fractional Odrer Systems[C]. International Carpathian Control ConferenceICCC,2002:247-252.
    [121] Yangquan chen and Kevin Moore. Analytical Stability Bound for a Class of Delayedfractional-order Dynamic Systems[J]. Nonlinear Dynamics,2002,29:191-200.
    [122] Dingyu Xue, Yangquan Chen. A Comparative Introduction Of four Fractional OrderControllers [C]. Proc of the4th World Congress on Intelligent Control and Automation.Shanghai,2002:3228-3235.
    [123] Oustaloup A, Bansard M, Lanusse P. The CRONE Control of Resonant Plants: Applicationto a Flexible Transmission[J]. European J of Control,1995,1(2):275-283.
    [124] Oustaloup A, Bansard M. First Generation CRONE Control[C]. IEEE internationalconference on systems,1993:130-135.
    [125]李大字,刘展,靳其兵.分数阶控制器参数整定策略研究[J].系统仿真学报,2007,19(19):4402-4406.
    [126]严慧,于盛林,李远禄.分数阶PI D控制器参数设计方法:极点阶数搜索法[J].信息与控制,2007,36(4):445-450.
    [127]李宏胜.分数阶控制及PI D控制器的设计与进展[J].机床与液压,2007,35(7):237-240.
    [128] Petras I. The Fractional-order Controllers:Methods for Their Synthesis and Application[J].Electrical Engineering,1999,50(9-10):284-288.
    [129]李大字,刘展,靳其兵.基于遗传算法的分数阶控制器参数整定研究[J].控制工程,2006,13(4):384-387.
    [130] Youxin LUO, Jianying LI. The Controlling Parameters Tuning and its Application ofFractional Order PID Bacterial Foraging-based Oriented by Particle Swarm Optimization[C].IEEE international conference on systems,2009:4-7.
    [131] Valerio D and Sada Costa J. Tuning of fractional PID controllers with Ziegler-Nichols typerules[J]. Signal Processing,2006,86(10):2771-2784.
    [132] Chen Y, Bhaskaran T, and Xue D. Practical Tuning Rule Development for Fractional OrderProportional and Integral Controllers[J]. Journal of Computational and Nonlinear Dynamics,2008,24:203-214.
    [133]都伟,韩正之.一种自适应杂交算子的浮点遗传算法[J].系统仿真学报,2006,18(6):1711-1713.
    [134]岑翼刚,秦元庆,孙德宝,等.粒子群算法在小波神经网络中的应用[J].系统仿真学报,2004,16(12):2783-2788.
    [135]熊伟丽,徐保国.基于PSO的SVR参数优化选择方法研究[J].系统仿真学报,2006,18(9):2442-2445.
    [136] CHEN Rui, LIANG Wei, WEI Zhong-chao. Study of Inverter with Dual-Loop Control [J].Telecom Power Technologies,2006,23(1):19-21.
    [137] Kukrer O, Komurcugil H. Control Strategy for Single-phase UPS Inverters [J]. ElectricPower Application, IEEE Proc.2003,150(6):743-746.
    [138] YANG Hui-min, SONG Jian-cheng. Modeling and Simulation of a Single-phase VoltagePWM Inverter based on Dual-loop Control[J]. Electric Drive Automation,2009,31(1):15-18.
    [139]陈武.多变换器模块串并联组合系统研究[D].南京航空航天大学,2009.
    [140]邢岩,严仰光.电流型调节逆变器的冗余并联控制方法[J].中国电机工程学报,2004,24(11):199-202.
    [141]方天治. IPOP和ISOS逆变器组合系统的控制策略研究[D].南京航空航天大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700